Research Article
BibTex RIS Cite

YAKALAMA GEÇİŞ SİNYALLERİNDEN YAKALAMA KESİT ALANINI BELİRLEME

Year 2025, Volume: 3 Issue: 1, 45 - 55

Abstract

Yarıiletken içerisindeki kusur seviyelerinin kapasitif yöntemlerle karakterizasyonu, arınmış bölge genişliğinin pulslu beslemeler ile manipüle edilmesine dayanır. Ölçüm sırasında, kusur enerji seviyelerinde yük yayınımı ve ardından yük yakalanması ardışık süreçler olarak gerçekleşir. Bu çalışmanın amacı, hem yük yakalama hem de yayınlama süreçlerini analiz ederek kusur enerji seviyelerini araştırmak ve yakalama kapasite geçiş sinyalini kullanarak yakalama tesir kesit alanını belirlemektir. Bu çalışmada, yakalama tesir kesit alanının doğrudan yakalama kapasite geçiş sinyalinden hesaplanabileceği bir yöntem önerildi. Yük yakalama süreci, hızlı ve yavaş olmak üzere iki farklı bölgede gerçekleşmekte olup, belirli koşullar altında yavaş yakalama bölgesi baskın hale gelmektedir. Bu araştırmada kullanılan boron katkılı Si örneğin kusur seviyesinin aktivasyon enerjisi, Derin Seviye Geçiş Spektroskopisi (DLTS) yöntemi kullanılarak 0.159-0.216 eV aralığında belirlenmiştir. Yük yayınlama sürecine ait kapasite geçiş sinyallerinden yakalama tesir kesit alanı ortalama σ_n=1.03×10^(-16) cm^2 olarak hesaplanmıştır. Buna karşılık, yakalama kapasite geçiş sinyalleri kullanıldığında, yakalama tesir kesit alanının ortalama değeri 5.62×10^(-11) cm^2 olarak hesaplanmıştır.

References

  • [1] D.V. Lang, Deep Level Transient Spectroscopy: A New Method to Characterize Traps in Semiconductors, J. Appl. Phys. 45(7), 3023-3032, 1974.
  • [2] W. Shockley, W.T. Read, Statistics of the Recombination of Holes and Electrons, Phys. Rev. 87(5), 835-842, 1952.
  • [3] R.N. Hall, Electron-Hole Recombination in Germanium, Phys. Rev. 87(2), 387-387, 1952.
  • [4] L.C. Kimerling, Influence of Deep Traps on the Measurement of Free-Carrier Distributions in Semiconductors by Junction Capacitance Techniques, J. Appl. Phys. 45(4), 1839-1845, 1974.
  • [5] J.A. Borsuk, R.M. Swanson, Capture-Cross-Section Determination by Transient-Current Trap-Filling Experiments, J. Appl. Phys. 52(11), 6704-6712, 1981.
  • [6] A. Zylbersztejn, Trap Depth and Electron Capture Cross Section Determination by Trap Refilling Experiments in Schottky Diodes, Appl. Phys. Lett. 33(2), 200-202, 1978.
  • [7] J.T. Ryan, A. Matsuda, J.P. Campbell, K.P. Cheung, Interface-State Capture Cross Section—Why Does It Vary So Much?, Appl. Phys. Lett. 106(16), 163503, 2015.
  • [8] J. Lauwaert, J. Van Gheluwe, P. Clauws, An Accurate Analytical Approximation to the Capacitance Transient Amplitude in Deep Level Transient Spectroscopy for Fitting Carrier Capture Data, Rev. Sci. Instrum. 79(9), 093902, 2008.
  • [9] S. Kumar, P. Gupta, I. Guiney, C.J. Humphreys, S. Raghavan, R. Muralidharan, D.N. Nath, Temperature and Bias Dependent Trap Capture Cross Section in AlGaN/GaN HEMT on 6-in Silicon with Carbon-Doped Buffer, IEEE Trans. Electron Devices 64(12), 4868–4874, 2017.
  • [10] J.H. Zhao, T.E. Schlesinger, A.G. Milnes, Determination of Carrier Capture Cross Sections of Traps by Deep Level Transient Spectroscopy of Semiconductors, J. Appl. Phys. 62(7), 2865-2870, 1987.
  • [11] D. Pons, Determination of the Free Energy Level of Deep Centers, with Application to GaAs, Appl. Phys. Lett. 37(4), 413-415, 1980.
  • [12] D. Pons, Accurate Determination of the Free Carrier Capture Kinetics of Deep Traps by Space-Charge Methods, J. Appl. Phys. 55(10), 3644-3657, 1984.
  • [13] D. Stievenard, J.C. Bourgoin, M. Lannoo, An Easy Method to Determine Carrier-Capture Cross Sections: Application to GaAs, J. Appl. Phys. 55(6), 1477-1481, 1984.
  • [14] F.D. Auret, S.A. Goodman, M.J. Legodi, W.E. Meyer, D.C. Look, Electrical Characterization of Vapor-Phase-Grown Single-Crystal ZnO, Appl. Phys. Lett. 80(8), 1340–1342, 2002.
  • [15] E. Omotoso, E. Igumbor, W.E. Meyer, DLTS Characterisation of 107 MeV Krypton Ion-Irradiated Nitrogen-Doped 4H-Silicon Carbide, J. Mater. Sci.: Mater. Electron. 36(3), 2025.
  • [16] A. Kumar, S. Mondal, K.S.R. Koteswara Rao, Probing the Oxygen Vacancy Associated Native Defects in High-κ HfO₂ Using Deep Level Transient Spectroscopy, J. Appl. Phys. 135(4), 045305, 2024.
  • [17] C.A. Dawe, V.P. Markevich, M.P. Halsall, I.D. Hawkins, A.R. Peaker, A. Nandi, I. Sanyal, M. Kuball, Deep Level Traps in (010) β-Ga₂O₃ Epilayers Grown by Metal Organic Chemical Vapor Deposition on Sn-Doped β-Ga₂O₃ Substrates, J. Appl. Phys. 136(4), 045705, 2024.

DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS

Year 2025, Volume: 3 Issue: 1, 45 - 55

Abstract

The characterization of defect levels within a semiconductor using capacitive methods is based on manipulating the width of the depletion region through pulsed biasing. During the measurement, the processes of charge emission and subsequent charge capture at the defect energy levels occur sequentially. The aim of this study is to investigate defect energy levels by analyzing both charge capture and emission processes and to determine the capture cross section using the capture capacitance transient signal. In this study, a method is proposed where the capture cross section could be calculated directly from the capture capacitance transient signals. The charge capture process occurs in two distinct regions, known as the fast and slow capture regions, with the slow capture region becoming dominant under specific conditions. In this study, the activation energy of the defect level in the boron-doped Si sample was determined to be in the range of 0.159–0.216 eV using the Deep Level Transient Spectroscopy (DLTS) method. The capture cross section was determined as an average of σ_n=1.03×10^(-16) cm^2 from the capacitance transient signals of the charge emission process. In contrast, when using the capture capacitance transient signals, the average value of the capture cross section was calculated as 5.62×10^(-11) cm^2.

References

  • [1] D.V. Lang, Deep Level Transient Spectroscopy: A New Method to Characterize Traps in Semiconductors, J. Appl. Phys. 45(7), 3023-3032, 1974.
  • [2] W. Shockley, W.T. Read, Statistics of the Recombination of Holes and Electrons, Phys. Rev. 87(5), 835-842, 1952.
  • [3] R.N. Hall, Electron-Hole Recombination in Germanium, Phys. Rev. 87(2), 387-387, 1952.
  • [4] L.C. Kimerling, Influence of Deep Traps on the Measurement of Free-Carrier Distributions in Semiconductors by Junction Capacitance Techniques, J. Appl. Phys. 45(4), 1839-1845, 1974.
  • [5] J.A. Borsuk, R.M. Swanson, Capture-Cross-Section Determination by Transient-Current Trap-Filling Experiments, J. Appl. Phys. 52(11), 6704-6712, 1981.
  • [6] A. Zylbersztejn, Trap Depth and Electron Capture Cross Section Determination by Trap Refilling Experiments in Schottky Diodes, Appl. Phys. Lett. 33(2), 200-202, 1978.
  • [7] J.T. Ryan, A. Matsuda, J.P. Campbell, K.P. Cheung, Interface-State Capture Cross Section—Why Does It Vary So Much?, Appl. Phys. Lett. 106(16), 163503, 2015.
  • [8] J. Lauwaert, J. Van Gheluwe, P. Clauws, An Accurate Analytical Approximation to the Capacitance Transient Amplitude in Deep Level Transient Spectroscopy for Fitting Carrier Capture Data, Rev. Sci. Instrum. 79(9), 093902, 2008.
  • [9] S. Kumar, P. Gupta, I. Guiney, C.J. Humphreys, S. Raghavan, R. Muralidharan, D.N. Nath, Temperature and Bias Dependent Trap Capture Cross Section in AlGaN/GaN HEMT on 6-in Silicon with Carbon-Doped Buffer, IEEE Trans. Electron Devices 64(12), 4868–4874, 2017.
  • [10] J.H. Zhao, T.E. Schlesinger, A.G. Milnes, Determination of Carrier Capture Cross Sections of Traps by Deep Level Transient Spectroscopy of Semiconductors, J. Appl. Phys. 62(7), 2865-2870, 1987.
  • [11] D. Pons, Determination of the Free Energy Level of Deep Centers, with Application to GaAs, Appl. Phys. Lett. 37(4), 413-415, 1980.
  • [12] D. Pons, Accurate Determination of the Free Carrier Capture Kinetics of Deep Traps by Space-Charge Methods, J. Appl. Phys. 55(10), 3644-3657, 1984.
  • [13] D. Stievenard, J.C. Bourgoin, M. Lannoo, An Easy Method to Determine Carrier-Capture Cross Sections: Application to GaAs, J. Appl. Phys. 55(6), 1477-1481, 1984.
  • [14] F.D. Auret, S.A. Goodman, M.J. Legodi, W.E. Meyer, D.C. Look, Electrical Characterization of Vapor-Phase-Grown Single-Crystal ZnO, Appl. Phys. Lett. 80(8), 1340–1342, 2002.
  • [15] E. Omotoso, E. Igumbor, W.E. Meyer, DLTS Characterisation of 107 MeV Krypton Ion-Irradiated Nitrogen-Doped 4H-Silicon Carbide, J. Mater. Sci.: Mater. Electron. 36(3), 2025.
  • [16] A. Kumar, S. Mondal, K.S.R. Koteswara Rao, Probing the Oxygen Vacancy Associated Native Defects in High-κ HfO₂ Using Deep Level Transient Spectroscopy, J. Appl. Phys. 135(4), 045305, 2024.
  • [17] C.A. Dawe, V.P. Markevich, M.P. Halsall, I.D. Hawkins, A.R. Peaker, A. Nandi, I. Sanyal, M. Kuball, Deep Level Traps in (010) β-Ga₂O₃ Epilayers Grown by Metal Organic Chemical Vapor Deposition on Sn-Doped β-Ga₂O₃ Substrates, J. Appl. Phys. 136(4), 045705, 2024.
There are 17 citations in total.

Details

Primary Language English
Subjects Electronic, Optics and Magnetic Materials, Material Characterization, Elemental Semiconductors
Journal Section Research Articles
Authors

Ömer Göksel Erbaş 0000-0002-6467-9302

Yasar Gürkan Celebi 0000-0003-1849-1197

Early Pub Date April 5, 2025
Publication Date
Submission Date February 3, 2025
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

APA Erbaş, Ö. G., & Celebi, Y. G. (n.d.). DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS. Akdeniz Mühendislik Dergisi, 3(1), 45-55.
AMA Erbaş ÖG, Celebi YG. DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS. AKUJE. 3(1):45-55.
Chicago Erbaş, Ömer Göksel, and Yasar Gürkan Celebi. “DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS”. Akdeniz Mühendislik Dergisi 3, no. 1 n.d.: 45-55.
EndNote Erbaş ÖG, Celebi YG DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS. Akdeniz Mühendislik Dergisi 3 1 45–55.
IEEE Ö. G. Erbaş and Y. G. Celebi, “DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS”, AKUJE, vol. 3, no. 1, pp. 45–55.
ISNAD Erbaş, Ömer Göksel - Celebi, Yasar Gürkan. “DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS”. Akdeniz Mühendislik Dergisi 3/1 (n.d.), 45-55.
JAMA Erbaş ÖG, Celebi YG. DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS. AKUJE.;3:45–55.
MLA Erbaş, Ömer Göksel and Yasar Gürkan Celebi. “DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS”. Akdeniz Mühendislik Dergisi, vol. 3, no. 1, pp. 45-55.
Vancouver Erbaş ÖG, Celebi YG. DETERMINING CAPTURE CROSS SECTION FROM CAPTURE TRANSIENT SIGNALS. AKUJE. 3(1):45-5.