Research Article
BibTex RIS Cite

Time Series Prediction and Application in Chaotic Signals with Reservoir Computing

Year 2025, Volume: 4 Issue: 1, 8 - 14, 17.06.2025

Abstract

This study aims to investigate the effectiveness of the reservoir computing method for chaotic time series prediction. The Sprott-K system has been selected as the chaotic signal; this system exhibits chaotic behavior with a simple structure. The mathematical model of the Sprott-K system is presented in detail, the theoretical foundations of the reservoir computing algorithm are explained, and a prediction model has been developed using the Python programming language. The primary objective of the study is to demonstrate the potential of reservoir computing in the short-term prediction of chaotic systems. The obtained results indicate that the method achieves high accuracy in chaotic time series.

References

  • Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed.). Wiley.
  • Glass, L., & Mackey, M. C. (1988). From clocks to chaos: The rhythms of life. Princeton University Press.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks. German National Research Center for Information Technology, Technical Report.
  • Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130-141.
  • Lukoševičius, M., & Jaeger, H. (2012). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3(3), 127-149.
  • Mantegna, R. N., & Stanley, H. E. (1999). An introduction to econophysics: Correlations and complexity in finance. Cambridge University Press.
  • Ott, E. (1993). Chaos in dynamical systems. Cambridge University Press.
  • Sprott, J. C. (2003). Chaos and time-series analysis. Oxford University Press.
  • Strogatz, S. H. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Perseus Books.
  • Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.

Rezervuar Hesaplama ile Kaotik Sinyallerde Zaman Serisi Tahmini ve Uygulaması

Year 2025, Volume: 4 Issue: 1, 8 - 14, 17.06.2025

Abstract

Bu çalışma, kaotik zaman serisi tahmini için rezervuar hesaplama yönteminin etkinliğini araştırmayı amaçlamaktadır. Kaotik sinyal olarak Sprott-K sistemi seçilmiştir; bu sistem, basit bir yapıyla kaotik davranışlar sergiler. Sprott-K sisteminin matematiksel modeli detaylı bir şekilde sunulmuş, rezervuar hesaplama algoritmasının teorik temelleri açıklanmış ve Python programlama dili kullanılarak bir tahmin modeli geliştirilmiştir. Çalışmanın temel hedefi, kaotik sistemlerin kısa vadeli tahmininde rezervuar hesaplamanın potansiyelini ortaya koymaktır. Elde edilen sonuçlar, yöntemin kaotik zaman serilerinde yüksek doğruluk sağladığını göstermektedir.

References

  • Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed.). Wiley.
  • Glass, L., & Mackey, M. C. (1988). From clocks to chaos: The rhythms of life. Princeton University Press.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks. German National Research Center for Information Technology, Technical Report.
  • Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130-141.
  • Lukoševičius, M., & Jaeger, H. (2012). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3(3), 127-149.
  • Mantegna, R. N., & Stanley, H. E. (1999). An introduction to econophysics: Correlations and complexity in finance. Cambridge University Press.
  • Ott, E. (1993). Chaos in dynamical systems. Cambridge University Press.
  • Sprott, J. C. (2003). Chaos and time-series analysis. Oxford University Press.
  • Strogatz, S. H. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Perseus Books.
  • Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.
There are 11 citations in total.

Details

Primary Language Turkish
Subjects Software Engineering (Other), Circuits and Systems
Journal Section Research Articles
Authors

Kenan Altun 0000-0001-7419-1901

Early Pub Date June 14, 2025
Publication Date June 17, 2025
Submission Date March 20, 2025
Acceptance Date June 5, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Altun, K. (2025). Rezervuar Hesaplama ile Kaotik Sinyallerde Zaman Serisi Tahmini ve Uygulaması. Teknik Meslek Yüksekokulları Akademik Araştırma Dergisi, 4(1), 8-14.

ISSN: 2822-5880



Bu ürün Creative Commons Attribution 4.0 tarafından lisanslanmıştır.

Türk Akademik Sosyal Bilimler Araştırma Dergisi (TURAJAS) aşağıda verilen Alan Endeksleri tarafından taranmaktadır;