Research Article
BibTex RIS Cite

Mechanical, rheological and aging properties of nano-fibrillated cellulose/EPDM composites

Year 2022, Volume: 23 Issue: 1, 11 - 22, 16.05.2022
https://doi.org/10.17474/artvinofd.934238

Abstract

This work was aimed to develop green composite materials from nanocellulose / Ethylene Propylene Diene Monomer (EPDM) rubber. The obtained green composites were investigated in terms of chemical, thermal, mechanical, morphological, and aging properties. The results obtained in this work showed that the tensile strength and elasticity of the composites decreased with nanocellulose while permanent set values increased. Green composite materials have lower scorch values that means easier and faster vulcanization. Some cracks and staining were seen after 250h aging over 3 phr of nanocellulose whereas the surfaces were not degraded up to 100h weathering. All values are in the range of acceptable limits except for tear strength. Briefly, the study conducted reveals that nanocellulose can be used with EPDM until the concentration of 10.0 phr without any chemical degradation. Thus, sealing profiles used in automotive sector can be produced by nanocellulose/EPDM green composites instead of EPDM rubber. This can be an innovative technology in order to replace petroleum-based materials with bio-degradable materials.

Supporting Institution

Düzce Üniversitesi

Project Number

2018.07.05.807, 2017.02.03.658

Thanks

The authors thank to company Standard Profile, Turkey for their cooperative partnership and technical support. The authors also thank to Duzce University for financial support supplied by Research Project Fund.

References

  • Afrifah KA, Hickok RA, Matuana LM (2010) Polybutene as a matrix for wood plastic composites. Composites Science and Technology 70(1):167-172
  • Ahmad EEM, Luyt, AS (2012) Effects of organic peroxide and polymer chain structure on morphology and thermal properties of sisal fibre reinforced polyethylene composites. Composites Part A: Applied Science and Manufacturing 43(4):703-710
  • Allen PW (1972) Natural Rubber and the Synthetics. London Crosby Lockwood
  • Antunes CF, Duin VM, Machado AV (2011) Morphology and phase inversion of EPDM/PP blends – effect of viscosity and elasticity. Polymer Testing 30(8):907–915
  • Arayapranee W, Rempel GLA (2008) Comparative study of the cure characteristics, processibility, mechanical properties, ageing and morphology of rice husk ash, silica and carbon black filled 75:25 NR/EPDM blends. Journal of Applied Polymer Science 109(2):932-941
  • Ashori A (2008) Wood plastic composites as promising green-composites for automotive industries. Bioresource Technology 99(11):4661-4667
  • Ayrilmis N, Ashori A (2014) Lignocellulosic fibers and nanocellulose as reinforcing filler in thermoplastic composites. Eurasian Journal of Forest Science 2(2):1-6
  • Clarkson CM, Jeffrey PY (2018) Dry-spinning of cellulose nanocrystal/polylactic acid composite fibers. Green Materials 6(1):6-14
  • Farhan A, Mikael S, Lars B (2015) Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Composites Science and Technology 117:298-306
  • Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines-New high performance thermosetting resins: Synthesis and Properties. Progress in Polymer Science 32(11):1344-1391
  • Go JH, Ha CS (1996) Rheology and Properties of EPDM/BR Blends with or Without a Homogenizing Agent or a Coupling Agent. Journal of Applied Polymer Science 62(3):509-521
  • Jayamol G, Sreekala MS, Sabu T (2004) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering and Science 41(9):1471–1485
  • Jung HS, Choi MC, Chang YW (2015) Facile preparation of thermoplastic elastomer with high service temperature from dry selective curing of compatibilized EPDM/polyamide-12 blends. European Polymer Journal 66:367-375
  • Kim KH, Cho WJ, Ha CS (1996) Properties of dynamically vulcanized EPDM and LLDPE blends. Journal of Applied Polymer Science 59(3):407-414
  • Lavoratti A, Scienza LC, Zattera AJ (2016) Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers 136:955–963
  • Loos WE, Robinson GL (1968) Rates of swelling of wood in vinyl monomers. Forest Products Journal 18(9):109–112
  • Lourenço E, Felisberti MI (2006) Thermal and mechanical properties of in-situ polymerized PS/EPDM blends. European Polymer Journal 42(10):2632–2645
  • Maya JJ, Sabut T (2008) Biofibres and biocomposites. Carbohydrate Polymers 71(3):343–364
  • Menezes A, Siqueira G, Curvelo AS (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552-4563
  • Obrecht W, Lambert JP, Happ M (2012) Rubber, 4.Emulsion Rubbers in Ullmann's Encyclopedia of Industrial Chemistry. Weinheim Wiley-VCH
  • Poyraz B, Tozluoglu A, Candan Z (2019) TEMPO-treated CNF Composites: Pulp and Matrix Effect. Fibers and Polymers 19(1):195-204
  • Sanches NB, Cassu SN, Dutra L (2015) TG/FT-IR characterization of additives typcally employed in EPDM formulations. Polimeros 25(3):247-255
  • Sandeep SN, Pei-Yu K, Heyu C (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Industrial Crops and Products 100:208–217
  • Sarkhel G, Choudhury A (2008) Dynamic Mechanical and Thermal Properties of PE-EPDM Based Jute Fiber Composites. Journal of Applied Polymer Science 108(6):3442–3453
  • Sibel DK, Hüsnü G, Yusuf G (2018) The effect of Flamestab®NOR 116 on EPDM-Based Automotive Sealing Profiles. Journal of Rubber Research 21:209-223
  • Siriwerdana S, Ismail H, Ishiaku US (2001) A comparison of white rice husk ash and silica as fillers in EPDM terpolymer vulcanizates. Polymer International 50(6):707-713
  • Stelescu DM, Airinei A, Homocianu M (2013) Structural characteristics of some high density polyethylene/EPDM blends. Polymer Testing 32(2):187–196
  • Wang J, Wu W, Wang W (2010) Preparation and characterization of hemp hurd power filled SBR and EPDM elastomers. Journal Polym Res 18:1023-1032
  • Wang WK, Yang W, Bao RY (2011) Effect of repetitive processing on the mechanical properties and fracture toughness of dynamically vulcanized iPP/EPDM blends. Journal of Applied Polymer Science 120(1):86–94
  • Witt AE, Bosco LR (1973) Hardness and Hardness modulus of wood- polymer composites. Forest Products Journal 23(1):56-60
  • Xanthos M (2005) Functional Fillers for Plastics, Part 1. Wiley‐VCH Verlag GmbH&Co.KGaA 0.1002/3527605096:1-16
  • Xu G, Yan G, Zhang J (2015) Lignin as coupling agent in EPDM rubber: thermal and mechanical properties. Polymer Bulletin 72:2389–2398

Nano-fibrillenmiş selüloz / EPDM kompozitlerin mekanik, reolojik ve yaşlanma özellikleri

Year 2022, Volume: 23 Issue: 1, 11 - 22, 16.05.2022
https://doi.org/10.17474/artvinofd.934238

Abstract

Bu çalışmanın amacı nanoselüloz / Etilen Propilen Dien Monomer (EPDM) kauçuktan yeşil kompozit malzemeler geliştirmektir. Elde edilen yeşil kompozitler kimyasal, termal, mekanik, morfolojik ve yaşlanma özellikleri açısından incelenmiştir. Bu çalışmada elde edilen sonuçlar, nanoselülozun eklenmesi ile kompozitlerin çekme dayanımı ve elastikiyetleri azalırken, kalıcı deformasyon değerlerinin arttığını göstermektedir. Yeşil kompozit malzemeler daha düşük scorch değerlerine sahiptir, bu da daha kolay ve daha hızlı vulkanize olacakları anlamına gelir. EPDM plakaların yüzeyleri 100 saatlik yaşlanmaya kadar bozulmazken, 250 saat yaşlandırıldıktan sonra 3 phr üzerinde nanoselüloz eklenen plakaların yüzeyinde bazı çatlaklar ve lekelenmeler gözlenmiştir. Yırtılma mukavemeti dışında tüm değerler kabul edilebilir sınırlar aralığındadır. Kısaca yapılan çalışma, nanoselülozun herhangi bir kimyasal bozulma olmaksızın 10.0 phr konsantrasyonuna kadar EPDM ile kullanılabileceğini ortaya koymaktadır. Böylelikle otomotiv sektöründe kullanılan sızdırmazlık profilleri EPDM kauçuk yerine nanoselüloz / EPDM yeşil kompozitler ile üretilebilmektedir. Bu, petrol bazlı malzemeleri biyolojik olarak parçalanabilen malzemelerle değiştirmek için yenilikçi bir teknoloji olması açısından önemlidir.

Project Number

2018.07.05.807, 2017.02.03.658

References

  • Afrifah KA, Hickok RA, Matuana LM (2010) Polybutene as a matrix for wood plastic composites. Composites Science and Technology 70(1):167-172
  • Ahmad EEM, Luyt, AS (2012) Effects of organic peroxide and polymer chain structure on morphology and thermal properties of sisal fibre reinforced polyethylene composites. Composites Part A: Applied Science and Manufacturing 43(4):703-710
  • Allen PW (1972) Natural Rubber and the Synthetics. London Crosby Lockwood
  • Antunes CF, Duin VM, Machado AV (2011) Morphology and phase inversion of EPDM/PP blends – effect of viscosity and elasticity. Polymer Testing 30(8):907–915
  • Arayapranee W, Rempel GLA (2008) Comparative study of the cure characteristics, processibility, mechanical properties, ageing and morphology of rice husk ash, silica and carbon black filled 75:25 NR/EPDM blends. Journal of Applied Polymer Science 109(2):932-941
  • Ashori A (2008) Wood plastic composites as promising green-composites for automotive industries. Bioresource Technology 99(11):4661-4667
  • Ayrilmis N, Ashori A (2014) Lignocellulosic fibers and nanocellulose as reinforcing filler in thermoplastic composites. Eurasian Journal of Forest Science 2(2):1-6
  • Clarkson CM, Jeffrey PY (2018) Dry-spinning of cellulose nanocrystal/polylactic acid composite fibers. Green Materials 6(1):6-14
  • Farhan A, Mikael S, Lars B (2015) Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Composites Science and Technology 117:298-306
  • Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines-New high performance thermosetting resins: Synthesis and Properties. Progress in Polymer Science 32(11):1344-1391
  • Go JH, Ha CS (1996) Rheology and Properties of EPDM/BR Blends with or Without a Homogenizing Agent or a Coupling Agent. Journal of Applied Polymer Science 62(3):509-521
  • Jayamol G, Sreekala MS, Sabu T (2004) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering and Science 41(9):1471–1485
  • Jung HS, Choi MC, Chang YW (2015) Facile preparation of thermoplastic elastomer with high service temperature from dry selective curing of compatibilized EPDM/polyamide-12 blends. European Polymer Journal 66:367-375
  • Kim KH, Cho WJ, Ha CS (1996) Properties of dynamically vulcanized EPDM and LLDPE blends. Journal of Applied Polymer Science 59(3):407-414
  • Lavoratti A, Scienza LC, Zattera AJ (2016) Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers 136:955–963
  • Loos WE, Robinson GL (1968) Rates of swelling of wood in vinyl monomers. Forest Products Journal 18(9):109–112
  • Lourenço E, Felisberti MI (2006) Thermal and mechanical properties of in-situ polymerized PS/EPDM blends. European Polymer Journal 42(10):2632–2645
  • Maya JJ, Sabut T (2008) Biofibres and biocomposites. Carbohydrate Polymers 71(3):343–364
  • Menezes A, Siqueira G, Curvelo AS (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552-4563
  • Obrecht W, Lambert JP, Happ M (2012) Rubber, 4.Emulsion Rubbers in Ullmann's Encyclopedia of Industrial Chemistry. Weinheim Wiley-VCH
  • Poyraz B, Tozluoglu A, Candan Z (2019) TEMPO-treated CNF Composites: Pulp and Matrix Effect. Fibers and Polymers 19(1):195-204
  • Sanches NB, Cassu SN, Dutra L (2015) TG/FT-IR characterization of additives typcally employed in EPDM formulations. Polimeros 25(3):247-255
  • Sandeep SN, Pei-Yu K, Heyu C (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Industrial Crops and Products 100:208–217
  • Sarkhel G, Choudhury A (2008) Dynamic Mechanical and Thermal Properties of PE-EPDM Based Jute Fiber Composites. Journal of Applied Polymer Science 108(6):3442–3453
  • Sibel DK, Hüsnü G, Yusuf G (2018) The effect of Flamestab®NOR 116 on EPDM-Based Automotive Sealing Profiles. Journal of Rubber Research 21:209-223
  • Siriwerdana S, Ismail H, Ishiaku US (2001) A comparison of white rice husk ash and silica as fillers in EPDM terpolymer vulcanizates. Polymer International 50(6):707-713
  • Stelescu DM, Airinei A, Homocianu M (2013) Structural characteristics of some high density polyethylene/EPDM blends. Polymer Testing 32(2):187–196
  • Wang J, Wu W, Wang W (2010) Preparation and characterization of hemp hurd power filled SBR and EPDM elastomers. Journal Polym Res 18:1023-1032
  • Wang WK, Yang W, Bao RY (2011) Effect of repetitive processing on the mechanical properties and fracture toughness of dynamically vulcanized iPP/EPDM blends. Journal of Applied Polymer Science 120(1):86–94
  • Witt AE, Bosco LR (1973) Hardness and Hardness modulus of wood- polymer composites. Forest Products Journal 23(1):56-60
  • Xanthos M (2005) Functional Fillers for Plastics, Part 1. Wiley‐VCH Verlag GmbH&Co.KGaA 0.1002/3527605096:1-16
  • Xu G, Yan G, Zhang J (2015) Lignin as coupling agent in EPDM rubber: thermal and mechanical properties. Polymer Bulletin 72:2389–2398
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering
Journal Section Research Article
Authors

Sibel Dikmen Küçük 0000-0002-7852-5128

Ayhan Tozluoğlu 0000-0002-1828-9450

Yusuf Güner 0000-0003-3979-8219

Recai Arslan 0000-0003-3839-4861

Selva Sertkaya 0000-0002-0490-1821

Project Number 2018.07.05.807, 2017.02.03.658
Publication Date May 16, 2022
Acceptance Date December 30, 2021
Published in Issue Year 2022 Volume: 23 Issue: 1

Cite

APA Dikmen Küçük, S., Tozluoğlu, A., Güner, Y., Arslan, R., et al. (2022). Nano-fibrillenmiş selüloz / EPDM kompozitlerin mekanik, reolojik ve yaşlanma özellikleri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 23(1), 11-22. https://doi.org/10.17474/artvinofd.934238
AMA Dikmen Küçük S, Tozluoğlu A, Güner Y, Arslan R, Sertkaya S. Nano-fibrillenmiş selüloz / EPDM kompozitlerin mekanik, reolojik ve yaşlanma özellikleri. ACUJFF. May 2022;23(1):11-22. doi:10.17474/artvinofd.934238
Chicago Dikmen Küçük, Sibel, Ayhan Tozluoğlu, Yusuf Güner, Recai Arslan, and Selva Sertkaya. “Nano-Fibrillenmiş selüloz / EPDM Kompozitlerin Mekanik, Reolojik Ve yaşlanma özellikleri”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 23, no. 1 (May 2022): 11-22. https://doi.org/10.17474/artvinofd.934238.
EndNote Dikmen Küçük S, Tozluoğlu A, Güner Y, Arslan R, Sertkaya S (May 1, 2022) Nano-fibrillenmiş selüloz / EPDM kompozitlerin mekanik, reolojik ve yaşlanma özellikleri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 23 1 11–22.
IEEE S. Dikmen Küçük, A. Tozluoğlu, Y. Güner, R. Arslan, and S. Sertkaya, “Nano-fibrillenmiş selüloz / EPDM kompozitlerin mekanik, reolojik ve yaşlanma özellikleri”, ACUJFF, vol. 23, no. 1, pp. 11–22, 2022, doi: 10.17474/artvinofd.934238.
ISNAD Dikmen Küçük, Sibel et al. “Nano-Fibrillenmiş selüloz / EPDM Kompozitlerin Mekanik, Reolojik Ve yaşlanma özellikleri”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 23/1 (May 2022), 11-22. https://doi.org/10.17474/artvinofd.934238.
JAMA Dikmen Küçük S, Tozluoğlu A, Güner Y, Arslan R, Sertkaya S. Nano-fibrillenmiş selüloz / EPDM kompozitlerin mekanik, reolojik ve yaşlanma özellikleri. ACUJFF. 2022;23:11–22.
MLA Dikmen Küçük, Sibel et al. “Nano-Fibrillenmiş selüloz / EPDM Kompozitlerin Mekanik, Reolojik Ve yaşlanma özellikleri”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 23, no. 1, 2022, pp. 11-22, doi:10.17474/artvinofd.934238.
Vancouver Dikmen Küçük S, Tozluoğlu A, Güner Y, Arslan R, Sertkaya S. Nano-fibrillenmiş selüloz / EPDM kompozitlerin mekanik, reolojik ve yaşlanma özellikleri. ACUJFF. 2022;23(1):11-22.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.