Technical Brief
BibTex RIS Cite

Determining the health status of natural monument trees using acoustic tomography method

Year 2024, Volume: 25 Issue: 2, 98 - 107, 15.10.2024
https://doi.org/10.17474/artvinofd.1492637

Abstract

Areas with natural beauty and rich biodiversity have had a different significance for people since ancient times. With the latest developments in industry, technology, and urbanization, the demand for natural areas has increased considerably. Accordingly, the need to protect such private areas has become even more significant. In order to protect areas with such natural characteristics effectively, problems and threat factors must be correctly revealed. For this purpose; a study was conducted to determine the health status of some trees, which are natural monuments in the Eastern Black Sea Region of Türkiye, using the acoustic tomography method. The general appearance of six trees in the study area was examined, and measurements were made with the Arbor Sonic 3D Acoustic Tomography device. In the research, it was found that the trunk of one of the natural monument trees was hollow. The other five trees were found to be in good general condition. According to the results of the tomography, it was determined that one of the six trees measured was in good health, three of them had partial hollows and decay, and two of them were completely hollow. According to the data obtained, it has been revealed that the acoustic tomography method is an effective tool in determining the health status of nature monument trees.

References

  • Alani AM, Chambers J, Melarange P, Lantini L, Tosti F (2020) The use of ultrasonic tomography for the non-destructive assessment of tree trunks. EGU General Assembly, EGU2020-20872.
  • Asan Ü (1987) Comparison of monumental trees identified in the forests of Türkiye with their counterparts in the world. Istanbul University Faculty of Forestry Journal Series, A 37 (2): 46- 68.
  • Balas M, Gallo J, Kunes I (2020) Work sampling and work process optimization in sonic and electrical resistance tree tomography. Journal of Forest Science, 66 (1): 9-21.
  • Brazee NJ, Marra RE, Göcke L, Van Wassenaer P (2011) Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography. Forestry, 84 (1): 33-39.
  • Espinosa L, Arciniegas A, Cortes Y, Prieto F, Brancheriau L (2017) Automatic segmentation of acoustic tomography images for the measurement of wood decay. Wood Science and Technology, 51(1): 69-84.
  • Gao S, Wang N, Wang L, Han J (2014) Application of an ultrasonic wave propagation field in the quantitative identification of cavity defect of log disc. Computers and Electronics in Agriculture, 108: 123-129.
  • Gergel T, Bucha T, Gejdos M, Vyhnalikova Z (2019) Computed tomography log scanning–high technology for forestry and forest based industry. Lesnicky Casopis, 65(1): 51-59.
  • Hanum SF, Dharma IDP, Atmaja MB, Oktavia GAE (2020) Tree risk assessment with sonic tomograph method at Bali Botanical Garden. Jurnal Manajemen Hutan Tropika, 26 (3): 233-233.
  • Johnstone D, Moore G, Tausz M, Nicolas M (2010a) The measurement of wood decay in landscape trees. Arboriculture and Urban Forestry, 36 (3): 121-127.
  • Johnstone D, Tausz M, Moore G, Nicolas M (2010b) Quantifying wood decay in Sydney bluegum (Eucalyptus saligna) trees. Arboriculture and Urban Forestry, 36: 243-252.
  • Karlinasari L (2018) The assessment of canary trees in the Bogor Botanic Gardens using forest health monitoring and sonic tomography methods. IOP Conference Series: Earth and Environmental Science, 203(1): 012025.
  • Li G, Wang X, Feng H, Wiedenbeck J, Ross RJ (2014) Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection. Computers and Electronics in Agriculture, 104: 32-39.
  • Liao C, Zhang H, Song X, Chen T, Huang S (2017) The screening method of the internal defects in wood members of the ancient architectures by hammering sound. Bioresources, 12 (2): 2711-2720.
  • Merlo E, Alvarez JG, Santaclara O, Riesco G (2014) Modelling modulus of elasticity of Pinus pinaster Ait. in northwestern Spain with standing tree acoustic measurements, tree, stand and site variables. Forest Systems, 23 (1): 153-166.
  • Nicolotti G, Socco L, Martinis R, Godio A, Sambuelli L (2003) Application and comparison of three tomographic techniques for detection of decay in trees. Journal of Arboriculture, 29 (2): 66-78.
  • Okochi T, Hoshino Y, Fujii H, Mitsutani T (2007) Nondestructive tree-ring measurements for Japanese oak and Japanese beech using micro-focus X-ray computed tomography. Dendrochronologia, 24 (2-3): 155-164.
  • Pereira-Rollo LC, Silva Filho DFd, Tomazello Filho M, Moraes SdO, Couto HTZd (2014) Can the impulse propagation speed from cross-section tomography explain the conditioned density of wood?. Wood Science and Technology, 48 (4): 689-701.
  • Pereira LFA, Janssens E, Cavalcanti GD, Tsang R, Van Dael M, Verboven P, Nicolai B, Sijbers J (2017) Inline discrete tomography system: application to agricultural product inspection. Computers and Electronics in Agriculture, 138: 117-126.
  • Putz F, Blate G, Redford K, Fimbel R, Robinson J (2001) Tropical forest management and conservation of biodiversity: an overview. Conservation Biology, 15: 7-20.
  • Qi Y, Foster B, Ferchaud V, Collins D (2013) Detecting ınternal decay in trees using sonic tomography technology. Urban Forestry Natural Resources and Environment, 605: 1-6.
  • Qiu Q, Qin R, Lam JH, Tang AM, Leung MW, Lau D (2019) An innovative tomographic technique integrated with acoustic-laser approach for detecting defects in tree trunk. Computers and Electronics in Agriculture, 156: 129-137.
  • Rinn F (2015) Central defects in sonic tree tomography. West Arborist, 20: 38-41.
  • Sezen J (2017) The importance of environmental awareness for protected areas in Türkiye and the world. International Journal of Scientific Research, 2 (2): 165-177.
  • Socco L, Sambuelli L, Nicolotti G (2004) Ultrasonic tomography for non destructive testing of living trees. GNGTS–Atti del 19.
  • Tarmu T, Kiviste A, Näkk A, Sims A, Laarmann D (2022) The application of sonic tomography (PiCUS 3 Sonic Tomograph) to detect and quantify hidden wood decay in managed Norway spruce stands. Forests, 13 (8): 1260.
  • Vizvari Z, Toth A, Divos F, Klincsik M, Sari Z, Odry P (2019) Non-destructive assessment of living trees by using electric resistive tomography. WSEAS Transactions on Environment and Development, 15: 455-462.
  • Wang X, Divos F, Pilon C, Brashaw BK, Ross RJ, Pellerin RF (2004) Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools: a guide for use and interpretation. Gen. Tech. Rep. FPL-GTR-147. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory, 12 pages.
  • Wang X, Allison RB (2008) Decay detection in red oak trees using combination of visual inspection; acoustic testing; and resistance m1icrodrilling. Arboric. Urban For, 1: 1-4.
  • Yu TY, Boyaci B, Wu HF (2013) Simulated transient electromagnetic response for the inspection of GFRP-wrapped concrete cylinders using radar NDE. Research in Nondestructive Evaluation, 24 (3): 125-153.

Tabiat anıtı ağaçların akustik tomografi yöntemiyle sağlık durumlarının belirlenmesi

Year 2024, Volume: 25 Issue: 2, 98 - 107, 15.10.2024
https://doi.org/10.17474/artvinofd.1492637

Abstract

Doğal güzelliklere ve zengin biyolojik çeşitliliğe sahip alanlar, eski çağlardan beri insanlar için farklı bir öneme sahip olmuştur. Sanayi, teknoloji ve şehirleşmedeki son gelişmelerle birlikte doğal alanlara olan talep de oldukça artmıştır. Buna bağlı olarak bu tür özel alanların korunması ihtiyacı daha da önem kazanmıştır. Bu tür doğal özelliklere sahip alanların etkin bir şekilde korunabilmesi için sorunların ve tehdit faktörlerinin doğru bir şekilde ortaya çıkarılması gerekmektedir. Bu amaç için; Türkiye'nin Doğu Karadeniz Bölgesi'nde tabiat anıtı olan bazı ağaçların sağlık durumlarının akustik tomografi yöntemi kullanılarak belirlenmesi amacıyla bu çalışma yapılmıştır. Çalışma alanındaki 6 ağaç üzerinde hem doğrudan gözlemler yapılmış, hem de Arbor Sonic 3D Akustik Tomografi cihazı ile ölçümler gerçekleştirilmiştir. Araştırmada tabiat anıtı ağaçların gövde, dal ve yaprak yapısının gözlemlenmesi sonuçlarına göre bir ağacın gövdesinin içi boş olduğu, diğer beş ağacın genel durumunun iyi olduğu belirlenmiştir. Tomografi sonuçlarına göre ise ölçümü yapılan 6 ağaçtan birinin sağlık durumunun iyi olduğu, üçünde kısmi oyuk ve çürüklük olduğu, ikisinde ise gövdesinde tamamen oyuk olduğu belirlenmiştir. Elde edilen verilere göre akustik tomografi yönteminin tabiat anıtı ağaçların sağlık durumunun belirlenmesinde etkili bir araç olduğu söylenebilir.

Ethical Statement

gerekli değil

Supporting Institution

yok

References

  • Alani AM, Chambers J, Melarange P, Lantini L, Tosti F (2020) The use of ultrasonic tomography for the non-destructive assessment of tree trunks. EGU General Assembly, EGU2020-20872.
  • Asan Ü (1987) Comparison of monumental trees identified in the forests of Türkiye with their counterparts in the world. Istanbul University Faculty of Forestry Journal Series, A 37 (2): 46- 68.
  • Balas M, Gallo J, Kunes I (2020) Work sampling and work process optimization in sonic and electrical resistance tree tomography. Journal of Forest Science, 66 (1): 9-21.
  • Brazee NJ, Marra RE, Göcke L, Van Wassenaer P (2011) Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography. Forestry, 84 (1): 33-39.
  • Espinosa L, Arciniegas A, Cortes Y, Prieto F, Brancheriau L (2017) Automatic segmentation of acoustic tomography images for the measurement of wood decay. Wood Science and Technology, 51(1): 69-84.
  • Gao S, Wang N, Wang L, Han J (2014) Application of an ultrasonic wave propagation field in the quantitative identification of cavity defect of log disc. Computers and Electronics in Agriculture, 108: 123-129.
  • Gergel T, Bucha T, Gejdos M, Vyhnalikova Z (2019) Computed tomography log scanning–high technology for forestry and forest based industry. Lesnicky Casopis, 65(1): 51-59.
  • Hanum SF, Dharma IDP, Atmaja MB, Oktavia GAE (2020) Tree risk assessment with sonic tomograph method at Bali Botanical Garden. Jurnal Manajemen Hutan Tropika, 26 (3): 233-233.
  • Johnstone D, Moore G, Tausz M, Nicolas M (2010a) The measurement of wood decay in landscape trees. Arboriculture and Urban Forestry, 36 (3): 121-127.
  • Johnstone D, Tausz M, Moore G, Nicolas M (2010b) Quantifying wood decay in Sydney bluegum (Eucalyptus saligna) trees. Arboriculture and Urban Forestry, 36: 243-252.
  • Karlinasari L (2018) The assessment of canary trees in the Bogor Botanic Gardens using forest health monitoring and sonic tomography methods. IOP Conference Series: Earth and Environmental Science, 203(1): 012025.
  • Li G, Wang X, Feng H, Wiedenbeck J, Ross RJ (2014) Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection. Computers and Electronics in Agriculture, 104: 32-39.
  • Liao C, Zhang H, Song X, Chen T, Huang S (2017) The screening method of the internal defects in wood members of the ancient architectures by hammering sound. Bioresources, 12 (2): 2711-2720.
  • Merlo E, Alvarez JG, Santaclara O, Riesco G (2014) Modelling modulus of elasticity of Pinus pinaster Ait. in northwestern Spain with standing tree acoustic measurements, tree, stand and site variables. Forest Systems, 23 (1): 153-166.
  • Nicolotti G, Socco L, Martinis R, Godio A, Sambuelli L (2003) Application and comparison of three tomographic techniques for detection of decay in trees. Journal of Arboriculture, 29 (2): 66-78.
  • Okochi T, Hoshino Y, Fujii H, Mitsutani T (2007) Nondestructive tree-ring measurements for Japanese oak and Japanese beech using micro-focus X-ray computed tomography. Dendrochronologia, 24 (2-3): 155-164.
  • Pereira-Rollo LC, Silva Filho DFd, Tomazello Filho M, Moraes SdO, Couto HTZd (2014) Can the impulse propagation speed from cross-section tomography explain the conditioned density of wood?. Wood Science and Technology, 48 (4): 689-701.
  • Pereira LFA, Janssens E, Cavalcanti GD, Tsang R, Van Dael M, Verboven P, Nicolai B, Sijbers J (2017) Inline discrete tomography system: application to agricultural product inspection. Computers and Electronics in Agriculture, 138: 117-126.
  • Putz F, Blate G, Redford K, Fimbel R, Robinson J (2001) Tropical forest management and conservation of biodiversity: an overview. Conservation Biology, 15: 7-20.
  • Qi Y, Foster B, Ferchaud V, Collins D (2013) Detecting ınternal decay in trees using sonic tomography technology. Urban Forestry Natural Resources and Environment, 605: 1-6.
  • Qiu Q, Qin R, Lam JH, Tang AM, Leung MW, Lau D (2019) An innovative tomographic technique integrated with acoustic-laser approach for detecting defects in tree trunk. Computers and Electronics in Agriculture, 156: 129-137.
  • Rinn F (2015) Central defects in sonic tree tomography. West Arborist, 20: 38-41.
  • Sezen J (2017) The importance of environmental awareness for protected areas in Türkiye and the world. International Journal of Scientific Research, 2 (2): 165-177.
  • Socco L, Sambuelli L, Nicolotti G (2004) Ultrasonic tomography for non destructive testing of living trees. GNGTS–Atti del 19.
  • Tarmu T, Kiviste A, Näkk A, Sims A, Laarmann D (2022) The application of sonic tomography (PiCUS 3 Sonic Tomograph) to detect and quantify hidden wood decay in managed Norway spruce stands. Forests, 13 (8): 1260.
  • Vizvari Z, Toth A, Divos F, Klincsik M, Sari Z, Odry P (2019) Non-destructive assessment of living trees by using electric resistive tomography. WSEAS Transactions on Environment and Development, 15: 455-462.
  • Wang X, Divos F, Pilon C, Brashaw BK, Ross RJ, Pellerin RF (2004) Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools: a guide for use and interpretation. Gen. Tech. Rep. FPL-GTR-147. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory, 12 pages.
  • Wang X, Allison RB (2008) Decay detection in red oak trees using combination of visual inspection; acoustic testing; and resistance m1icrodrilling. Arboric. Urban For, 1: 1-4.
  • Yu TY, Boyaci B, Wu HF (2013) Simulated transient electromagnetic response for the inspection of GFRP-wrapped concrete cylinders using radar NDE. Research in Nondestructive Evaluation, 24 (3): 125-153.
There are 29 citations in total.

Details

Primary Language English
Subjects Tree Improvement, Forest Health and Pathology
Journal Section Technical Note
Authors

Temel Göktürk 0000-0003-4064-4225

Sedat Kara 0000-0002-1145-2323

Publication Date October 15, 2024
Submission Date May 30, 2024
Acceptance Date August 23, 2024
Published in Issue Year 2024 Volume: 25 Issue: 2

Cite

APA Göktürk, T., & Kara, S. (2024). Determining the health status of natural monument trees using acoustic tomography method. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 25(2), 98-107. https://doi.org/10.17474/artvinofd.1492637
AMA Göktürk T, Kara S. Determining the health status of natural monument trees using acoustic tomography method. ACUJFF. October 2024;25(2):98-107. doi:10.17474/artvinofd.1492637
Chicago Göktürk, Temel, and Sedat Kara. “Determining the Health Status of Natural Monument Trees Using Acoustic Tomography Method”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 25, no. 2 (October 2024): 98-107. https://doi.org/10.17474/artvinofd.1492637.
EndNote Göktürk T, Kara S (October 1, 2024) Determining the health status of natural monument trees using acoustic tomography method. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 25 2 98–107.
IEEE T. Göktürk and S. Kara, “Determining the health status of natural monument trees using acoustic tomography method”, ACUJFF, vol. 25, no. 2, pp. 98–107, 2024, doi: 10.17474/artvinofd.1492637.
ISNAD Göktürk, Temel - Kara, Sedat. “Determining the Health Status of Natural Monument Trees Using Acoustic Tomography Method”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 25/2 (October 2024), 98-107. https://doi.org/10.17474/artvinofd.1492637.
JAMA Göktürk T, Kara S. Determining the health status of natural monument trees using acoustic tomography method. ACUJFF. 2024;25:98–107.
MLA Göktürk, Temel and Sedat Kara. “Determining the Health Status of Natural Monument Trees Using Acoustic Tomography Method”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 25, no. 2, 2024, pp. 98-107, doi:10.17474/artvinofd.1492637.
Vancouver Göktürk T, Kara S. Determining the health status of natural monument trees using acoustic tomography method. ACUJFF. 2024;25(2):98-107.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.