Review
BibTex RIS Cite

FAYDALI VE ZARARLI YÖNLERİYLE MİKROKOZMOSUN VAZGEÇİLMEZ ÜYESİ: Escherichia coli

Year 2025, Volume: 5 Issue: 13, 124 - 132, 11.06.2025
https://doi.org/10.54270/atljm.2025.82

Abstract

Söz konusu Escherichia coli (E. coli) bakterisi olduğunda, bir bakteri hem iyi hem de kötü olabilir mi sorusunun yanıtı net bir şekilde evet olmalıdır. E. coli’nin birçok farklı serotipi vardır ve bu türlerin kendi içerisinde çok küçük farklılıklarla ayrılan identik topluluklarına ise suş denir. Suş, bir spesifik özelliği olan türdeki bir izolat ve bunun bir dizisidir. E. coli’ nin bazı suşları hastalık yaparken bazıları ise sağlık için önemlidir. Zararsız olan suşları, bağırsak mikrobiyotasında bulunur ve besinlerin sindirilmesi, vitamin üretilmesi, bağışıklık sisteminin güçlenmesinde rol alırken zararlı suşları ise ishal, idrar yolu enfeksiyonu gibi hastalıklara neden olur. Aynı zamanda bize faydalı olsalar bile vücudumuzda yaşadıkları yerden farklı bir yere geçerlerse hastalığa veya inflamasyona sebep olup bağışıklık sistemimizde görev alan hücrelerin kendi dokumuza zarar vermesine neden olabilir. İşin bir diğer yönü de Escherichia coli’nin bilim dünyasına yaptığı büyük katkıları bir model mikroorganizma olarak prokaryotik hücre kategorisinde yapılan moleküler düzeydeki araştırmaların da başlangıç noktası aynı bakterinin genom bilgisinden geçmektedir. Bu çalışmada, Escherichi coli’ nin insanlığa faydalı ve zararlı etkileri, epidemiyolojik verileri, yol açtığı salgınlar, bakterinin ekolojik ve çevresel yönü, endüstrideki önemi, sebep olduğu hastalıklarda antibiyotik tedavisi ve direnç profili konularının açıklanması hedeflenmiştir.

Ethical Statement

Gerekli değildir.

Supporting Institution

İSTANBUL ATLAS ÜNİVERSİTESİ

Project Number

yok

References

  • Bowman JP, Bernardet JF, Frandsen Lau E. International Committee on Systematics of Prokaryotes: Subcommittee on the Taxonomy of Aerobic Bacteroidetes (formerly Flavobacterium and Cytophaga-like bacteria). Int J Syst Evol Microbiol. 2020; 70(11): p. 6017-6020.
  • Pallen MJ, Rodriguez RL, Alikhan NF. Naming the unnamed: over 65,000 Candidatus names for unnamed Archaea and Bacteria in the Genome Taxonomy Database. Int J Syst Evol Microbiol. 2022; 72(9).
  • Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol. 2017; 3(3): p. 383-412.
  • Dinesh R, et al. Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Crit Rev Microbiol. 2017; 43(5): p. 546-566.
  • Pakbin B, et al. Prevalence, Phylogroups and Antimicrobial Susceptibility of Escherichia coli Isolates from Food Products. Antibiotics (Basel). 2021; 10(11).
  • Pakbin B, Bruck WM, Rossen JWA. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int J Mol Sci. 2021; 22(18).
  • Jesser KJ, et al. Why are so many enteric pathogen infections asymptomatic? Pathogen and gut microbiome characteristics associated with diarrhea symptoms and carriage of diarrheagenic E. coli in northern Ecuador. Gut Microbes. 2023; 15(2): p. 2281010.
  • Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms. 2023; 11(2).
  • Mbanga J, Kodzai NP, Oosthuysen WF. Antibiotic resistance, pathotypes, and pathogen-host interactions in Escherichia coli from hospital wastewater in Bulawayo, Zimbabwe. PLoS One. 2023; 18(3): p. e0282273.
  • Chevarin C, et al. Comparison of Crohn’s disease-associated adherent-invasive Escherichia coli (AIEC) from France and Hong Kong: results from the Pacific study. Gut Microbes. 2024; 16(1): p. 2431645.
  • Bustamante P., Ramos-Corominas MN, Martinez-Medina M. Contribution of Toxin-Antitoxin Systems to Adherent-Invasive E. coli Pathogenesis. Microorganisms; 2024. 12(6).
  • Yoshihara A, et al. Estimation of the adhesive force distribution for the flagellar adhesion of Escherichia coli on a glass surface. Colloids Surf B Biointerfaces. 2015; 131: p. 67-72.
  • Nelson JM, et al. Antimicrobial and antimotility agent use in persons with shiga toxin-producing Escherichia coli O157 infection in FoodNet Sites. Clin Infect Dis. 2011; 52(9): p. 1130-2.
  • Yu M, Li M, Sun H. Dynamic analysis of the epidemiology and pathogen distribution of bronchoalveolar lavage fluid in children with severe pulmonary infection: a retrospective study. Ital J Pediatr. 2025; 51(1): p. 18.
  • Li Z, et al. Oral-Delivery Lactococcus lactis expressing cherry fusion lactoferrin peptides against infection of avian pathogenic Escherichia coli in chickens. Poult Sci. 2025; 104(1): p. 104637.
  • Pitout JDD, Chen L. The Significance of Epidemic Plasmids in the Success of Multidrug-Resistant Drug Pandemic Extraintestinal Pathogenic Escherichia coli. Infect Dis Ther. 2023; 12(4): p. 1029-1041.
  • Pitout JD, Peirano G, DeVinney R. The contributions of multidrug resistant clones to the success of pandemic extra-intestinal Pathogenic Escherichia coli. Expert Rev Anti Infect Ther. 2023; 21(4): p. 343-353.
  • Singh P, et al. Urgent need for enhanced food safety protocols in fast-food supply chains: lessons from the recent multi-state E. coli outbreak. Infect Dis (Lond). 2025; 57(1): p. 109-111.
  • Martin-Rodriguez AJ, et al. Nitrate Metabolism Modulates Biosynthesis of Biofilm Components in Uropathogenic Escherichia coli and Acts as a Fitness Factor During Experimental Urinary Tract Infection. Front Microbiol. 2020; 11: p. 26.
  • Salazar-Aleman DA, Turner RJ. Escherichia coli growing under antimicrobial gallium nitrate stress reveals new processes of tolerance and toxicity. Sci Rep. 2025; 15(1): p. 1389.
  • Deblais L, Ahmedo BU, Ojeda A, Mummed B, Wang Y, Mekonnen YT, Weldesenbet YD, Hassen KA, Brhane M, McKune S, Havelaar AH, Liang S, Rajashekara G. Assessing fecal contamination from human and environmental sources using Escherichia coli as an indicator in rural eastern Ethiopian households - a study from the EXCAM project. medRxiv (Preprint). 2024; Aug 22:2024.08.21.24312392. doi: 10.1101/2024.08.21.24312392. Update in: Front Public Health. 2025 Jan 06;12:1484808. doi: 10.3389/fpubh.2024.1484808. PMID: 39228739; PMCID: PMC11370526.
  • Cellone I, et al. Effects of feeding pasteurized waste milk or saleable milk to calves on weight, health and fecal Escherichia coli antimicrobial resistance - ERRATUM. J Dairy Res. 2024; 91(1): p. 83.
  • Boithias L, et al. Village Settlements in Mountainous Tropical Areas, Hotspots of Fecal Contamination as Evidenced by Escherichia coli and Stanol Concentrations in Stormwater Pulses. Environ Sci Technol. 2024; 58(14): p. 6335-6348.
  • Beuchat LR, et al. Death of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in shelf-stable, dairy-based, pourable salad dressings. J Food Prot. 2006; 69(4): p. 801-14.
  • Tan MF, et al. Pathogenicity and identification of host adaptation genes of the avian pathogenic Escherichia coli O145 in duck. Front Cell Infect Microbiol. 2024; 14: p. 1453907.
  • Dalldorf C, et al. Diversity of Transcriptional Regulatory Adaptation in E. coli. Mol Biol Evol. 2024; 41(11).
  • Wendisch VF, et al. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol. 2016; 234: p. 139-157.
  • Schlieker C, Bukau B, Mogk A. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol. 2002; 96(1): p. 13-21.
  • Kaul A, Souque C, Holland M, Baym M. Genomic resistance in historical clinical isolates increased in frequency and mobility after the age of antibiotics. bioRxiv (Preprint). 2025; Jan 16:2025.01.16.633422. doi: 10.1101/2025.01.16.633422. PMID: 39868160; PMCID: PMC11761691,
  • Alameer KM, et al. Retrospective Analysis of Antibiotic Resistance Patterns of Uropathogenic Escherichia coli With Focus on Extended-Spectrum beta-Lactamase at a Tertiary Central Hospital in Saudi Arabia. Health Sci Rep. 2025; 8(1): p. e70378.
  • Luo Q, Zhuang W, Sui M. Combating Antibiotic Resistance in Persulfate-Based Advanced Oxidation Processes: Activation Methods and Energy Consumption. Environ Res. 2025; 270: p. 120932.
  • Wang P, et al. Synergistic effects of quaternary ammonium compounds and antibiotics on the evolution of antibiotic resistance. Water Res. 2025; 275: p. 123206.
  • Salcido RS. Super bugs: survival of the fittest. Adv Skin Wound Care. 2010; 23(10): p. 439.
  • Esguerra EM. Super Bugs and Antimicrobial Stewardship. Mo Med. 2017; 114(6): p. 438-439.
  • Yang QE, et al. Cutting-edge tools for unveiling the dynamics of plasmid-host interactions. Trends Microbiol. 2025: 2025 Jan 21:S0966-842X(24)00329-9. doi: 10.1016/j.tim.2024.12.013.
  • Bercot B, et al. High Prevalence and High Rate of Antibiotic Resistance of Mycoplasma genitalium Infections in Men Who Have Sex With Men: A Substudy of the ANRS IPERGAY Pre-exposure Prophylaxis Trial. Clin Infect Dis 2021; 73(7): p. e2127-e2133.
  • Spornraft-Ragaller P, Dumke R. Prevalence and antibiotic resistance of rectal Mollicutes in HIV-infected men who have sex with men at the University Hospital of Dresden, Germany. Infection. 2020; 48(2): p. 259-265.
  • Rocha Minarini LAD. Exploring bacterial extracellular vesicles: Focus on WHO critical priority pathogens. Curr Top Membr. 2024; 94: p. 225-246.
  • Tanzin AZ, et al. Detection and Characterisation of Colistin- Resistant Escherichia coli in Broiler Meats. Microorganisms. 2024 Dec 9;12(12):2535. doi: 10.3390/microorganisms12122535.
  • Cortes P, et al. Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains. Antibiotics (Basel). 2025; 14(1).
  • El-Bilawy EH, et al. Evaluating the antibacterial efficacy of bee venom against multidrug-resistant pathogenic bacteria: Escherichia coli, Salmonella typhimurium, and Enterococcus faecalis. World J Microbiol Biotechnol. 2025; 41(2): p. 40.
  • Xu X, et al. Rapid detection of carbapenem-resistant Escherichia coli and carbapenem-resistant Klebsiella pneumoniae in positive blood cultures via MALDI-TOF MS and tree-based machine learning models. BMC Microbiol. 2025; 25(1): p. 44.
  • Sandoval Hurtado CP, et al. Engineering a Biosynthetic Pathway for the Production of (+)-Brevianamides A and B in Escherichia coli. bioRxiv, 2024; doi: https://doi.org/10.1101/2024.12.10.627567
  • Gupta D, Summers ML, Basu C. Engineering an isoprenoid pathway in Escherichia coli for production of 2-methyl-3-buten-2-ol: a potential biofuel. Mol Biotechnol. 2014; 56(6): p. 516-23.
  • Villa RE, et al. Safety and efficacy of a feed additive consisting of l-arginine produced with Escherichia coli CGMCC 7.401 for all animal species (Eppen Europe SAS). EFSA Journal, 2024. 22(10): p. e9028.
  • Koppolu V, Vasigala VK. Role of Escherichia coli in Biofuel Production. Microbiol Insights. 2016; 9: p. 29-35.
  • Ceylan HK. Enhanced Biomass Production of Recombinant Pfu DNA Polymerase Producer Escherichia coli BL21(DE3) by Optimization of Induction Variables Using Response Surface Methodology. Protein J. 2023; 42(4): p. 451-462.
  • Herynek Š, Svoboda J, Huličiak M, Peleg Y, Škultétyová Ľ, Mikulecký P, Schneider B. Increasing recombinant protein production in E. coli via FACS-based selection of N-terminal coding DNA libraries. FEBS J. 2025 Mar;292(5):1070-1085.
  • Brandl M, Schmidt AJ, Marcus U, Duffell E, Severi E, Mozalevskis A, Kivite-Urtane A, An der Heiden M, Dudareva S. Self-reported hepatitis A and B vaccination coverage among men who have sex with men (MSM), associated factors and vaccination recommendations in 43 countries of the WHO European Region: results from the European MSM Internet Survey, EMIS-2017. Euro Surveill. 2024. Nov;29(45):2400100.
  • Lappe A, et al. Bacterial cytochrome P450 enzymes: Semirational design and screening of mutant libraries in recombinant Escherichia coli cells. Methods Enzymol. 2023; 693: p. 133-170. doi: 10.2807/1560-7917.ES.2024.29.45.2400100.
  • 51. Poborsky M, et al. Systematic engineering pinpoints a versatile strategy for the expression of functional cytochrome P450 enzymes in Escherichia coli cell factories. Microb Cell Fact. 2023; 22(1): p. 219.

AN INDISPENSABLE MEMBER OF THE MICROCOSM WITH ITS BENEFICIAL AND HARMFUL ASPECTS: Escherichia coli

Year 2025, Volume: 5 Issue: 13, 124 - 132, 11.06.2025
https://doi.org/10.54270/atljm.2025.82

Abstract

When it comes to the bacterium Escherichia coli (E. coli), the answer to the question whether a bacterium can be both beneficial and pathogenic should be a clear yes. There are many different serotypes of E. coli, and the identical communities of these species, separated by very small differences, are called strains. A strain is an isolate of a species with a specific characteristic and its sequence. Some strains of E. coli cause disease while others are important for health. Harmless strains are found in the gut microbiota and are involved in digesting food, producing vitamins and strengthening the immune system, while harmful strains cause diseases such as diarrhea and urinary tract infections. At the same time, even if they are beneficial to us, if they move from where they live in our body to a different place, they can cause disease or inflammation and cause the cells of our immune system to damage our own tissue. Another aspect of the work is that Escherichia coli has made great contributions to the world of science and as a model microorganism, the starting point of molecular level researchs in the prokaryotic cell category is the genome information of the same bacterium. In this study, it is aimed to explain the beneficial and harmful properties of Escherichi coli on humanity, epidemiological data, epidemics caused by it, ecological and environmental aspects of the bacterium, its importance in industry, antibiotic treatment and resistance profile in the diseases it causes.

Project Number

yok

References

  • Bowman JP, Bernardet JF, Frandsen Lau E. International Committee on Systematics of Prokaryotes: Subcommittee on the Taxonomy of Aerobic Bacteroidetes (formerly Flavobacterium and Cytophaga-like bacteria). Int J Syst Evol Microbiol. 2020; 70(11): p. 6017-6020.
  • Pallen MJ, Rodriguez RL, Alikhan NF. Naming the unnamed: over 65,000 Candidatus names for unnamed Archaea and Bacteria in the Genome Taxonomy Database. Int J Syst Evol Microbiol. 2022; 72(9).
  • Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol. 2017; 3(3): p. 383-412.
  • Dinesh R, et al. Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Crit Rev Microbiol. 2017; 43(5): p. 546-566.
  • Pakbin B, et al. Prevalence, Phylogroups and Antimicrobial Susceptibility of Escherichia coli Isolates from Food Products. Antibiotics (Basel). 2021; 10(11).
  • Pakbin B, Bruck WM, Rossen JWA. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int J Mol Sci. 2021; 22(18).
  • Jesser KJ, et al. Why are so many enteric pathogen infections asymptomatic? Pathogen and gut microbiome characteristics associated with diarrhea symptoms and carriage of diarrheagenic E. coli in northern Ecuador. Gut Microbes. 2023; 15(2): p. 2281010.
  • Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms. 2023; 11(2).
  • Mbanga J, Kodzai NP, Oosthuysen WF. Antibiotic resistance, pathotypes, and pathogen-host interactions in Escherichia coli from hospital wastewater in Bulawayo, Zimbabwe. PLoS One. 2023; 18(3): p. e0282273.
  • Chevarin C, et al. Comparison of Crohn’s disease-associated adherent-invasive Escherichia coli (AIEC) from France and Hong Kong: results from the Pacific study. Gut Microbes. 2024; 16(1): p. 2431645.
  • Bustamante P., Ramos-Corominas MN, Martinez-Medina M. Contribution of Toxin-Antitoxin Systems to Adherent-Invasive E. coli Pathogenesis. Microorganisms; 2024. 12(6).
  • Yoshihara A, et al. Estimation of the adhesive force distribution for the flagellar adhesion of Escherichia coli on a glass surface. Colloids Surf B Biointerfaces. 2015; 131: p. 67-72.
  • Nelson JM, et al. Antimicrobial and antimotility agent use in persons with shiga toxin-producing Escherichia coli O157 infection in FoodNet Sites. Clin Infect Dis. 2011; 52(9): p. 1130-2.
  • Yu M, Li M, Sun H. Dynamic analysis of the epidemiology and pathogen distribution of bronchoalveolar lavage fluid in children with severe pulmonary infection: a retrospective study. Ital J Pediatr. 2025; 51(1): p. 18.
  • Li Z, et al. Oral-Delivery Lactococcus lactis expressing cherry fusion lactoferrin peptides against infection of avian pathogenic Escherichia coli in chickens. Poult Sci. 2025; 104(1): p. 104637.
  • Pitout JDD, Chen L. The Significance of Epidemic Plasmids in the Success of Multidrug-Resistant Drug Pandemic Extraintestinal Pathogenic Escherichia coli. Infect Dis Ther. 2023; 12(4): p. 1029-1041.
  • Pitout JD, Peirano G, DeVinney R. The contributions of multidrug resistant clones to the success of pandemic extra-intestinal Pathogenic Escherichia coli. Expert Rev Anti Infect Ther. 2023; 21(4): p. 343-353.
  • Singh P, et al. Urgent need for enhanced food safety protocols in fast-food supply chains: lessons from the recent multi-state E. coli outbreak. Infect Dis (Lond). 2025; 57(1): p. 109-111.
  • Martin-Rodriguez AJ, et al. Nitrate Metabolism Modulates Biosynthesis of Biofilm Components in Uropathogenic Escherichia coli and Acts as a Fitness Factor During Experimental Urinary Tract Infection. Front Microbiol. 2020; 11: p. 26.
  • Salazar-Aleman DA, Turner RJ. Escherichia coli growing under antimicrobial gallium nitrate stress reveals new processes of tolerance and toxicity. Sci Rep. 2025; 15(1): p. 1389.
  • Deblais L, Ahmedo BU, Ojeda A, Mummed B, Wang Y, Mekonnen YT, Weldesenbet YD, Hassen KA, Brhane M, McKune S, Havelaar AH, Liang S, Rajashekara G. Assessing fecal contamination from human and environmental sources using Escherichia coli as an indicator in rural eastern Ethiopian households - a study from the EXCAM project. medRxiv (Preprint). 2024; Aug 22:2024.08.21.24312392. doi: 10.1101/2024.08.21.24312392. Update in: Front Public Health. 2025 Jan 06;12:1484808. doi: 10.3389/fpubh.2024.1484808. PMID: 39228739; PMCID: PMC11370526.
  • Cellone I, et al. Effects of feeding pasteurized waste milk or saleable milk to calves on weight, health and fecal Escherichia coli antimicrobial resistance - ERRATUM. J Dairy Res. 2024; 91(1): p. 83.
  • Boithias L, et al. Village Settlements in Mountainous Tropical Areas, Hotspots of Fecal Contamination as Evidenced by Escherichia coli and Stanol Concentrations in Stormwater Pulses. Environ Sci Technol. 2024; 58(14): p. 6335-6348.
  • Beuchat LR, et al. Death of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in shelf-stable, dairy-based, pourable salad dressings. J Food Prot. 2006; 69(4): p. 801-14.
  • Tan MF, et al. Pathogenicity and identification of host adaptation genes of the avian pathogenic Escherichia coli O145 in duck. Front Cell Infect Microbiol. 2024; 14: p. 1453907.
  • Dalldorf C, et al. Diversity of Transcriptional Regulatory Adaptation in E. coli. Mol Biol Evol. 2024; 41(11).
  • Wendisch VF, et al. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol. 2016; 234: p. 139-157.
  • Schlieker C, Bukau B, Mogk A. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol. 2002; 96(1): p. 13-21.
  • Kaul A, Souque C, Holland M, Baym M. Genomic resistance in historical clinical isolates increased in frequency and mobility after the age of antibiotics. bioRxiv (Preprint). 2025; Jan 16:2025.01.16.633422. doi: 10.1101/2025.01.16.633422. PMID: 39868160; PMCID: PMC11761691,
  • Alameer KM, et al. Retrospective Analysis of Antibiotic Resistance Patterns of Uropathogenic Escherichia coli With Focus on Extended-Spectrum beta-Lactamase at a Tertiary Central Hospital in Saudi Arabia. Health Sci Rep. 2025; 8(1): p. e70378.
  • Luo Q, Zhuang W, Sui M. Combating Antibiotic Resistance in Persulfate-Based Advanced Oxidation Processes: Activation Methods and Energy Consumption. Environ Res. 2025; 270: p. 120932.
  • Wang P, et al. Synergistic effects of quaternary ammonium compounds and antibiotics on the evolution of antibiotic resistance. Water Res. 2025; 275: p. 123206.
  • Salcido RS. Super bugs: survival of the fittest. Adv Skin Wound Care. 2010; 23(10): p. 439.
  • Esguerra EM. Super Bugs and Antimicrobial Stewardship. Mo Med. 2017; 114(6): p. 438-439.
  • Yang QE, et al. Cutting-edge tools for unveiling the dynamics of plasmid-host interactions. Trends Microbiol. 2025: 2025 Jan 21:S0966-842X(24)00329-9. doi: 10.1016/j.tim.2024.12.013.
  • Bercot B, et al. High Prevalence and High Rate of Antibiotic Resistance of Mycoplasma genitalium Infections in Men Who Have Sex With Men: A Substudy of the ANRS IPERGAY Pre-exposure Prophylaxis Trial. Clin Infect Dis 2021; 73(7): p. e2127-e2133.
  • Spornraft-Ragaller P, Dumke R. Prevalence and antibiotic resistance of rectal Mollicutes in HIV-infected men who have sex with men at the University Hospital of Dresden, Germany. Infection. 2020; 48(2): p. 259-265.
  • Rocha Minarini LAD. Exploring bacterial extracellular vesicles: Focus on WHO critical priority pathogens. Curr Top Membr. 2024; 94: p. 225-246.
  • Tanzin AZ, et al. Detection and Characterisation of Colistin- Resistant Escherichia coli in Broiler Meats. Microorganisms. 2024 Dec 9;12(12):2535. doi: 10.3390/microorganisms12122535.
  • Cortes P, et al. Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains. Antibiotics (Basel). 2025; 14(1).
  • El-Bilawy EH, et al. Evaluating the antibacterial efficacy of bee venom against multidrug-resistant pathogenic bacteria: Escherichia coli, Salmonella typhimurium, and Enterococcus faecalis. World J Microbiol Biotechnol. 2025; 41(2): p. 40.
  • Xu X, et al. Rapid detection of carbapenem-resistant Escherichia coli and carbapenem-resistant Klebsiella pneumoniae in positive blood cultures via MALDI-TOF MS and tree-based machine learning models. BMC Microbiol. 2025; 25(1): p. 44.
  • Sandoval Hurtado CP, et al. Engineering a Biosynthetic Pathway for the Production of (+)-Brevianamides A and B in Escherichia coli. bioRxiv, 2024; doi: https://doi.org/10.1101/2024.12.10.627567
  • Gupta D, Summers ML, Basu C. Engineering an isoprenoid pathway in Escherichia coli for production of 2-methyl-3-buten-2-ol: a potential biofuel. Mol Biotechnol. 2014; 56(6): p. 516-23.
  • Villa RE, et al. Safety and efficacy of a feed additive consisting of l-arginine produced with Escherichia coli CGMCC 7.401 for all animal species (Eppen Europe SAS). EFSA Journal, 2024. 22(10): p. e9028.
  • Koppolu V, Vasigala VK. Role of Escherichia coli in Biofuel Production. Microbiol Insights. 2016; 9: p. 29-35.
  • Ceylan HK. Enhanced Biomass Production of Recombinant Pfu DNA Polymerase Producer Escherichia coli BL21(DE3) by Optimization of Induction Variables Using Response Surface Methodology. Protein J. 2023; 42(4): p. 451-462.
  • Herynek Š, Svoboda J, Huličiak M, Peleg Y, Škultétyová Ľ, Mikulecký P, Schneider B. Increasing recombinant protein production in E. coli via FACS-based selection of N-terminal coding DNA libraries. FEBS J. 2025 Mar;292(5):1070-1085.
  • Brandl M, Schmidt AJ, Marcus U, Duffell E, Severi E, Mozalevskis A, Kivite-Urtane A, An der Heiden M, Dudareva S. Self-reported hepatitis A and B vaccination coverage among men who have sex with men (MSM), associated factors and vaccination recommendations in 43 countries of the WHO European Region: results from the European MSM Internet Survey, EMIS-2017. Euro Surveill. 2024. Nov;29(45):2400100.
  • Lappe A, et al. Bacterial cytochrome P450 enzymes: Semirational design and screening of mutant libraries in recombinant Escherichia coli cells. Methods Enzymol. 2023; 693: p. 133-170. doi: 10.2807/1560-7917.ES.2024.29.45.2400100.
  • 51. Poborsky M, et al. Systematic engineering pinpoints a versatile strategy for the expression of functional cytochrome P450 enzymes in Escherichia coli cell factories. Microb Cell Fact. 2023; 22(1): p. 219.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Medical Microbiology (Other)
Journal Section Reviews
Authors

Hatice Nur Halipçi Topsakal 0000-0003-3158-2165

Project Number yok
Early Pub Date April 21, 2025
Publication Date June 11, 2025
Submission Date February 1, 2025
Acceptance Date March 24, 2025
Published in Issue Year 2025 Volume: 5 Issue: 13

Cite

Vancouver Halipçi Topsakal HN. FAYDALI VE ZARARLI YÖNLERİYLE MİKROKOZMOSUN VAZGEÇİLMEZ ÜYESİ: Escherichia coli. ATLJM. 2025;5(13):124-32.