Research Article
BibTex RIS Cite
Year 2025, Volume: 13 Issue: 1, 96 - 105, 30.03.2025
https://doi.org/10.17694/bajece.1577733

Abstract

References

  • [1] M. Koseoglu, F. N. Deniz, B. B. Alagoz, A. Yuce, and N. Tan, “An experimental analog circuit realization of Matsuda’s approximate fractional-order integral operators for industrial electronics,” Eng. Res. Express, vol. 3, no. 4, p. 045041, Dec. 2021, doi: 10.1088/2631-8695/ac3e11.
  • [2] A. M. Hassanein, A. H. Madian, A. G. G. Radwan, and L. A. Said, “On the Design Flow of the Fractional-Order Analog Filters Between FPAA Implementation and Circuit Realization,” IEEE Access, vol. 11, pp. 29199–29214, 2023, doi: 10.1109/ACCESS.2023.3260093.
  • [3] J. Nako, C. Psychalinos, and A. S. Elwakil, “A 1 + α Order Generalized Butterworth Filter Structure and Its Field Programmable Analog Array Implementation,” Electronics, vol. 12, no. 5, p. 1225, Mar. 2023, doi: 10.3390/electronics12051225.
  • [4] M. A. George, A. S. Elwakil, A. Allagui, and C. Psychalinos, “Design of Complex-Order PI/PID Speed Controllers and its FPAA Realization,” IEEE Access, vol. 11, pp. 118606–118614, 2023, doi: 10.1109/ACCESS.2023.3326446.
  • [5] A. Ali, K. Bingi, R. Ibrahim, P. A. M. Devan, and K. B. Devika, “A review on FPGA implementation of fractional-order systems and PID controllers,” AEU - Int. J. Electron. Commun., vol. 177, p. 155218, Apr. 2024, doi: 10.1016/j.aeue.2024.155218.
  • [6] C. X. Jiang, J. E. Carletta, and T. T. Hartley, “Implementation of Fractional-order Operators on Field Programmable Gate Arrays,” in Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Eds., Dordrecht: Springer Netherlands, 2007, pp. 333–346. doi: 10.1007/978-1-4020-6042-7_23.
  • [7] W. Wolf, FPGA-based system design. Pearson education, 2004.
  • [8] U. Meyer-Baese and U. Meyer-Baese, Digital signal processing with field programmable gate arrays, vol. 65. Springer, 2007.
  • [9] M. Koseoglu, “Time response optimal rational approximation: Improvement of time responses of MSBL based approximate fractional order derivative operators by using gradient descent optimization,” Eng. Sci. Technol. Int. J., vol. 35, p. 101167, Nov. 2022, doi: 10.1016/j.jestch.2022.101167.
  • [10] F. N. Deniz, B. B. Alagoz, N. Tan, and M. Koseoglu, “Revisiting four approximation methods for fractional order transfer function implementations: Stability preservation, time and frequency response matching analyses,” Annu. Rev. Control, vol. 49, pp. 239–257, 2020, doi: 10.1016/j.arcontrol.2020.03.003.
  • [11] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic systems, vol. 3. Addison-wesley Menlo Park, 1998.
  • [12] “Matlab Documentation ‘c2d,’” c2d. [Online]. Available: https://www.mathworks.com/help/control/ref/dynamicsystem.c2d.html?s_tid=doc_ta
  • [13] K. Ogata, Discrete-time control systems. Prentice-Hall, Inc., 1995.
  • [14] J. G. Proakis, Digital signal processing: principles, algorithms, and applications, 4/E. Pearson Education India, 2007.
  • [15] “Xilinx System Generator for DSP Getting Started Guide.” AMD. Accessed: Aug. 16, 2024. [Online]. Available: https://docs.amd.com/v/u/en-US/sysgen_gs
  • [16] A. Sharma and T. K. Rawat, “Design and FPGA implementation of lattice wave fractional order digital differentiator,” Microelectron. J., vol. 88, pp. 67–78, Jun. 2019, doi: 10.1016/j.mejo.2019.04.013.
  • [17] D. Datta and H. S. Dutta, “High performance IIR filter implementation on FPGA,” J. Electr. Syst. Inf. Technol., vol. 8, no. 1, p. 2, Dec. 2021, doi: 10.1186/s43067-020-00025-4.
  • [18] V. Dhillon, S. Nair, A. Pabarekar, M. Kumbhare, K. Thakur, and R. Krishnan, “Implementation of FIR Digital Filter on FPGA,” in 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), NaviMumbai, India: IEEE, Jan. 2021, pp. 1–5. doi: 10.1109/ICNTE51185.2021.9487744.
  • [19] H. V. Dixit and D. V. Gupta, “IIR filters using Xilinx System Generator for FPGA implementation,” Int. J. Eng. Res. Appl., vol. 2, no. 5, pp. 303–307, 2012.
  • [20] P. Paz and M. Garrido, “Efficient Implementation of Complex Multipliers on FPGAs Using DSP Slices,” J. Signal Process. Syst., vol. 95, no. 4, pp. 543–550, Apr. 2023, doi: 10.1007/s11265-023-01867-7.
  • [21] P. Kwiatkowski, “Digital-to-time converter for test equipment implemented using FPGA DSP blocks,” Measurement, vol. 177, p. 109267, Jun. 2021, doi: 10.1016/j.measurement.2021.109267.

Comparative Analysis of Analog and FPGA Realizations Based on Matsuda Method for Fractional Order Integral Operator

Year 2025, Volume: 13 Issue: 1, 96 - 105, 30.03.2025
https://doi.org/10.17694/bajece.1577733

Abstract

Realization of fractional order (FO) transfer functions is essential for real-time applications such as communication systems, video, and digital signal processing. In general, in both implementation methods, the FO transfer function including FO integral and derivative operators is transformed to an integer order approximate transfer function by one of the approximation methods such as Oustaloup, Matsuda, CFE, MSBL, etc. Then, the integer order approximate transfer function can be implemented using analog circuit elements such as opamps, resistors, capacitors, or digitally with field-programmable gate arrays (FPGA). In this study, integer order approximate continuous time transfer function obtained for FO integral operator by Matsuda’s approximation method is converted to a discrete time function, and that function is digitally implemented by FPGA with Xilinx System Generator. The results obtained are analyzed in comparison with analog circuit implementation results presented in a former study. The study emphasizes the growing importance of fractional calculus in providing accurate models for real-world systems and the challenges posed by the long memory effect in digital implementations. Simulation and experimental results, including sinusoidal waveform, step response and impulse response analysis, reveal the pros and cons of FPGA implementation. Considering these issues, conclusions are made on the effectiveness, efficiency and potential of the FPGA implementation for real-time applications in control systems and signal processing.

References

  • [1] M. Koseoglu, F. N. Deniz, B. B. Alagoz, A. Yuce, and N. Tan, “An experimental analog circuit realization of Matsuda’s approximate fractional-order integral operators for industrial electronics,” Eng. Res. Express, vol. 3, no. 4, p. 045041, Dec. 2021, doi: 10.1088/2631-8695/ac3e11.
  • [2] A. M. Hassanein, A. H. Madian, A. G. G. Radwan, and L. A. Said, “On the Design Flow of the Fractional-Order Analog Filters Between FPAA Implementation and Circuit Realization,” IEEE Access, vol. 11, pp. 29199–29214, 2023, doi: 10.1109/ACCESS.2023.3260093.
  • [3] J. Nako, C. Psychalinos, and A. S. Elwakil, “A 1 + α Order Generalized Butterworth Filter Structure and Its Field Programmable Analog Array Implementation,” Electronics, vol. 12, no. 5, p. 1225, Mar. 2023, doi: 10.3390/electronics12051225.
  • [4] M. A. George, A. S. Elwakil, A. Allagui, and C. Psychalinos, “Design of Complex-Order PI/PID Speed Controllers and its FPAA Realization,” IEEE Access, vol. 11, pp. 118606–118614, 2023, doi: 10.1109/ACCESS.2023.3326446.
  • [5] A. Ali, K. Bingi, R. Ibrahim, P. A. M. Devan, and K. B. Devika, “A review on FPGA implementation of fractional-order systems and PID controllers,” AEU - Int. J. Electron. Commun., vol. 177, p. 155218, Apr. 2024, doi: 10.1016/j.aeue.2024.155218.
  • [6] C. X. Jiang, J. E. Carletta, and T. T. Hartley, “Implementation of Fractional-order Operators on Field Programmable Gate Arrays,” in Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Eds., Dordrecht: Springer Netherlands, 2007, pp. 333–346. doi: 10.1007/978-1-4020-6042-7_23.
  • [7] W. Wolf, FPGA-based system design. Pearson education, 2004.
  • [8] U. Meyer-Baese and U. Meyer-Baese, Digital signal processing with field programmable gate arrays, vol. 65. Springer, 2007.
  • [9] M. Koseoglu, “Time response optimal rational approximation: Improvement of time responses of MSBL based approximate fractional order derivative operators by using gradient descent optimization,” Eng. Sci. Technol. Int. J., vol. 35, p. 101167, Nov. 2022, doi: 10.1016/j.jestch.2022.101167.
  • [10] F. N. Deniz, B. B. Alagoz, N. Tan, and M. Koseoglu, “Revisiting four approximation methods for fractional order transfer function implementations: Stability preservation, time and frequency response matching analyses,” Annu. Rev. Control, vol. 49, pp. 239–257, 2020, doi: 10.1016/j.arcontrol.2020.03.003.
  • [11] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic systems, vol. 3. Addison-wesley Menlo Park, 1998.
  • [12] “Matlab Documentation ‘c2d,’” c2d. [Online]. Available: https://www.mathworks.com/help/control/ref/dynamicsystem.c2d.html?s_tid=doc_ta
  • [13] K. Ogata, Discrete-time control systems. Prentice-Hall, Inc., 1995.
  • [14] J. G. Proakis, Digital signal processing: principles, algorithms, and applications, 4/E. Pearson Education India, 2007.
  • [15] “Xilinx System Generator for DSP Getting Started Guide.” AMD. Accessed: Aug. 16, 2024. [Online]. Available: https://docs.amd.com/v/u/en-US/sysgen_gs
  • [16] A. Sharma and T. K. Rawat, “Design and FPGA implementation of lattice wave fractional order digital differentiator,” Microelectron. J., vol. 88, pp. 67–78, Jun. 2019, doi: 10.1016/j.mejo.2019.04.013.
  • [17] D. Datta and H. S. Dutta, “High performance IIR filter implementation on FPGA,” J. Electr. Syst. Inf. Technol., vol. 8, no. 1, p. 2, Dec. 2021, doi: 10.1186/s43067-020-00025-4.
  • [18] V. Dhillon, S. Nair, A. Pabarekar, M. Kumbhare, K. Thakur, and R. Krishnan, “Implementation of FIR Digital Filter on FPGA,” in 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), NaviMumbai, India: IEEE, Jan. 2021, pp. 1–5. doi: 10.1109/ICNTE51185.2021.9487744.
  • [19] H. V. Dixit and D. V. Gupta, “IIR filters using Xilinx System Generator for FPGA implementation,” Int. J. Eng. Res. Appl., vol. 2, no. 5, pp. 303–307, 2012.
  • [20] P. Paz and M. Garrido, “Efficient Implementation of Complex Multipliers on FPGAs Using DSP Slices,” J. Signal Process. Syst., vol. 95, no. 4, pp. 543–550, Apr. 2023, doi: 10.1007/s11265-023-01867-7.
  • [21] P. Kwiatkowski, “Digital-to-time converter for test equipment implemented using FPGA DSP blocks,” Measurement, vol. 177, p. 109267, Jun. 2021, doi: 10.1016/j.measurement.2021.109267.
There are 21 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Araştırma Articlessi
Authors

Ömer Pektaş 0000-0002-6927-6529

Murat Köseoğlu 0000-0003-3774-1083

Early Pub Date May 19, 2025
Publication Date March 30, 2025
Submission Date November 1, 2024
Acceptance Date December 28, 2024
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Pektaş, Ö., & Köseoğlu, M. (2025). Comparative Analysis of Analog and FPGA Realizations Based on Matsuda Method for Fractional Order Integral Operator. Balkan Journal of Electrical and Computer Engineering, 13(1), 96-105. https://doi.org/10.17694/bajece.1577733

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı