Influences of Arduino and Algodoo Based Mechanics Teaching on Achievement
Year 2025,
Volume: 19 Issue: 1, 30 - 64, 27.06.2025
Atakan Çoban
,
Mustafa Erol
Abstract
This work focuses on investigating the influence levels of Arduino and Algodoo based mechanics teaching activities on academic achievement. The research was carried out based on a pre-test post-test quasi-experimental method with two experimental groups totally consisting of 61 pre-service science teachers studying at a state university. Specifically, Arduino based STEM and Algodoo based education materials are carefully developed on the units of vectors, kinematics, dynamics, and work-energy in accordance with teaching objectives. The influences of the teaching materials on achievement are measured by Mechanics Achievement Scale. The findings demonstrate that Arduino based education has improved the achievement by 28.21% and Algodoo based teaching has improved by 28.83%, both influencing significantly. It was also revealed that simplicity of the activities and prior knowledge of the groups related with experimental processes were factors that increased the effectiveness of the applications.
Ethical Statement
This study was reviewed and approved by the Ethical Committee of the Educational Sciences Institute at Dokuz Eylül University, Türkiye. All procedures followed national ethical guide-lines, and informed consent was obtained from all participants prior to their involvement in the study.
References
- Bao, L., & Koenig, K. (2019). Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research, 1(1), 2. https://doi.org/10.1186/s43031-019-0007-8
- Bollen, L., van Kampen, P., Baily, C., Kelly, M., & De Cock, M. (2017). Student difficulties regarding symbolic and graphical representations of vector fields. Physical Review Physics Education Research, 13, Article 020109. https://doi.org/10.1103/PhysRevPhysEducRes.13.020109
- Brown, S., & Smith, B. (2013). Resource based learning. Routledge.
- Burkholder, E. W., & Wieman, C. E. (2022). Absence of a COVID-induced academic drop in high-school physics learning. Physical Review Physics Education Research, 18, 023102. https://doi.org/10.1103/PhysRevPhysEducRes.18.023102
- Büyükdede, M., & Tanel, R. (2019). Effect of the STEM activities related to work-energy topics on academic achievement and prospective teachers' opinions on STEM activities. Journal of Baltic Science Education, 18(4), 507-518. https://doi.org/10.33225/jbse/19.18.507
- Cayvaz, A., & Akcay, H. (2018). The effects of using Algodoo in science teaching at middle school. The Eurasia Proceedings of Educational and Social Sciences, 9, 151-156. https://dergipark.org.tr/en/pub/epess/issue/38900/457934
- Çelik, H., Sarı, U., & Harwanto, U. N. (2015). Developing and evaluating physics teaching material with Algodoo (Phun) in virtual environment: Archimedes’ Principle. The Eurasia Proceedings of Educational and Social Sciences, 1, 178-183. https://dergipark.org.tr/en/pub/epess/issue/30314/333374
- Çoban, A. (2021). Algodoo for online education: impulse and momentum activities. Physics Education, 56(2), 025017. https://doi.org/10.1088/1361-6552/abd1e9
- Çoban, A., & Boyacı, S. (2020). The calculation of kinetic and static friction coefficient and friction graph analysis using Arduino. Physics Education, 56(1), Article 013003. https://doi.org/10.1088/1361-6552/abc07c
- Çoban, A., & Çoban, N. (2020). Determining of the spring constant using Arduino. Physics Education, 55(6), Article 065028. https://doi.org/10.1088/1361-6552/abb58b
- Çoban, A., & Erol, M. (2020). Validation of Newton’s second law using Arduino: STEM teaching material. Physics Education, 56(1), Article 013004. https://doi.org/10.1088/1361-6552/abc639
- Çoban, A., & Erol, M. (2021a). Teaching kinematics via Arduino based STEM education material. Physics Education, 57(1), Article 015010. https://doi.org/10.1088/1361-6552/ac342d
- Çoban, A., & Erol, M. (2021b). Arduino-based STEM education material: Work-energy theorem. Physics Education, 56(2), Article 023008. https://doi.org/10.1088/1361-6552/abd991
- Çoban, A., & Erol, M. (2021c). Teaching impulse-momentum law by Arduino based STEM education material. The Physics Educator, 3(2), Article 2150006. https://doi.org/10.1142/S2661339521500062
- Çoban, A., & Erol, M. (2022). STEM education of kinematics and dynamics using Arduino. The Physics Teacher, 60, 289-291. https://doi.org/10.1119/10.0009994
- Çoban, A., Çoban, N., & Çoban, E. (2023). Energy conservation analysis using Arduino. The Physics Teacher, 61, 295-297. https://doi.org/10.1119/5.0067534
- Daud, N. S. N., Karim, M. M. A., Hassan, S. W. N. W., & Rahman, N. A. (2015). Misconception and difficulties in introductory physics among high school and university students: An overview in mechanics. Educatum Journal of Science, Mathematics and Technology, 2(1), 34-47. https://ejournal.upsi.edu.my/index.php/EJSMT/article/view/26/19
- de Lima, Í. M., de Souza, E. V., & de Araújo, F. D. (2020). The use of Arduino as a methodological tool for teaching physics in high school. arXiv. https://doi.org/10.48550/arXiv.2003.10594
- Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics Physics Education Research, 10, Article 020119. https://doi.org/10.1103/PhysRevSTPER.10.020119
- Erol, M., & Oğur, M. (2023). Teaching large angle pendulum via Arduino based STEM education material. Physics Education, 58(4), Article 045001. https://doi.org/10.1088/1361-6552/accef4
- Flores, S., Kanim, S. E., & Kautz, C. H. (2004). Student use of vectors in introductory mechanics. American Journal of Physics, 72, 460-468. https://doi.org/10.1119/1.1648686
- Goncalves, A. M. B., Freitas, W. P. S., & Calheiro, L. B. (2023). Resources on physics education using Arduino. Physics Education, 58(3), Article 033002. https://doi.org/10.1088/1361-6552/acb8a2
- Gregorcic, B. (2015). Exploring Kepler’s laws using an interactive whiteboard and Algodoo. Physics Education, 50(5), 511-515. https://doi.org/10.1088/0031-9120/50/5/511
- Gregorcic, B., & Bodin, M. (2017). Algodoo: A tool for encouraging creativity in physics teaching and learning. The Physics Teacher, 55, 25-28. https://doi.org/10.1119/1.4972493
- Gutierres-Berraondo, J., Guisasola, J., & Zuza, K. (2019, August). Addressing undergraduate students’ difficulty in learning the generalized work-energy principle in introductory mechanics. Journal of Physics: Conference Series, 1287, Article 012024. https://doi.org/10.1088/1742-6596/1287/1/012024
- Hennessy, S., Twigger, D., Driver, R., O'shea, T., O'Malley, C. E., Byard, M., Draper, S., Hartley, R., Mohamed, R., & Scanlon, E. (1995). A classroom intervention using a computer‐augmented curriculum for mechanics. International Journal of Science Education, 17(2), 189-206. https://doi.org/10.1080/0950069950170204
- Hırça, N., & Bayrak, N. (2013). Sanal fizik laboratuarı ile üstün yeteneklilerin eğitimi: Kaldırma kuvveti konusu. Journal for the Education of Gifted Young Scientists, 1(1), 16-20. https://dergipark.org.tr/en/pub/jegys/issue/37126/427767
- Hill, J. R., Hannafin, M. J., & Domizi, D. P. (2005). Resource-based learning and informal learning environments: Prospects and challenges. In L. Tan Wee Hin & R. Subramaniam (Eds.), E-Learning and Virtual Science Centers (pp. 110-126). https://doi.org/10.4018/978-1-59140-591-7.ch006
- Hopf, M., Wilhelm, T., Tobias, V., Waltner, C., & Wiesner, H. (2011). Promoting students’ understanding of Newtonian mechanics through an alternative content structure–Results from an empirical study. ESERA Conference Lyon, 1-5. https://www.thomas-wilhelm.net/veroeffentlichung/Esera_Lyon.pdf
- Karim, M. E., Lemaignan, S., & Mondada, F. (2015). A review: Can robots reshape K-12 STEM education? 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO), 1-8. https://doi.org/10.1109/ARSO.2015.7428217
- Kesonen, M. H., Leinonen, R., & Asikainen, M. A. (2019). Applying a simple model aiding in understanding the acceleration of a bungee jumper. Physics Education, 54(4), Article 045012. https://doi.org/10.1088/1361-6552/ab1ae8
- Klein, P., Müller, A., & Kuhn, J. (2017). Assessment of representational competence in kinematics. Physical Review Physics Education Research, 13, Article 010132. https://doi.org/10.1103/PhysRevPhysEducRes.13.010132
- Kononets, N., Ilchenko, O., & Mokliak, V. (2020). Future teachers resource-based learning system: experience of higher education institutions in Poltava city, Ukraine. Turkish Online Journal of Distance Education, 21(3), 199-220. https://doi.org/10.17718/tojde.762054
- Lichtenberger, A., Wagner, C., Hofer, S. I., Stern, E., & Vaterlaus, A. (2017). Validation and structural analysis of the kinematics concept test. Physical Review Physics Education Research, 13, Article 010115. https://doi.org/10.1103/PhysRevPhysEducRes.13.010115
- Liu, G., & Fang, N. (2016). Student misconceptions about force and acceleration in physics and engineering mechanics education. International Journal of Engineering Education, 32(1), 19-29. https://spada.uns.ac.id/pluginfile.php/232092/mod_resource/content/1/03_ijee3131ns_2016.pdf
- McDermott, L. C., Rosenquist, M. L., & Van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503-513. https://doi.org/10.1119/1.15104
- Molefe, P., & Khwanda, M. N. (2020). Activities to enhance students’ understanding of acceleration: Part B. Journal of Physics: Conference Series, 1512, Article 012018. https://doi.org/10.1088/1742-6596/1512/1/012018
- Nguyen, D. H., & Rebello, N. S. (2011). Students' difficulties with multiple representations in introductory mechanics. US-China Education Review, 8(5), 559-569. https://eric.ed.gov/?id=ED520690
- Nemeth, A., Wheatley, C., & Stewart, J. (2023). Comparing introductory undergraduate physics learning and behavior before and after the COVID-19 pandemic. Physical Review Physics Education Research, 19, 013103. https://doi.org/10.1103/PhysRevPhysEducRes.19.013103
- Özdemir, E., & Coramik, M. (2022). Development of a virtual teaching environment with Algodoo: ‘eye’ and ‘cactus type light source’ models. Physics Education, 57(4), 045022. https://doi.org/10.1088/1361-6552/ac60b0
- Özer, İ., & Canbazoğlu Bilici, S. E. D. E. F. (2021). The effect of engineering design-based Algodoo activities on students' design skills and academic. Hacettepe University Journal of Education, 36(2), 301-316. https://doi.org/10.16986/huje.2020062006
- Papadopoulos, C., Rahman, A., & Bostwick, J. (2006). Assessing critical thinking in mechanics in engineering education. 2006 Annual Conference & Exposition, 11-235. https://peer.asee.org/assessing-critical-thinking-in-mechanics-in-engineering-education.pdf
- Pendrill, A. M., & Ouattara, L. (2017). Force, acceleration and velocity during trampoline jumps—a challenging assignment. Physics Education, 52(6), Article 065021. https://doi.org/10.1088/1361-6552/aa89cb
- Petry, C. A., Pacheco, F. S., Lohmann, D., Correa, G. A., & Moura, P. (2016). Project teaching beyond Physics: Integrating Arduino to the laboratory. 2016 Technologies Applied to Electronics Teaching,1-6. https://doi.org/10.1109/TAEE.2016.7528376
- Poluakan, C., & Runtuwene, J. (2018). Students’ difficulties regarding vector representations in the free-body system. Journal of Physics: Conference Series, 1120, Article 012062. https://doi.org/10.1088/1742-6596/1120/1/012062
- Radnai, T., Juhász, T. T., Juhász, A., & Jenei, P. (2019). Educational experiments with motion simulation programs: Can gamification be effective in teaching mechanics?. Journal of Physics: Conference Series, 1223, Article 012006. https://doi.org/10.1088/1742-6596/1223/1/012006
- Radnai, T., Juhász, T. T., Juhász, A., & Jenei, P. (2023). A simulation experiment using Algodoo: What force makes a car accelerate, and what does the acceleration depend on? The Physics Teacher, 61(4), 271-275. https://doi.org/10.1119/5.0059836
- Ramadhan, M. F., Mundilarto, M., Ariswan, A., Irwanto, I., Bahtiar, B., & Gummah, S. U. (2023). The effect of interface instrumentation experiments-supported blended learning on students' critical thinking skills and academic achievement. International Journal of Interacive Mobile Technologies, 17(14), 101-125. https://doi.org/10.3991/ijim.v17i14.38611
- Rivaldo, L., Taqwa, M. R. A., Zainuddin, A., & Faizah, R. (2020). Analysis of students’ difficulties about work and energy. Journal of Physics: Conference Series, 1567, Article 032088. https://doi.org/10.1088/1742-6596/1567/3/032088
- Rosenblatt, R., & Heckler, A. F. (2011). Systematic study of student understanding of the relationships between the directions of force, velocity, and acceleration in one dimension. Physical Review Special Topics Physics Education Research, 7, Article 020112. https://doi.org/10.1103/PhysRevSTPER.7.020112
- Rosenblatt, R., Sayre, E. C., & Heckler, A. F. (2009). Modeling students’ conceptual understanding of force, velocity, and acceleration. AIP Conference Proceedings, 1179, 245-248. https://doi.org/10.1063/1.3266727
- Rumahlatu, D., Sangur, K., Berhitu, M. M., Kainama, S. Y., Kakisina, V. V., & Latupeirissa, C. (2021). Resource based learning design thinking (RBLDT): A model to improve students' creative thinking skills, concept gaining, and digital literacy. Cypriot Journal of Educational Sciences, 16(1), 288-302. https://doi.org/10.18844/cjes.v16i1.5528
- Sarı, U., & Kırındı, T. (2019). Using Arduino in physics teaching: Arduino-based physics experiment to study temperature dependence of electrical resistance. Journal of Computer and Education Research, 7(14), 698-710. https://doi.org/10.18009/jcer.579362
- Sarı, U., Çelik, H., Pektaş, H. M., & Yalçın, S. (2022). Effects of STEM-focused Arduino practical activities on problem-solving and entrepreneurship skills. Australasian Journal of Educational Technology, 38(3), 140-154. https://doi.org/10.14742/ajet.7293
- Schecker, H. P. (1992). The paradigmatic change in mechanics: Implications of historical processes for physics education. Science & Education, 1, 71-76. https://link.springer.com/article/10.1007/BF00430210
- Schnider, D., & Hömöstrei, M. (2024). Classroom experimentation – Arduino projects to teach electromagnetism. Journal of Physics: Conference Series, 2693, Article 012015. https://doi.org/10.1088/1742-6596/2693/1/012015
- Sontay, G., & Karamustafaoglu, O. (2023). Physics teachers' opinions on Algodoo training. Journal of Science Learning, 6(1), 117-124. https://doi.org/10.17509/jsl.v6i1.49285
- Stewart, M. (1998). Promoting resource-based learning in HE physics: Tales from the resource centre. Physics Education, 33(6), 385. https://doi.org/10.1088/0031-9120/33/6/021
- Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31, 261-292. https://doi.org/10.1007/s10648-019-09465-5
- Syuhendri, S. (2021). Effect of conceptual change texts on physics education students’ conceptual understanding in kinematics. Journal of Physics: Conference Series, 1876, Article 012090. https://doi.org/10.1088/1742-6596/1876/1/012090
- Tang, K. S., Tan, S. C., & Yeo, J. (2011). Students’ multimodal construction of the work–energy concept. International Journal of Science Education, 33(13), 1775-1804. https://doi.org/10.1080/09500693.2010.508899
- Turner, P. (1974). A resource based learning system for practical work in science. Physics Education, 9(4), 228-230. https://doi.org/10.1088/0031-9120/9/4/001
- Van Heuvelen, A., & Zou, X. (2001). Multiple representations of work–energy processes. American Journal of Physics, 69(2), 184-194. https://doi.org/10.1119/1.1286662
- Xianfeng, Y. E., Xihua, L. I., & Hongjun, S. H. I. (2020). Experiment teaching practice of electronic circuit design based on Arduino platform. Experiment Science and Technology, 18(2), 68-72. https://doi.org/10.12179/1672-4550.20180475
- Yıldırım, M. T. (2020). The effects of STEM based Arduino robotic activities on the academic achievement and engineering design process in teaching of the nervous system. (Publication No. 641677) [Master’s thesis, Muğla Sıtkı Koçman University]. Council of Higher Education Thesis Center.
- Zohbi, G., Pilotti, M. A., Barghout, K., Elmoussa, O., & Abdelsalam, H. (2023). Lesson learned from the pandemic for learning physics. Journal of Computer Assisted Learning, 39(2), 591-602. https://doi.org/10.1111/jcal.12768
Arduino ve Algodoo Tabanlı Mekanik Öğretiminin Başarı Üzerindeki Etkileri
Year 2025,
Volume: 19 Issue: 1, 30 - 64, 27.06.2025
Atakan Çoban
,
Mustafa Erol
Abstract
Bu çalışma, Arduino ve Algodoo tabanlı mekanik öğretim etkinliklerinin akademik başarı üzerindeki etki düzeylerini araştırmaya odaklanmaktadır. Araştırma, bir devlet üniversitesinde öğrenim gören toplam 61 fen bilgisi öğretmen adayından oluşan iki deney grubuyla ön test-son test yarı deneysel yönteme dayalı olarak gerçekleştirilmiştir. Özellikle, vektörler, kinematik, dinamik ve iş-enerji üniteleri üzerine öğretim hedeflerine uygun olarak Arduino tabanlı ve Algodoo tabanlı eğitim materyalleri titizlikle geliştirilmiştir. Öğretim materyallerinin başarı üzerindeki etkileri Mekanik Başarı Ölçeği ile ölçülmüştür. Bulgular, Arduino tabanlı eğitimin başarıyı %28.21 oranında ve Algodoo tabanlı öğretimin başarıyı %28.83 oranında önemli ölçüde artırdığını göstermektedir. Ayrıca, etkinliklerin basitliği ve grupların deneysel süreçlerle ilgili ön bilgileri, uygulamaların etkililiğini artıran faktörler olarak ortaya çıkmıştır.
References
- Bao, L., & Koenig, K. (2019). Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research, 1(1), 2. https://doi.org/10.1186/s43031-019-0007-8
- Bollen, L., van Kampen, P., Baily, C., Kelly, M., & De Cock, M. (2017). Student difficulties regarding symbolic and graphical representations of vector fields. Physical Review Physics Education Research, 13, Article 020109. https://doi.org/10.1103/PhysRevPhysEducRes.13.020109
- Brown, S., & Smith, B. (2013). Resource based learning. Routledge.
- Burkholder, E. W., & Wieman, C. E. (2022). Absence of a COVID-induced academic drop in high-school physics learning. Physical Review Physics Education Research, 18, 023102. https://doi.org/10.1103/PhysRevPhysEducRes.18.023102
- Büyükdede, M., & Tanel, R. (2019). Effect of the STEM activities related to work-energy topics on academic achievement and prospective teachers' opinions on STEM activities. Journal of Baltic Science Education, 18(4), 507-518. https://doi.org/10.33225/jbse/19.18.507
- Cayvaz, A., & Akcay, H. (2018). The effects of using Algodoo in science teaching at middle school. The Eurasia Proceedings of Educational and Social Sciences, 9, 151-156. https://dergipark.org.tr/en/pub/epess/issue/38900/457934
- Çelik, H., Sarı, U., & Harwanto, U. N. (2015). Developing and evaluating physics teaching material with Algodoo (Phun) in virtual environment: Archimedes’ Principle. The Eurasia Proceedings of Educational and Social Sciences, 1, 178-183. https://dergipark.org.tr/en/pub/epess/issue/30314/333374
- Çoban, A. (2021). Algodoo for online education: impulse and momentum activities. Physics Education, 56(2), 025017. https://doi.org/10.1088/1361-6552/abd1e9
- Çoban, A., & Boyacı, S. (2020). The calculation of kinetic and static friction coefficient and friction graph analysis using Arduino. Physics Education, 56(1), Article 013003. https://doi.org/10.1088/1361-6552/abc07c
- Çoban, A., & Çoban, N. (2020). Determining of the spring constant using Arduino. Physics Education, 55(6), Article 065028. https://doi.org/10.1088/1361-6552/abb58b
- Çoban, A., & Erol, M. (2020). Validation of Newton’s second law using Arduino: STEM teaching material. Physics Education, 56(1), Article 013004. https://doi.org/10.1088/1361-6552/abc639
- Çoban, A., & Erol, M. (2021a). Teaching kinematics via Arduino based STEM education material. Physics Education, 57(1), Article 015010. https://doi.org/10.1088/1361-6552/ac342d
- Çoban, A., & Erol, M. (2021b). Arduino-based STEM education material: Work-energy theorem. Physics Education, 56(2), Article 023008. https://doi.org/10.1088/1361-6552/abd991
- Çoban, A., & Erol, M. (2021c). Teaching impulse-momentum law by Arduino based STEM education material. The Physics Educator, 3(2), Article 2150006. https://doi.org/10.1142/S2661339521500062
- Çoban, A., & Erol, M. (2022). STEM education of kinematics and dynamics using Arduino. The Physics Teacher, 60, 289-291. https://doi.org/10.1119/10.0009994
- Çoban, A., Çoban, N., & Çoban, E. (2023). Energy conservation analysis using Arduino. The Physics Teacher, 61, 295-297. https://doi.org/10.1119/5.0067534
- Daud, N. S. N., Karim, M. M. A., Hassan, S. W. N. W., & Rahman, N. A. (2015). Misconception and difficulties in introductory physics among high school and university students: An overview in mechanics. Educatum Journal of Science, Mathematics and Technology, 2(1), 34-47. https://ejournal.upsi.edu.my/index.php/EJSMT/article/view/26/19
- de Lima, Í. M., de Souza, E. V., & de Araújo, F. D. (2020). The use of Arduino as a methodological tool for teaching physics in high school. arXiv. https://doi.org/10.48550/arXiv.2003.10594
- Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics Physics Education Research, 10, Article 020119. https://doi.org/10.1103/PhysRevSTPER.10.020119
- Erol, M., & Oğur, M. (2023). Teaching large angle pendulum via Arduino based STEM education material. Physics Education, 58(4), Article 045001. https://doi.org/10.1088/1361-6552/accef4
- Flores, S., Kanim, S. E., & Kautz, C. H. (2004). Student use of vectors in introductory mechanics. American Journal of Physics, 72, 460-468. https://doi.org/10.1119/1.1648686
- Goncalves, A. M. B., Freitas, W. P. S., & Calheiro, L. B. (2023). Resources on physics education using Arduino. Physics Education, 58(3), Article 033002. https://doi.org/10.1088/1361-6552/acb8a2
- Gregorcic, B. (2015). Exploring Kepler’s laws using an interactive whiteboard and Algodoo. Physics Education, 50(5), 511-515. https://doi.org/10.1088/0031-9120/50/5/511
- Gregorcic, B., & Bodin, M. (2017). Algodoo: A tool for encouraging creativity in physics teaching and learning. The Physics Teacher, 55, 25-28. https://doi.org/10.1119/1.4972493
- Gutierres-Berraondo, J., Guisasola, J., & Zuza, K. (2019, August). Addressing undergraduate students’ difficulty in learning the generalized work-energy principle in introductory mechanics. Journal of Physics: Conference Series, 1287, Article 012024. https://doi.org/10.1088/1742-6596/1287/1/012024
- Hennessy, S., Twigger, D., Driver, R., O'shea, T., O'Malley, C. E., Byard, M., Draper, S., Hartley, R., Mohamed, R., & Scanlon, E. (1995). A classroom intervention using a computer‐augmented curriculum for mechanics. International Journal of Science Education, 17(2), 189-206. https://doi.org/10.1080/0950069950170204
- Hırça, N., & Bayrak, N. (2013). Sanal fizik laboratuarı ile üstün yeteneklilerin eğitimi: Kaldırma kuvveti konusu. Journal for the Education of Gifted Young Scientists, 1(1), 16-20. https://dergipark.org.tr/en/pub/jegys/issue/37126/427767
- Hill, J. R., Hannafin, M. J., & Domizi, D. P. (2005). Resource-based learning and informal learning environments: Prospects and challenges. In L. Tan Wee Hin & R. Subramaniam (Eds.), E-Learning and Virtual Science Centers (pp. 110-126). https://doi.org/10.4018/978-1-59140-591-7.ch006
- Hopf, M., Wilhelm, T., Tobias, V., Waltner, C., & Wiesner, H. (2011). Promoting students’ understanding of Newtonian mechanics through an alternative content structure–Results from an empirical study. ESERA Conference Lyon, 1-5. https://www.thomas-wilhelm.net/veroeffentlichung/Esera_Lyon.pdf
- Karim, M. E., Lemaignan, S., & Mondada, F. (2015). A review: Can robots reshape K-12 STEM education? 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO), 1-8. https://doi.org/10.1109/ARSO.2015.7428217
- Kesonen, M. H., Leinonen, R., & Asikainen, M. A. (2019). Applying a simple model aiding in understanding the acceleration of a bungee jumper. Physics Education, 54(4), Article 045012. https://doi.org/10.1088/1361-6552/ab1ae8
- Klein, P., Müller, A., & Kuhn, J. (2017). Assessment of representational competence in kinematics. Physical Review Physics Education Research, 13, Article 010132. https://doi.org/10.1103/PhysRevPhysEducRes.13.010132
- Kononets, N., Ilchenko, O., & Mokliak, V. (2020). Future teachers resource-based learning system: experience of higher education institutions in Poltava city, Ukraine. Turkish Online Journal of Distance Education, 21(3), 199-220. https://doi.org/10.17718/tojde.762054
- Lichtenberger, A., Wagner, C., Hofer, S. I., Stern, E., & Vaterlaus, A. (2017). Validation and structural analysis of the kinematics concept test. Physical Review Physics Education Research, 13, Article 010115. https://doi.org/10.1103/PhysRevPhysEducRes.13.010115
- Liu, G., & Fang, N. (2016). Student misconceptions about force and acceleration in physics and engineering mechanics education. International Journal of Engineering Education, 32(1), 19-29. https://spada.uns.ac.id/pluginfile.php/232092/mod_resource/content/1/03_ijee3131ns_2016.pdf
- McDermott, L. C., Rosenquist, M. L., & Van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503-513. https://doi.org/10.1119/1.15104
- Molefe, P., & Khwanda, M. N. (2020). Activities to enhance students’ understanding of acceleration: Part B. Journal of Physics: Conference Series, 1512, Article 012018. https://doi.org/10.1088/1742-6596/1512/1/012018
- Nguyen, D. H., & Rebello, N. S. (2011). Students' difficulties with multiple representations in introductory mechanics. US-China Education Review, 8(5), 559-569. https://eric.ed.gov/?id=ED520690
- Nemeth, A., Wheatley, C., & Stewart, J. (2023). Comparing introductory undergraduate physics learning and behavior before and after the COVID-19 pandemic. Physical Review Physics Education Research, 19, 013103. https://doi.org/10.1103/PhysRevPhysEducRes.19.013103
- Özdemir, E., & Coramik, M. (2022). Development of a virtual teaching environment with Algodoo: ‘eye’ and ‘cactus type light source’ models. Physics Education, 57(4), 045022. https://doi.org/10.1088/1361-6552/ac60b0
- Özer, İ., & Canbazoğlu Bilici, S. E. D. E. F. (2021). The effect of engineering design-based Algodoo activities on students' design skills and academic. Hacettepe University Journal of Education, 36(2), 301-316. https://doi.org/10.16986/huje.2020062006
- Papadopoulos, C., Rahman, A., & Bostwick, J. (2006). Assessing critical thinking in mechanics in engineering education. 2006 Annual Conference & Exposition, 11-235. https://peer.asee.org/assessing-critical-thinking-in-mechanics-in-engineering-education.pdf
- Pendrill, A. M., & Ouattara, L. (2017). Force, acceleration and velocity during trampoline jumps—a challenging assignment. Physics Education, 52(6), Article 065021. https://doi.org/10.1088/1361-6552/aa89cb
- Petry, C. A., Pacheco, F. S., Lohmann, D., Correa, G. A., & Moura, P. (2016). Project teaching beyond Physics: Integrating Arduino to the laboratory. 2016 Technologies Applied to Electronics Teaching,1-6. https://doi.org/10.1109/TAEE.2016.7528376
- Poluakan, C., & Runtuwene, J. (2018). Students’ difficulties regarding vector representations in the free-body system. Journal of Physics: Conference Series, 1120, Article 012062. https://doi.org/10.1088/1742-6596/1120/1/012062
- Radnai, T., Juhász, T. T., Juhász, A., & Jenei, P. (2019). Educational experiments with motion simulation programs: Can gamification be effective in teaching mechanics?. Journal of Physics: Conference Series, 1223, Article 012006. https://doi.org/10.1088/1742-6596/1223/1/012006
- Radnai, T., Juhász, T. T., Juhász, A., & Jenei, P. (2023). A simulation experiment using Algodoo: What force makes a car accelerate, and what does the acceleration depend on? The Physics Teacher, 61(4), 271-275. https://doi.org/10.1119/5.0059836
- Ramadhan, M. F., Mundilarto, M., Ariswan, A., Irwanto, I., Bahtiar, B., & Gummah, S. U. (2023). The effect of interface instrumentation experiments-supported blended learning on students' critical thinking skills and academic achievement. International Journal of Interacive Mobile Technologies, 17(14), 101-125. https://doi.org/10.3991/ijim.v17i14.38611
- Rivaldo, L., Taqwa, M. R. A., Zainuddin, A., & Faizah, R. (2020). Analysis of students’ difficulties about work and energy. Journal of Physics: Conference Series, 1567, Article 032088. https://doi.org/10.1088/1742-6596/1567/3/032088
- Rosenblatt, R., & Heckler, A. F. (2011). Systematic study of student understanding of the relationships between the directions of force, velocity, and acceleration in one dimension. Physical Review Special Topics Physics Education Research, 7, Article 020112. https://doi.org/10.1103/PhysRevSTPER.7.020112
- Rosenblatt, R., Sayre, E. C., & Heckler, A. F. (2009). Modeling students’ conceptual understanding of force, velocity, and acceleration. AIP Conference Proceedings, 1179, 245-248. https://doi.org/10.1063/1.3266727
- Rumahlatu, D., Sangur, K., Berhitu, M. M., Kainama, S. Y., Kakisina, V. V., & Latupeirissa, C. (2021). Resource based learning design thinking (RBLDT): A model to improve students' creative thinking skills, concept gaining, and digital literacy. Cypriot Journal of Educational Sciences, 16(1), 288-302. https://doi.org/10.18844/cjes.v16i1.5528
- Sarı, U., & Kırındı, T. (2019). Using Arduino in physics teaching: Arduino-based physics experiment to study temperature dependence of electrical resistance. Journal of Computer and Education Research, 7(14), 698-710. https://doi.org/10.18009/jcer.579362
- Sarı, U., Çelik, H., Pektaş, H. M., & Yalçın, S. (2022). Effects of STEM-focused Arduino practical activities on problem-solving and entrepreneurship skills. Australasian Journal of Educational Technology, 38(3), 140-154. https://doi.org/10.14742/ajet.7293
- Schecker, H. P. (1992). The paradigmatic change in mechanics: Implications of historical processes for physics education. Science & Education, 1, 71-76. https://link.springer.com/article/10.1007/BF00430210
- Schnider, D., & Hömöstrei, M. (2024). Classroom experimentation – Arduino projects to teach electromagnetism. Journal of Physics: Conference Series, 2693, Article 012015. https://doi.org/10.1088/1742-6596/2693/1/012015
- Sontay, G., & Karamustafaoglu, O. (2023). Physics teachers' opinions on Algodoo training. Journal of Science Learning, 6(1), 117-124. https://doi.org/10.17509/jsl.v6i1.49285
- Stewart, M. (1998). Promoting resource-based learning in HE physics: Tales from the resource centre. Physics Education, 33(6), 385. https://doi.org/10.1088/0031-9120/33/6/021
- Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31, 261-292. https://doi.org/10.1007/s10648-019-09465-5
- Syuhendri, S. (2021). Effect of conceptual change texts on physics education students’ conceptual understanding in kinematics. Journal of Physics: Conference Series, 1876, Article 012090. https://doi.org/10.1088/1742-6596/1876/1/012090
- Tang, K. S., Tan, S. C., & Yeo, J. (2011). Students’ multimodal construction of the work–energy concept. International Journal of Science Education, 33(13), 1775-1804. https://doi.org/10.1080/09500693.2010.508899
- Turner, P. (1974). A resource based learning system for practical work in science. Physics Education, 9(4), 228-230. https://doi.org/10.1088/0031-9120/9/4/001
- Van Heuvelen, A., & Zou, X. (2001). Multiple representations of work–energy processes. American Journal of Physics, 69(2), 184-194. https://doi.org/10.1119/1.1286662
- Xianfeng, Y. E., Xihua, L. I., & Hongjun, S. H. I. (2020). Experiment teaching practice of electronic circuit design based on Arduino platform. Experiment Science and Technology, 18(2), 68-72. https://doi.org/10.12179/1672-4550.20180475
- Yıldırım, M. T. (2020). The effects of STEM based Arduino robotic activities on the academic achievement and engineering design process in teaching of the nervous system. (Publication No. 641677) [Master’s thesis, Muğla Sıtkı Koçman University]. Council of Higher Education Thesis Center.
- Zohbi, G., Pilotti, M. A., Barghout, K., Elmoussa, O., & Abdelsalam, H. (2023). Lesson learned from the pandemic for learning physics. Journal of Computer Assisted Learning, 39(2), 591-602. https://doi.org/10.1111/jcal.12768