Review
BibTex RIS Cite

Gıda Hazırlama Ve Pişirme İşlemlerinin Biyoaktif Bileşikler Üzerine Etkisi

Year 2024, Volume: 3 Issue: 3, 144 - 163, 09.04.2025
https://doi.org/10.61830/balkansbd.1568047

Abstract

Biyoaktif bileşikler, bitkisel gıdalarda bulunan ve sağlığa olumlu etkileri olan doğal maddelerdir. Meyve, sebze, kuruyemiş, tohum ve baklagiller gibi bitkisel kaynaklar, bu bileşikler açısından zengin olup, kronik hastalıkların önlenmesinde önemli bir rol oynayabilir. Bu makalenin amacı, gıda işleme tekniklerinin biyoaktif bileşikler üzerindeki etkilerini incelemektir. Özellikle, gıda işleme süreçlerinin antioksidan kapasite, fenolik bileşik içeriği ve biyoerişilebilirlik gibi önemli biyolojik özellikleri nasıl etkilediği araştırılmaktadır. Çalışma, gıda işleme tekniklerinin optimize edilmesi yoluyla daha besleyici ve sağlığa faydalı gıdaların üretilmesine katkı sağlamayı hedeflemektedir. Gıda işleme yöntemlerinin, biyoaktif bileşiklerin biyoyararlanımını ve biyoerişimini artırıcı ya da azaltıcı etkileri bulunmaktadır. Bu süreçler, gıdanın yapısal matrisini değiştirerek, bileşiklerin salınımını ve emilim hızını etkileyebilir. Pişirme yöntemlerinin (örneğin kaynatma, haşlama, kavurma, buharda pişirme, mikrodalga) biyoaktif bileşikler üzerindeki etkisi, bu bileşiklerin stabilitesini, antioksidan kapasitesini ve fenolik içeriğini önemli ölçüde değiştirebilir. Kaynatma, haşlama ve kavurma gibi pişirme yöntemleri, bazı fitokimyasalların ve antioksidanların kaybına neden olabilse de, belirli koşullarda bileşiklerin daha fazla salınımını sağlayarak biyoerişimini artırabilir. Bu konuda yapılan çalışmalar, özellikle buharda pişirme gibi yöntemlerin antioksidan özellikleri koruma potansiyeline sahip olduğunu göstermektedir. Mikrodalga ve buharda pişirme gibi yöntemlerin, sebzelerin fenolik içeriği ve antioksidan aktivitesi üzerindeki olumlu etkileri, diğer yöntemlerle karşılaştırıldığında genellikle daha belirgindir. Bununla birlikte, ızgara ve fırında pişirme teknikleri, sebzelerde en yüksek fenolik içerik düzeylerine ulaşılmasını sağlamaktadır. Buna karşın, suda kaynatma yönteminin, suya çözünebilen biyoaktif bileşiklerin önemli miktarda kaybına neden olduğu tespit edilmiştir. Sonuç olarak, gıda işleme tekniklerinin biyoaktif bileşikler ve antioksidan aktivite üzerindeki etkileri hakkında elde edilen veriler, daha sağlıklı gıdalar üretmek için bu tekniklerin optimize edilmesi gerektiğini ortaya koymaktadır. Gelecekteki çalışmalar, farklı sebzeler ve işleme teknikleri arasında yapılacak karşılaştırmalı analizlerle bu bulguların daha kapsamlı bir şekilde ele alınmasını sağlamalıdır. Aynı zamanda, gıda bileşenlerinin biyoerişimi ve biyoyararlanımı üzerinde işleme tekniklerinin etkilerini derinlemesine incelemek, besin değerinin korunmasına yönelik stratejilerin geliştirilmesine katkı sağlayacaktır.

References

  • 1. Ashwell M. Concepts of Functional Foods – ILSI Europe [Internet]. 2002 [a.yer 26 Kasım 2024]. Erişim adresi: https://ilsi.eu/publication/concepts-of-functional-foods/
  • 2. Guaadaoui A, Benaicha S, Elmajdoub N, Bellaoui M, Hamal A. What is a bioactive compound? A combined definition for a preliminary consensus. Int J Nutr Food Sci. 2014;3(3):174.
  • 3. Borek C. Dietary Antioxidants and Human Cancer. J Restor Med. 2017;6(1):53-61.
  • 4. Verghese M, Willis S, Boateng J, Gomaa A, Kaur R. Effect of food processing on antioxidant Potential, availability, and bioavailability. Annu Rev Food Sci Technol. 2021;12:307-29.
  • 5. Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, ElezMartínez P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit Rev Food Sci Nutr. 2018;58(15):2531-48.
  • 6. Parada J, Aguilera J m. Food microstructure affects the bioavailability of several nutrients. J Food Sci. 2007;72(2):21- 32. 7. Gunathilake KDPP, Ranaweera KKDS. Antioxidative properties of 34 green leafy vegetables. J Funct Foods. 2016;26:176-86. 8. Ifie I, Marshall LJ. Food processing and its impact on phenolic constituents in food. Yildiz F, editör. Cogent Food Agric. 2018;4(1):1507782.
  • 9. Nayak B, Liu RH, Tang J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—A review. Crit Rev Food Sci Nutr. 2015;55(7):887-918. 10. Wahyuningsih S, Wulandari L, Wartono MW, Munawaroh H, Ramelan AH. The effect of pH and color stability of anthocyanin on food colorant. IOP Conf Ser Mater Sci Eng. 2017;193(1).
  • 11. Hornedo-Ortega R, Álvarez-Fernández MA, Cerezo AB, Garcia-Garcia I, Troncoso AM, Garcia-Parrilla MC. Influence of Fermentation Process on the Anthocyanin Composition of Wine and Vinegar Elaborated from Strawberry. J Food Sci. 2017;82(2):364-72.
  • 12. Zhao C, Liu Y, Lai S, Cao H, Guan Y, San Cheang W, vd. Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends Food Sci Technol. 2019;85:55-66.
  • 13. Lafarga T, Villaró S, Bobo G, Simó J, Aguiló-Aguayo I. Bioaccessibility and antioxidant activity of phenolic compounds in cooked pulses. Int J Food Sci Technol. 2019;54(5):1816-23.
  • 14. Cattivelli A, Conte A, Martini S, Tagliazucchi D. Influence of cooking methods on onion phenolic compounds bioaccessibility. Foods. 2021;10(5):1023. 15. Ghazzawi HA, Al-Ismail K. A Comprehensive Study on the Effect of Roasting and Frying on Fatty Acids Profiles and Antioxidant Capacity of Almonds, Pine, Cashew, and Pistachio. J Food Qual. 2017;2017(1):9038257.
  • 16. Vinha AF, Alves RC, Barreira SVP, Costa ASG, Oliveira MBPP. Impact of boiling on phytochemicals and antioxidant activity of green vegetables consumed in the Mediterranean diet. Food Funct. 2015;6(4):1157-63.
  • 17. Chukwumah Y, Walker L, Vogler B, Verghese M. Changes in the phytochemical composition and profile of raw, boiled, and roasted peanuts. J Agric Food Chem. 2007;55(22):9266-73. 18. Saikia, S, Mahanta CL. Effect of steaming, boiling and microwave cooking on the total phenolics, flavonoids and antioxidant properties of different vegetables of Assam. Int J Food Nutr Sci. 2013;2. 19. Martini S, Conte A, Cattivelli A, Tagliazucchi D. Domestic cooking methods affect the stability and bioaccessibility of dark purple eggplant (Solanum melongena) phenolic compounds. Food Chem. 2021;341:128298.
  • 20. dos Reis LCR, de Oliveira VR, Hagen MEK, Jablonski A, Flôres SH, de Oliveira Rios A. Carotenoids, flavonoids, chlorophylls, phenolic compounds and antioxidant activity in fresh and cooked broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1). LWT - Food Sci Technol. 2015;63(1):177-83.
  • 21. Martínez-Hernández GB, Artés-Hernández F, Gómez PA, Artés F. Induced changes in bioactive compounds of kailanhybrid broccoli after innovative processing and storage. J Funct Foods. 2013;5(1):133-43. 22. Zhang D, Hamauzu Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004;88(4):503-9.
  • 23. Bamidele O, Fasogbon M, Adebowale O, Adeyanju A. Effect of blanching time on total phenolic, antioxidant activities and mineral content of selected green leafy vegetables. Curr J Appl Sci Technol. 2017;24(4):1-8.
  • 24. Jaiswal AK, Gupta S, Abu-Ghannam N. Kinetic evaluation of colour, texture, polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment. Food Chem. 2012;131(1):63-72
  • 25. Manzi P, Marconi S, Aguzzi A, Pizzoferrato L. Commercial mushrooms: nutritional quality and effect of cooking. Food Chem. 2004;84(2):201-6. 26. Sengkhamparn N, Phonkerd N. Effects of heat treatment on free radical scavenging capacities and phenolic compounds in Tylopilus alboater Wild Edible Mushrooms. Chiang Mai J Sci. 2014;41(5.2):1251-1249.
  • 27. Ju HK, Chung HW, Hong SS, Park JH, Lee J, Kwon SW. Effect of steam treatment on soluble phenolic content and antioxidant activity of the Chaga mushroom (Inonotus obliquus). Food Chem. 2010;119(2):619-25. 28. Dolinsky M, Agostinho C, Ribeiro D, Rocha GDS, Barroso SG, Ferreira D, vd. Effect of different cooking methods on the polyphenol concentration and antioxidant capacity of selected vegetables. J Culin Sci Technol. 2016;14(1):1-12.
  • 29. Sun L, Bai X, Zhuang Y. Effect of different cooking methods on total phenolic contents and antioxidant activities of four Boletus mushrooms. J Food Sci Technol. 2014;51(11):3362-8.
  • 30. Murador DC, Mercadante AZ, de Rosso VV. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage. Food Chem. 2016;196:1101-7. 31. Ellong EN, Billard C, Adenet S, Rochefort K. Polyphenols, carotenoids, vitamin C content in tropical fruits and vegetables and impact of processing methods. Food Nutr Sci. 2015;06(03):299-313.
  • 32. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O. Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. Eur Food Res Technol. 2008;228(2):239-48.
  • 33. Fang H, Yin X, He J, Xin S, Zhang H, Ye X, vd. Cooking methods affected the phytochemicals and antioxidant activities of potato from different varieties. Food Chem X. 2022;14. 34. Fratianni A, D’Agostino A, Niro S, Bufano A, Paura B, Panfili G. Loss or gain of lipophilic bioactive compounds in vegetables after domestic cooking? Effect of steaming and boiling. Foods. 2021;10(5):960.
  • 35. Ávila S, Zalamanski S, Tanikawa LM, Kruger CCH, Ferreira SMR. Influence of cooking methods on in vitro bioaccessibility of phenolics, flavonoids, and antioxidant activity of red cabbage. Plant Foods Hum Nutr. 2023;78(1):124-31. 36. Hwang ES. Influence of cooking methods on bioactive compound content and antioxidant activity of brussels sprouts. Prev Nutr Food Sci. 2017;22(4):353-8. 37. Lu Y, Pang X, Yang T. Microwave cooking increases sulforaphane level in broccoli. Food Sci Nutr. 2020;8(4):2052-8.
  • 38. Oliveira I, Meyer AS, Afonso S, Sequeira A, Vilela A, Goufo P, vd. Effects of different processing treatments on almond (Prunus dulcis) bioactive Compounds, antioxidant activities, fatty acids, and sensorial characteristics. Plants. 2020;9(11):1627.
  • 39. Orlando P, Nartea A, Silvestri S, Marcheggiani F, Cirilli I, Dludla PV, vd. Bioavailability study of isothiocyanates and other bioactive compounds of Brassica oleracea L. var. Italica boiled or steamed: Functional food or dietary supplement? Antioxidants. 2022;11(2):209.
  • 40. Olędzki R, Harasym J. Assessment of the effects of roasting, contact grilling, microwave processing, and steaming on the functional characteristics of bell pepper (Capsicum annuum L.). Molecules. 2024;29(1):77.
  • 41. Çatak J, Çaman R, Yaman M, Ceylan Z. Effect of baking and grilling on B vitamins of selected fishes and chicken parts. J Culin Sci Technol. 2024;22(3):496-511. 42. Vergara-Balderas FT. Canning: Process of canning. Içinde: Encyclopedia of Food and Health. Academic Press; 2016. s. 628-32. 43. Chaovanalikit A, Wrolstad RE. Anthocyanin and Polyphenolic composition of fresh and processed cherries. J Food Sci. 2004;69(1):FCT73-83. 44. Le Bourvellec C, Gouble B, Bureau S, Reling P, Bott R, Ribas-Agusti A, vd. Impact of canning and storage on apricot carotenoids and polyphenols. Food Chem. 2018;240:615-25.
  • 45. Zwietering MH, Jacxsens L, Membré JM, Nauta M, Peterz M. Relevance of microbial finished product testing in food safety management. Food Control. 2016;60:31-43.
  • 46. Jan N, Anjum S, Wani SM, Mir SA, Malik AR, Wani SA, vd. Influence of canning and storage on physicochemical properties, antioxidant properties, and bioactive compounds of apricot (Prunus armeniaca L.) wholes, halves, and pulp. Front Nutr. 2022;9.
  • 47. Sontakke MS, Salve SP. Solar drying technologies: A review. Int Refereed J Eng Sci. 2015;4(4):29-35.
  • 48. Wojdyło A, Lech K, Nowicka P, Hernandez F, Figiel A, Carbonell-Barrachina AA. Influence of different drying techniques on phenolic compounds, antioxidant capacity and colour of Ziziphus jujube Mill. fruits. Molecules [Internet]. 2019 [a.yer 13 Ekim 2024];24(13). Erişim adresi: https://www.mdpi.com/1420-3049/24/13/2361 49. Madrau MA, Piscopo A, Sanguinetti AM, Del Caro A, Poiana M, Romeo FV, vd. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur Food Res Technol. 2009;228(3):441-8. 50. Bustos MC, Rocha-Parra D, Sampedro I, de PascualTeresa S, León AE. The influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. J Agric Food Chem. 2018;66(11):2714-23.
  • 51. Yanat M, Baysal T. Effect of freezing rate and storage time on quality parameters of strawberry frozen in modified and home type freezer. Croat J Food Technol Biotechnol Nutr. 2018;13(3-4):154-8.
  • 52. Korus A, Lisiewska Z. Effect of preliminary processing and method of preservation on the content of selected antioxidative compounds in kale (Brassica oleracea L. var. acephala) leaves. Food Chem. 2011;129(1):149-54. 53. González B, Vogel H, Razmilic I, Wolfram E. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind Crops Prod. 2015;76:158-65.
  • 54. Piljac-Žegarac J, Valek L, Martinez S, Belščak A. Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chem. 2009;113(2):394-400. 55. Ghafoor K, Al Juhaimi F, Özcan MM, Uslu N, Babiker EE, Mohamed Ahmed IA. Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. LWT. 2020;126.
  • 56. Dalmau ME, Bornhorst GM, Eim V, Rosselló C, Simal S. Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples. Food Chem. 2017;215:7-16. 57. van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, vd. A review on the beneficial aspects of food processing. Mol Nutr Food Res. 2010;54(9):1215-47. 58. Gan RY, Shah NP, Wang MF, Lui WY, Corke H. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. Int J Food Sci Technol. 2016;51(4):875-84. 59. Salar RK, Purewal SS, Bhatti MS. Optimization of extraction conditions and enhancement of phenolic content and antioxidant activity of pearl millet fermented with Aspergillus awamori MTCC-548. Resour-Effic Technol. 2016;2(3):148-57.
  • 60. Zhang J, Deng H, Bai J, Zhou X, Zhao Y, Zhu Y, vd. Health-promoting properties of barley: A review of nutrient and nutraceutical composition, functionality, bioprocessing, and health benefits. Crit Rev Food Sci Nutr. 2023;63(9):1155- 69.
  • 61. Đorđević TM, Šiler-Marinković SS, DimitrijevićBranković SI. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem. 2010;119(3):957-63.
  • 62. Frank T, Netzel M, Strass G, Bitsch R, Bitsch I. Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can J Physiol Pharmacol. 2003;81(5):423-35.
  • 63. Dachery B, Hernandes KC, Veras FF, Schmidt L, Augusti PR, Manfroi V, vd. Effect of Aspergillus carbonarius on ochratoxin a levels, volatile profile and antioxidant activity of the grapes and respective wines. Food Res Int. 2019;126:108687.
  • 64. Pérez-Jiménez J, Saura-Calixto F. Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications. Food Res Int. 2018;111:148-52.
  • 65. Kwak JH, Seo JM, Kim NH, Arasu MV, Kim S, Yoon MK, vd. Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi J Biol Sci. 2017;24(6):1387-91. 66. Lamce F, Gozdhari K, Kongoli R, Meta B, Kyçky O. Evaluation of the content of polyphenols and flavonoids during the fermentation of white wines (cv. Pulëz and Shesh i bardhë) with and without skins. 2018. 67. Becker L, Zaiter A, Petit J, Karam MC, Sudol M, Baudelaire E, vd. How do grinding and sieving impact on physicochemical properties, polyphenol content, and antioxidant activity of Hieracium pilosella L. powders? J Funct Foods. 2017;35:666-72.
  • 68. Augusto-Obara TR, Oliveira J de, Gloria EM da, Spoto MHF, Godoy K, Vieira TMF de S, vd. Benefits of superfine grinding method on antioxidant and antifungal characteristic of Brazilian green propolis extract. Sci Agric. 2019;76:398- 404. 69. Derossi A, Ricci I, Caporizzi R, Fiore A, Severini C. How grinding level and brewing method (Espresso, American, Turkish) could affect the antioxidant activity and bioactive compounds in a coffee cup. J Sci Food Agric. 2018;98(8):3198-207.
  • 70. Hu J, Chen Y, Ni D. Effect of superfine grinding on quality and antioxidant property of fine green tea p

Effect of Food Preparation and Cooking Processes on Bioactive Compounds

Year 2024, Volume: 3 Issue: 3, 144 - 163, 09.04.2025
https://doi.org/10.61830/balkansbd.1568047

Abstract

Bioactive compounds are natural substances found in plant-based foods that have beneficial effects on health. Fruits, vegetables, nuts, seeds, and legumes are rich sources of these compounds and can play a significant role in the prevention of chronic diseases. The purpose of this article is to examine the impact of food processing techniques on bioactive compounds. Specifically, the study explores how food processing affects key biological properties such as antioxidant capacity, phenolic compound content, and bioavailability. The aim is to contribute to the production of healthier and more nutritious foods by optimizing food processing techniques. Food processing methods can either enhance or reduce the bioavailability and bioaccessibility of bioactive compounds. These processes alter the structural matrix of foods, thereby influencing the release and absorption rate of the compounds. Cooking methods (such as boiling, steaming, roasting, and microwave cooking) can significantly alter the stability, antioxidant capacity, and phenolic content of bioactive compounds. While methods like boiling, steaming, and roasting can lead to the loss of some phytochemicals and antioxidants, under certain conditions, they may also enhance the release of these compounds, improving their bioavailability. Research in this area has shown that methods like steaming tend to preserve antioxidant properties more effectively. When compared to other techniques, microwave and steaming methods have generally been found to have more favorable effects on the phenolic content and antioxidant activity of vegetables. Additionally, grilling and baking methods have been shown to result in the highest phenolic content levels in vegetables. However, boiling has been found to cause significant loss of water-soluble bioactive compounds. In conclusion, the findings on the impact of food processing techniques on bioactive compounds and antioxidant activity underscore the need to optimize these techniques for the production of healthier foods. Future studies should broaden these findings through comparative analyses of different vegetables and processing methods. Moreover, deeper investigation into the effects of processing techniques on the bioavailability and bioaccessibility of food components will contribute to the development of strategies aimed at preserving nutritional value.

References

  • 1. Ashwell M. Concepts of Functional Foods – ILSI Europe [Internet]. 2002 [a.yer 26 Kasım 2024]. Erişim adresi: https://ilsi.eu/publication/concepts-of-functional-foods/
  • 2. Guaadaoui A, Benaicha S, Elmajdoub N, Bellaoui M, Hamal A. What is a bioactive compound? A combined definition for a preliminary consensus. Int J Nutr Food Sci. 2014;3(3):174.
  • 3. Borek C. Dietary Antioxidants and Human Cancer. J Restor Med. 2017;6(1):53-61.
  • 4. Verghese M, Willis S, Boateng J, Gomaa A, Kaur R. Effect of food processing on antioxidant Potential, availability, and bioavailability. Annu Rev Food Sci Technol. 2021;12:307-29.
  • 5. Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, ElezMartínez P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit Rev Food Sci Nutr. 2018;58(15):2531-48.
  • 6. Parada J, Aguilera J m. Food microstructure affects the bioavailability of several nutrients. J Food Sci. 2007;72(2):21- 32. 7. Gunathilake KDPP, Ranaweera KKDS. Antioxidative properties of 34 green leafy vegetables. J Funct Foods. 2016;26:176-86. 8. Ifie I, Marshall LJ. Food processing and its impact on phenolic constituents in food. Yildiz F, editör. Cogent Food Agric. 2018;4(1):1507782.
  • 9. Nayak B, Liu RH, Tang J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—A review. Crit Rev Food Sci Nutr. 2015;55(7):887-918. 10. Wahyuningsih S, Wulandari L, Wartono MW, Munawaroh H, Ramelan AH. The effect of pH and color stability of anthocyanin on food colorant. IOP Conf Ser Mater Sci Eng. 2017;193(1).
  • 11. Hornedo-Ortega R, Álvarez-Fernández MA, Cerezo AB, Garcia-Garcia I, Troncoso AM, Garcia-Parrilla MC. Influence of Fermentation Process on the Anthocyanin Composition of Wine and Vinegar Elaborated from Strawberry. J Food Sci. 2017;82(2):364-72.
  • 12. Zhao C, Liu Y, Lai S, Cao H, Guan Y, San Cheang W, vd. Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends Food Sci Technol. 2019;85:55-66.
  • 13. Lafarga T, Villaró S, Bobo G, Simó J, Aguiló-Aguayo I. Bioaccessibility and antioxidant activity of phenolic compounds in cooked pulses. Int J Food Sci Technol. 2019;54(5):1816-23.
  • 14. Cattivelli A, Conte A, Martini S, Tagliazucchi D. Influence of cooking methods on onion phenolic compounds bioaccessibility. Foods. 2021;10(5):1023. 15. Ghazzawi HA, Al-Ismail K. A Comprehensive Study on the Effect of Roasting and Frying on Fatty Acids Profiles and Antioxidant Capacity of Almonds, Pine, Cashew, and Pistachio. J Food Qual. 2017;2017(1):9038257.
  • 16. Vinha AF, Alves RC, Barreira SVP, Costa ASG, Oliveira MBPP. Impact of boiling on phytochemicals and antioxidant activity of green vegetables consumed in the Mediterranean diet. Food Funct. 2015;6(4):1157-63.
  • 17. Chukwumah Y, Walker L, Vogler B, Verghese M. Changes in the phytochemical composition and profile of raw, boiled, and roasted peanuts. J Agric Food Chem. 2007;55(22):9266-73. 18. Saikia, S, Mahanta CL. Effect of steaming, boiling and microwave cooking on the total phenolics, flavonoids and antioxidant properties of different vegetables of Assam. Int J Food Nutr Sci. 2013;2. 19. Martini S, Conte A, Cattivelli A, Tagliazucchi D. Domestic cooking methods affect the stability and bioaccessibility of dark purple eggplant (Solanum melongena) phenolic compounds. Food Chem. 2021;341:128298.
  • 20. dos Reis LCR, de Oliveira VR, Hagen MEK, Jablonski A, Flôres SH, de Oliveira Rios A. Carotenoids, flavonoids, chlorophylls, phenolic compounds and antioxidant activity in fresh and cooked broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1). LWT - Food Sci Technol. 2015;63(1):177-83.
  • 21. Martínez-Hernández GB, Artés-Hernández F, Gómez PA, Artés F. Induced changes in bioactive compounds of kailanhybrid broccoli after innovative processing and storage. J Funct Foods. 2013;5(1):133-43. 22. Zhang D, Hamauzu Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004;88(4):503-9.
  • 23. Bamidele O, Fasogbon M, Adebowale O, Adeyanju A. Effect of blanching time on total phenolic, antioxidant activities and mineral content of selected green leafy vegetables. Curr J Appl Sci Technol. 2017;24(4):1-8.
  • 24. Jaiswal AK, Gupta S, Abu-Ghannam N. Kinetic evaluation of colour, texture, polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment. Food Chem. 2012;131(1):63-72
  • 25. Manzi P, Marconi S, Aguzzi A, Pizzoferrato L. Commercial mushrooms: nutritional quality and effect of cooking. Food Chem. 2004;84(2):201-6. 26. Sengkhamparn N, Phonkerd N. Effects of heat treatment on free radical scavenging capacities and phenolic compounds in Tylopilus alboater Wild Edible Mushrooms. Chiang Mai J Sci. 2014;41(5.2):1251-1249.
  • 27. Ju HK, Chung HW, Hong SS, Park JH, Lee J, Kwon SW. Effect of steam treatment on soluble phenolic content and antioxidant activity of the Chaga mushroom (Inonotus obliquus). Food Chem. 2010;119(2):619-25. 28. Dolinsky M, Agostinho C, Ribeiro D, Rocha GDS, Barroso SG, Ferreira D, vd. Effect of different cooking methods on the polyphenol concentration and antioxidant capacity of selected vegetables. J Culin Sci Technol. 2016;14(1):1-12.
  • 29. Sun L, Bai X, Zhuang Y. Effect of different cooking methods on total phenolic contents and antioxidant activities of four Boletus mushrooms. J Food Sci Technol. 2014;51(11):3362-8.
  • 30. Murador DC, Mercadante AZ, de Rosso VV. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage. Food Chem. 2016;196:1101-7. 31. Ellong EN, Billard C, Adenet S, Rochefort K. Polyphenols, carotenoids, vitamin C content in tropical fruits and vegetables and impact of processing methods. Food Nutr Sci. 2015;06(03):299-313.
  • 32. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O. Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. Eur Food Res Technol. 2008;228(2):239-48.
  • 33. Fang H, Yin X, He J, Xin S, Zhang H, Ye X, vd. Cooking methods affected the phytochemicals and antioxidant activities of potato from different varieties. Food Chem X. 2022;14. 34. Fratianni A, D’Agostino A, Niro S, Bufano A, Paura B, Panfili G. Loss or gain of lipophilic bioactive compounds in vegetables after domestic cooking? Effect of steaming and boiling. Foods. 2021;10(5):960.
  • 35. Ávila S, Zalamanski S, Tanikawa LM, Kruger CCH, Ferreira SMR. Influence of cooking methods on in vitro bioaccessibility of phenolics, flavonoids, and antioxidant activity of red cabbage. Plant Foods Hum Nutr. 2023;78(1):124-31. 36. Hwang ES. Influence of cooking methods on bioactive compound content and antioxidant activity of brussels sprouts. Prev Nutr Food Sci. 2017;22(4):353-8. 37. Lu Y, Pang X, Yang T. Microwave cooking increases sulforaphane level in broccoli. Food Sci Nutr. 2020;8(4):2052-8.
  • 38. Oliveira I, Meyer AS, Afonso S, Sequeira A, Vilela A, Goufo P, vd. Effects of different processing treatments on almond (Prunus dulcis) bioactive Compounds, antioxidant activities, fatty acids, and sensorial characteristics. Plants. 2020;9(11):1627.
  • 39. Orlando P, Nartea A, Silvestri S, Marcheggiani F, Cirilli I, Dludla PV, vd. Bioavailability study of isothiocyanates and other bioactive compounds of Brassica oleracea L. var. Italica boiled or steamed: Functional food or dietary supplement? Antioxidants. 2022;11(2):209.
  • 40. Olędzki R, Harasym J. Assessment of the effects of roasting, contact grilling, microwave processing, and steaming on the functional characteristics of bell pepper (Capsicum annuum L.). Molecules. 2024;29(1):77.
  • 41. Çatak J, Çaman R, Yaman M, Ceylan Z. Effect of baking and grilling on B vitamins of selected fishes and chicken parts. J Culin Sci Technol. 2024;22(3):496-511. 42. Vergara-Balderas FT. Canning: Process of canning. Içinde: Encyclopedia of Food and Health. Academic Press; 2016. s. 628-32. 43. Chaovanalikit A, Wrolstad RE. Anthocyanin and Polyphenolic composition of fresh and processed cherries. J Food Sci. 2004;69(1):FCT73-83. 44. Le Bourvellec C, Gouble B, Bureau S, Reling P, Bott R, Ribas-Agusti A, vd. Impact of canning and storage on apricot carotenoids and polyphenols. Food Chem. 2018;240:615-25.
  • 45. Zwietering MH, Jacxsens L, Membré JM, Nauta M, Peterz M. Relevance of microbial finished product testing in food safety management. Food Control. 2016;60:31-43.
  • 46. Jan N, Anjum S, Wani SM, Mir SA, Malik AR, Wani SA, vd. Influence of canning and storage on physicochemical properties, antioxidant properties, and bioactive compounds of apricot (Prunus armeniaca L.) wholes, halves, and pulp. Front Nutr. 2022;9.
  • 47. Sontakke MS, Salve SP. Solar drying technologies: A review. Int Refereed J Eng Sci. 2015;4(4):29-35.
  • 48. Wojdyło A, Lech K, Nowicka P, Hernandez F, Figiel A, Carbonell-Barrachina AA. Influence of different drying techniques on phenolic compounds, antioxidant capacity and colour of Ziziphus jujube Mill. fruits. Molecules [Internet]. 2019 [a.yer 13 Ekim 2024];24(13). Erişim adresi: https://www.mdpi.com/1420-3049/24/13/2361 49. Madrau MA, Piscopo A, Sanguinetti AM, Del Caro A, Poiana M, Romeo FV, vd. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur Food Res Technol. 2009;228(3):441-8. 50. Bustos MC, Rocha-Parra D, Sampedro I, de PascualTeresa S, León AE. The influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. J Agric Food Chem. 2018;66(11):2714-23.
  • 51. Yanat M, Baysal T. Effect of freezing rate and storage time on quality parameters of strawberry frozen in modified and home type freezer. Croat J Food Technol Biotechnol Nutr. 2018;13(3-4):154-8.
  • 52. Korus A, Lisiewska Z. Effect of preliminary processing and method of preservation on the content of selected antioxidative compounds in kale (Brassica oleracea L. var. acephala) leaves. Food Chem. 2011;129(1):149-54. 53. González B, Vogel H, Razmilic I, Wolfram E. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind Crops Prod. 2015;76:158-65.
  • 54. Piljac-Žegarac J, Valek L, Martinez S, Belščak A. Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chem. 2009;113(2):394-400. 55. Ghafoor K, Al Juhaimi F, Özcan MM, Uslu N, Babiker EE, Mohamed Ahmed IA. Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. LWT. 2020;126.
  • 56. Dalmau ME, Bornhorst GM, Eim V, Rosselló C, Simal S. Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples. Food Chem. 2017;215:7-16. 57. van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, vd. A review on the beneficial aspects of food processing. Mol Nutr Food Res. 2010;54(9):1215-47. 58. Gan RY, Shah NP, Wang MF, Lui WY, Corke H. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. Int J Food Sci Technol. 2016;51(4):875-84. 59. Salar RK, Purewal SS, Bhatti MS. Optimization of extraction conditions and enhancement of phenolic content and antioxidant activity of pearl millet fermented with Aspergillus awamori MTCC-548. Resour-Effic Technol. 2016;2(3):148-57.
  • 60. Zhang J, Deng H, Bai J, Zhou X, Zhao Y, Zhu Y, vd. Health-promoting properties of barley: A review of nutrient and nutraceutical composition, functionality, bioprocessing, and health benefits. Crit Rev Food Sci Nutr. 2023;63(9):1155- 69.
  • 61. Đorđević TM, Šiler-Marinković SS, DimitrijevićBranković SI. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem. 2010;119(3):957-63.
  • 62. Frank T, Netzel M, Strass G, Bitsch R, Bitsch I. Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can J Physiol Pharmacol. 2003;81(5):423-35.
  • 63. Dachery B, Hernandes KC, Veras FF, Schmidt L, Augusti PR, Manfroi V, vd. Effect of Aspergillus carbonarius on ochratoxin a levels, volatile profile and antioxidant activity of the grapes and respective wines. Food Res Int. 2019;126:108687.
  • 64. Pérez-Jiménez J, Saura-Calixto F. Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications. Food Res Int. 2018;111:148-52.
  • 65. Kwak JH, Seo JM, Kim NH, Arasu MV, Kim S, Yoon MK, vd. Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi J Biol Sci. 2017;24(6):1387-91. 66. Lamce F, Gozdhari K, Kongoli R, Meta B, Kyçky O. Evaluation of the content of polyphenols and flavonoids during the fermentation of white wines (cv. Pulëz and Shesh i bardhë) with and without skins. 2018. 67. Becker L, Zaiter A, Petit J, Karam MC, Sudol M, Baudelaire E, vd. How do grinding and sieving impact on physicochemical properties, polyphenol content, and antioxidant activity of Hieracium pilosella L. powders? J Funct Foods. 2017;35:666-72.
  • 68. Augusto-Obara TR, Oliveira J de, Gloria EM da, Spoto MHF, Godoy K, Vieira TMF de S, vd. Benefits of superfine grinding method on antioxidant and antifungal characteristic of Brazilian green propolis extract. Sci Agric. 2019;76:398- 404. 69. Derossi A, Ricci I, Caporizzi R, Fiore A, Severini C. How grinding level and brewing method (Espresso, American, Turkish) could affect the antioxidant activity and bioactive compounds in a coffee cup. J Sci Food Agric. 2018;98(8):3198-207.
  • 70. Hu J, Chen Y, Ni D. Effect of superfine grinding on quality and antioxidant property of fine green tea p
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Health Services and Systems (Other)
Journal Section Reviews
Authors

Muhammet Ali Çakır 0000-0001-5066-1956

Açelya Karagöz 0009-0005-1849-5878

Fatma Eylül Hırca 0009-0005-5789-9664

Aleyna Doğan 0009-0005-7240-480X

Publication Date April 9, 2025
Submission Date October 16, 2024
Acceptance Date December 6, 2024
Published in Issue Year 2024 Volume: 3 Issue: 3

Cite

Vancouver Çakır MA, Karagöz A, Hırca FE, Doğan A. Gıda Hazırlama Ve Pişirme İşlemlerinin Biyoaktif Bileşikler Üzerine Etkisi. Balkan Health Sci J. 2025;3(3):144-63.

 CC BY-NC 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1nc.svg?ref=chooser-v1

Balkan Sağlık Bilimleri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.