Research Article
BibTex RIS Cite

Uğursuyu Havzası Erozyon Risk Durumundaki Dönemsel Değişimlerin Belirlenmesi

Year 2025, Volume: 27 Issue: 1, 15 - 32
https://doi.org/10.24011/barofd.1608259

Abstract

Bu çalışmada, Uğursuyu Havzasında 2000 ve 2019 yılları arasında arazi kullanım durumlarında meydana gelen değişikliklerin erozyon risk durumlarına etkileri ICONA (National Institute for Nature Conservation) modeli kullanılarak detaylı bir şekilde incelenmiştir. Arazi sınıflandırmasında, su, yerleşim, tarım-açıklık ve bitki örtüsü olmak üzere dört ana arazi sınıfı belirlenmiş ve bu sınıfların doğruluğu hata matrisi yönt-emiyle değerlendirilmiştir. Kappa değerleri, her iki dönem için %80’in üzerinde bulunmuş, bu da sınıflandırmanın oldukça başarılı olduğunu göstermiştir. Su alanları 14,86 ha’dan 18,05 ha’a yükselirken, yerleşim alanlarında yaklaşık 100 ha’lık bir artış gözlemlenmiştir. Bununla birlikte, bitki örtüsü alanlarının oranı %84,6’dan %72,3’e düşmüştür. Toprak koruma haritaları, arazi sınıfı ile bitki örtüsü oranları hari-talarının ilişkilendirilmesiyle oluşturulmuş ve bu süreçte çok düşük ile çok yüksek toprak koruma sınıflarında artışlar gözlemlenirken, orta ve yüksek koruma sınıflarında azalmalar meydana gelmiştir. Havzanın eğim ve jeolojik yapısı dikkate alınarak hazırlanan potansiyel erozyon risk haritaları, alanın %76,5’inin yüksek ve çok yüksek erozyon riski grubunda bulunduğunu göstermektedir. Jeolojik yapı olarak alanın büyük kısmı (%80,5) erozyona duyarlı kayaçlardan oluşmaktadır. Erozyon risk durumları açısından yapılan analizlerde, 2000 ve 2019 yılları arasında düşük risk sınıflarında önemli bir değişim gözlemlenmezken, orta seviyede %1’lik bir artış ve yüksek seviyede %3,6’lık bir azalma meydana gelmiştir. Çok yüksek erozyon riski sınıfında ise %2,54'lük bir artış kaydedilmiştir. Arazi değişimleri ve bitki örtüsü oranlarındaki azalmalar, erozyon riskini etkileyen temel faktörler olarak öne çıkmıştır. ICONA modeli, bu değişimleri etkili bir şekilde değerlendirmiş ve havzanın yüksek erozyon duyarlılığına sahip olduğunu ortaya koymuştur. Sonuç olarak, elde edilen bulgular, sürdürülebilir arazi yönetimi ve erozyon kontrolünün önemini vurgulamaktadır. Bu bağlamda, yerel yönetimlerin ve toplulukların iş birliği ile çevresel koruma önlemlerinin alınması, bölgenin ekolojik dengesinin korunması açısından kritik bir ger-eklilik haline gelmektedir.

References

  • Abdalla, M., Osborne, B., Lanigan, G., Forristal, P., Williams, M., Smith, P., Jones, M. (2013). Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use and Management, 29(2), 199-209. https://doi.org/10.1111/sum.12030
  • Abutaleb K, Mudede MF, Nkongolo N, Newete SW. (2021).Estimating urban greenness index using remote sensing data: A case study of an affluent vs poor suburbs in the city of Johannesburg, The Egyptian Journal of Remote Sensing and Space Science, Volume 24, Issue 3, Part 1, 2021, Pages 343-351, https://doi.org/10.1016/j.ejrs.2020.07.002.
  • Amare, T., Zegeye, A., Yitaferu, B., Hurni, H., Zeleke, G. (2014). Combined effect of soil bund with biological soil and water conservation measures in the northwestern ethiopian highlands. Ecohydrology and Hydrobiology, 14(3), 192-199. https://doi.org/10.1016/j.ecohyd.2014.07.002.
  • Aslan, Ş. (2023). Parmak erozyonu süreçlerinin wepp modeli yaklaşımı ile ince bünyeli topraklar için değerlendirilmesi. Toprak Bilimi Ve Bitki Besleme Dergisi, 11(2), 99-110. https://doi.org/10.33409/tbbbd.1374916
  • Bakker, M., Govers, G., Doorn, A., Quétier, F., Chouvardas, D., Rounsevell, M. (2008). The response of soil erosion and sediment export to land-use change in four areas of europe: the importance of landscape pattern. Geomorphology, 98(3-4), 213-226. https://doi.org/10.1016/j.geomorph.2006.12.027
  • Bilgiç, S. and Er, S. (2024). Malatya i̇linde icona yöntemi ile cbs ve uzaktan algılama tabanlı erozyon risk analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. https://doi.org/10.28948/ngumuh.1587977
  • Borrelli, P., Robinson, D., Fleischer, L., Lugato, E., Ballabio, C., Alewell, C., Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02142-7
  • Borrelli, P., Robinson, D., Panagos, P., Lugato, E., Yang, J., Alewell, C., Ballabio, C. (2020). Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences, 117(36), 21994-22001. https://doi.org/10.1073/pnas.2001403117
  • Bozek, P., Janus, J., Taszakowski, J., Głowacka, A. (2016). Determining consistency of tillage direction with soil erosion protection requirements as the element of decision-making process in planning and applying land consolidation. Iop Conference Series Earth and Environmental Science, 44, 042024. https://doi.org/10.1088/1755-1315/44/4/042024
  • Bufebo, B., Getachew, B., Addise, T. (2023). Analysis of selected soil properties in relation to soil and water conservation practices in sibiya arera, soro district, south central ethiopia. The Scientific World Journal, 2023, 1-8. https://doi.org/10.1155/2023/1763367
  • Chen, S., Kwak, Y., Zhang, L., Mosey, G., Deal, B. (2021). Tightly coupling input output economics with spatio-temporal land use in a dynamic planning support system framework. Land, 10(1), 78. https://doi.org/10.3390/land10010078
  • Cohen J. (1992). Statistical power analysis, Current Directions in Psychological Science, 1 (3): 98 101, doi:10.1111/14678721.ep10768783, JSTOR 20182143, S2CID 144390805, retrieved 10 July 2010
  • Chalise, D. and Kumar, L. (2020). Land use change affects water erosion in the nepal himalayas. Plos One, 15(4), e0231692. https://doi.org/10.1371/journal.pone.0231692
  • Crippen RE. (1990) Calculating the vegetation index faster, Remote Sensing of Environment, 34, 71-73.
  • Deng, J. S., Wang, K. e., Hong, Y., Qi, J. (2009). Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning, 92(3-4), 187-198. https://doi.org/10.1016/j.landurbplan.2009.05.001
  • Dengi̇z, O., İmamoğlu, A., Saygın, F., Göl, C., Ediş, S., ve Doğan, A. (2014). Soil erosion risk assessment using icona modelling for inebolu watershed. Anadolu Journal of Agricultural Sciences, 29(2), 136. https://doi.org/10.7161/anajas.2014.29.2.136-142
  • Dutal, H. (2022). Determination of the impact of forest fires on soil erosion risk by using the icona model: a case study of ayvali dam watershed. Turkish Journal of Forest Science, 6(2), 510-538. https://doi.org/10.32328/turkjforsci.1167356
  • Ediş, S., Aytaş, İ., Özcan, A. (2021). Icona modeli kullanarak toprak erozyon riskinin değerlendirilmesi: meşeli (Çubuk/Ankara) Havzası örneği. Anadolu Orman Araştırmaları Dergisi, 7(1), 15-22. https://doi.org/10.53516/ajfr.948519
  • Gong, W., Liu, T., Duan, X., Sun, Y., Zhang, Y., Tong, X., Qiu, Z. (2022). Estimating the soil erosion response to land-use land-cover change using gis-based rusle and remote sensing: a case study of miyun reservoir, north china. Water, 14(5), 742. https://doi.org/10.3390/w14050742
  • Gholzom, H., Ahmadi, H., Moeini, A., Motamedvaziri, B. (2021). Soil erosion risk assessment in the natural and planted forests using icona model and gis technique. International Journal of Environmental Science and Technology, 19(5), 3947-3962. https://doi.org/10.1007/s13762-021-03536-3
  • Hailu, L. (2019). Effects of soil and water conservation on selected soil physicochemical properties and its implication on soil productivity in ethiopia. a review. JEES. https://doi.org/10.7176/jees/9-5-02
  • Hu, Y. (2022). Effect of conservation tillage on soil and water quality. Academic Journal of Science and Technology, 3(3), 124-126. https://doi.org/10.54097/ajst.v3i3.2834
  • ICONA, (1997) Guidelines for Mapping and Measurement of Rainfall-inducedErosion Processes in the Mediterranean Coastal Areas. Priority actionprogramme regional activity Centre, Split, Croatia.
  • Jayasekara, M., Kadupitiya, H., Vitharana, U. (2018). Mapping of soil erosion hazard zones of sri lanka. Tropical Agricultural Research, 29(2), 135. https://doi.org/10.4038/tar.v29i2.8284
  • Jiang, B., Bamutaze, Y., Pilesjö, P. (2014). climate change and land degradation in africa: a case study in the mount elgon region, uganda. Geo-Spatial Information Science, 17(1), 39-53. https://doi.org/10.1080/10095020.2014.889271
  • Jiang, W., Fu, B., Lü, Y. (2020). Assessing impacts of land use/land cover conversion on changes in ecosystem services value on the loess plateau, china. Sustainability, 12(17), 7128. https://doi.org/10.3390/su12177128
  • Jiao, J., Wang, Z., Zhao, G., Wang, W., Mu, X. (2014). Changes in sediment discharge in a sediment-rich region of the yellow river from 1955 to 2010: implications for further soil erosion control. Journal of Arid Land, 6(5), 540-549. https://doi.org/10.1007/s40333-014-0006-8
  • Ji, C. (2024). A review of the satellite remote sensing techniques for assessment of runoff and sediment in soil erosion. Journal of Hydrology and Hydromechanics, 72(2), 252-267. https://doi.org/10.2478/johh-2024-0009
  • Jing, J., Li, R., Zhang, Y., Wu, Q. (2023). Identification of priority areas for soil erosion control based on minimum administrative units and karst landforms in karst areas of guizhou. Progress in Physical Geography Earth and environment, 47(6), 892-911. https://doi.org/10.1177/03091333231189350
  • Kabelka, D., Kincl, D., Janeček, M., Vopravil, J., Vráblík, P. (2019). Reduction in soil organic matter loss caused by water erosion in inter-rows of hop gardens. Soil and Water Research, 14(3), 172-182. https://doi.org/10.17221/135/2018-swr
  • Karamage, F., Zhang, C., Liu, T., Maganda, A., Isabwe, A. (2017). soil erosion risk assessment in uganda. Forests, 8(2), 52. https://doi.org/10.3390/f8020052
  • Kefi, M., Yoshino, K., Setiawan, Y., Zayani, K., Boufaroua, M. (2010). Assessment of the effects of vegetation on soil erosion risk by water: a case of study of the batta watershed in tunisia. Environmental Earth Sciences, 64(3), 707-719. https://doi.org/10.1007/s12665-010-0891-x
  • Kidane, M., Bezie, A., Kesete, N., Tolessa, T. (2019). The impact of land use and land cover (lulc) dynamics on soil erosion and sediment yield in ethiopia. Heliyon, 5(12), e02981. https://doi.org/10.1016/j.heliyon.2019.e02981 Landis JR, Koch GG. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
  • Liebl, M., Robl, J., Hergarten, S., Stüwe, K., Gradwohl, G. (2022). modelling the influence of fluvial and glacial erosion on mountain range relief using a stream-power approach.. https://doi.org/10.5194/egusphere-egu22-6121
  • Ligonja, P. and Shrestha, R. (2013). Soil erosion assessment in kondoa eroded area in tanzania using universal soil loss equation, geographic information systems and socioeconomic approach. Land Degradation and Development, 26(4), 367-379. https://doi.org/10.1002/ldr.2215
  • Liu, L., Liu, B., Song, W., Yu, H. (2023). the relationship between rural sustainability and land use: a bibliometric review. land, 12(8), 1617. https://doi.org/10.3390/land12081617
  • MTA Genel Müdürlügü ve Ankara Üniversitesi, 1999, 17 Agustos 1999 Depremi Sonrası Düzce (Bolu) _lçesi Alternatif Yerlesim Alanlarının Jeolojik incelemesi.
  • Nearing, M. (2013). Soil erosion and conservation., 365-378. https://doi.org/10.1002/9781118351475.ch22
  • Rakhimova, M. (2024). Using the revised universal soil loss equation and global climate models (cmip6) to predict potential soil erosion associated with climate change in the talas district, kazakhstan. Sustainability, 16(2), 574. https://doi.org/10.3390/su16020574
  • Sanjay, M. (2023). Environmental sustainability through soil conservation: an imperative for future generations. International Journal of Environment and Climate Change, 13(10), 1700-1707. https://doi.org/10.9734/ijecc/2023/v13i102826
  • Saputra, M. H. and Lee, H. S. (2019). Prediction of land use and land cover changes for north sumatra, indonesia, using an artificial-neural-network-based cellular automaton. Sustainability, 11(11), 3024. https://doi.org/10.3390/su11113024
  • Seutloali, K., Dube, T., Sibanda, M. (2018). developments in the remote sensing of soil erosion in the perspective of sub-saharan africa. implications on future food security and biodiversity. remote sensing Applications Society and Environment, 9, 100-106. https://doi.org/10.1016/j.rsase.2017.12.002
  • Solovida, G. and Latan, H. (2017). Linking environmental strategy to environmental performance. Sustainability Accounting Management and Policy Journal, 8(5), 595-619. https://doi.org/10.1108/sampj-08-2016-0046
  • Tamiru, H. and Wagari, M. (2021). Rusle model based annual soil loss quantification for soil erosion protection in fincha catchment, abay river basin, ethiopia... https://doi.org/10.21203/rs.3.rs-250848/v1
  • Thapa, P. (2020). Spatial estimation of soil erosion using rusle modeling: a case study of dolakha district, nepal. Environmental Systems Research, 9(1). https://doi.org/10.1186/s40068-020-00177-2
  • Tucker CJ. (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, (8), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  • USGS (2024). United States Geological Survey. Available online: https://earthexplorer.usgs.gov/
  • Wachiye, S., Kuria, D. N., Musiega, D. (2013). Gis based forest cover change and vulnerability analysis: a case study of the nandi north forest zone. Journal of Geography and Regional Planning, 6(5), 159-171. https://doi.org/10.5897/jgrp12.063
  • Wang, L., Xiao, Y., Rao, E., Jiang, L., Xiao, Y., Ouyang, Z. (2018). An assessment of the impact of urbanization on soil erosion in inner mongolia. International Journal of Environmental Research and Public Health, 15(3), 550. https://doi.org/10.3390/ijerph15030550.
  • Wang, X. (2006). Soil erosion prediction using rusle with gis: a case study in upper chaobai river basin of china., 1086-1089. https://doi.org/10.1109/igarss.2006.280
  • Widjonarko, W. and Maryono, M. (2022). Sustainable land use model in garang watershed. IOP Conference Series: Earth and Environmental Science, 1082(1), 012028. https://doi.org/10.1088/1755-1315/1082/1/012028
  • Xingtao, W. and Lu, X. (2023). Spatial and temporal variation of soil conservation on the southern slopes of qilian mountains, china. Malaysian Journal of Social Sciences and Humanities (Mjssh), 8(6), e002366. https://doi.org/10.47405/mjssh.v8i6.2366
  • Xiao, J., Xie, B., Zhou, K., Shi, S., Li, J., Yang, M., Liu, C. (2021). Assessment of soil erosion in the dongting lake basin, china: patterns, drivers, and implications. Plos One, 16(12), e0261842. https://doi.org/10.1371/journal.pone.0261842
  • Yang, Z. and Zhou, M. (2014). Kappa statistic for clustered matched-pair data. Statistics in Medicine, 33(15), 2612-2633. https://doi.org/10.1002/sim.6113
  • Yıldız NE, ve Kahveci, B. (2024). Estimation of soil erosion risk using ICONA model: The case of Ankara. Anadolu Çev. ve Hay. Dergisi, 9(4), 822-831. https://doi.org/10.35229/jaes.1591959
  • Zhang, Y., Du, B., Zhang, L., Li, R., Dou, Y. (2019). Accelerated inference framework of sparse neural network based on nested bitmask structure., 4355-4361. https://doi.org/10.24963/ijcai.2019/605
  • Ziadat, F. and Ay, T. (2013). Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation and Development, 24(6), 582-590. https://doi.org/10.1002/ldr.2239
  • Zuo, Y. (2023). Driving mechanism of comprehensive land consolidation on urban–rural development elements integration. land, 12(11), 2037. https://doi.org/10.3390/land12112037

Determination of Periodic Changes in Erosion Risk Status of Uğursuyu Basin

Year 2025, Volume: 27 Issue: 1, 15 - 32
https://doi.org/10.24011/barofd.1608259

Abstract

In this study, the effects of land use changes in the Uğursuyu basin between 2000 and 2019 on erosion risk conditions were analyzed in detail using the ICONA model. In land classification, four main land classes were determined as water, settlement, agriculture-open space and vegetation, and the accuracy of these classes was evaluated by the confusion matrix method. Kappa values were above 80% for both periods, indicating that the classification was quite successful. Water areas increased from 14.86 hectares to 18.05 ha, while settlement areas increased by about 100 ha. However, the proportion of vegetation areas decreased from 84.6% to 72.3%. Soil protection maps were created by overlaying the land class and vegetation cover ratio maps, and in this process, increases were observed in very low and very high soil protection classes, while decreases occurred in medium and high protection classes. The potential erosion risk maps prepared by considering the slope and geological structure of the basin show that 76.5% of the area is in the high and very high erosion risk group. In terms of geological structure, most of the area (80.5%) consists of rocks susceptible to erosion. In the analysis of erosion risk status, no significant change was observed in the low risk classes between 2000 and 2019, while there was a 1% increase in the medium level and a 3.6% decrease in the high level. An increase of 2.54% was recorded in the very high erosion risk class. Land changes and reductions in vegetation cover were the main factors affecting erosion risk. The ICONA model effectively assessed these changes and revealed that the basin has high erosion susceptibility. In conclusion, the findings emphasize the importance of sustainable land management and erosion control strategies. In this context, taking environmental protection measures in cooperation with local governments and communities becomes a critical requirement for maintaining the ecological balance of the region.

References

  • Abdalla, M., Osborne, B., Lanigan, G., Forristal, P., Williams, M., Smith, P., Jones, M. (2013). Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use and Management, 29(2), 199-209. https://doi.org/10.1111/sum.12030
  • Abutaleb K, Mudede MF, Nkongolo N, Newete SW. (2021).Estimating urban greenness index using remote sensing data: A case study of an affluent vs poor suburbs in the city of Johannesburg, The Egyptian Journal of Remote Sensing and Space Science, Volume 24, Issue 3, Part 1, 2021, Pages 343-351, https://doi.org/10.1016/j.ejrs.2020.07.002.
  • Amare, T., Zegeye, A., Yitaferu, B., Hurni, H., Zeleke, G. (2014). Combined effect of soil bund with biological soil and water conservation measures in the northwestern ethiopian highlands. Ecohydrology and Hydrobiology, 14(3), 192-199. https://doi.org/10.1016/j.ecohyd.2014.07.002.
  • Aslan, Ş. (2023). Parmak erozyonu süreçlerinin wepp modeli yaklaşımı ile ince bünyeli topraklar için değerlendirilmesi. Toprak Bilimi Ve Bitki Besleme Dergisi, 11(2), 99-110. https://doi.org/10.33409/tbbbd.1374916
  • Bakker, M., Govers, G., Doorn, A., Quétier, F., Chouvardas, D., Rounsevell, M. (2008). The response of soil erosion and sediment export to land-use change in four areas of europe: the importance of landscape pattern. Geomorphology, 98(3-4), 213-226. https://doi.org/10.1016/j.geomorph.2006.12.027
  • Bilgiç, S. and Er, S. (2024). Malatya i̇linde icona yöntemi ile cbs ve uzaktan algılama tabanlı erozyon risk analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. https://doi.org/10.28948/ngumuh.1587977
  • Borrelli, P., Robinson, D., Fleischer, L., Lugato, E., Ballabio, C., Alewell, C., Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02142-7
  • Borrelli, P., Robinson, D., Panagos, P., Lugato, E., Yang, J., Alewell, C., Ballabio, C. (2020). Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences, 117(36), 21994-22001. https://doi.org/10.1073/pnas.2001403117
  • Bozek, P., Janus, J., Taszakowski, J., Głowacka, A. (2016). Determining consistency of tillage direction with soil erosion protection requirements as the element of decision-making process in planning and applying land consolidation. Iop Conference Series Earth and Environmental Science, 44, 042024. https://doi.org/10.1088/1755-1315/44/4/042024
  • Bufebo, B., Getachew, B., Addise, T. (2023). Analysis of selected soil properties in relation to soil and water conservation practices in sibiya arera, soro district, south central ethiopia. The Scientific World Journal, 2023, 1-8. https://doi.org/10.1155/2023/1763367
  • Chen, S., Kwak, Y., Zhang, L., Mosey, G., Deal, B. (2021). Tightly coupling input output economics with spatio-temporal land use in a dynamic planning support system framework. Land, 10(1), 78. https://doi.org/10.3390/land10010078
  • Cohen J. (1992). Statistical power analysis, Current Directions in Psychological Science, 1 (3): 98 101, doi:10.1111/14678721.ep10768783, JSTOR 20182143, S2CID 144390805, retrieved 10 July 2010
  • Chalise, D. and Kumar, L. (2020). Land use change affects water erosion in the nepal himalayas. Plos One, 15(4), e0231692. https://doi.org/10.1371/journal.pone.0231692
  • Crippen RE. (1990) Calculating the vegetation index faster, Remote Sensing of Environment, 34, 71-73.
  • Deng, J. S., Wang, K. e., Hong, Y., Qi, J. (2009). Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning, 92(3-4), 187-198. https://doi.org/10.1016/j.landurbplan.2009.05.001
  • Dengi̇z, O., İmamoğlu, A., Saygın, F., Göl, C., Ediş, S., ve Doğan, A. (2014). Soil erosion risk assessment using icona modelling for inebolu watershed. Anadolu Journal of Agricultural Sciences, 29(2), 136. https://doi.org/10.7161/anajas.2014.29.2.136-142
  • Dutal, H. (2022). Determination of the impact of forest fires on soil erosion risk by using the icona model: a case study of ayvali dam watershed. Turkish Journal of Forest Science, 6(2), 510-538. https://doi.org/10.32328/turkjforsci.1167356
  • Ediş, S., Aytaş, İ., Özcan, A. (2021). Icona modeli kullanarak toprak erozyon riskinin değerlendirilmesi: meşeli (Çubuk/Ankara) Havzası örneği. Anadolu Orman Araştırmaları Dergisi, 7(1), 15-22. https://doi.org/10.53516/ajfr.948519
  • Gong, W., Liu, T., Duan, X., Sun, Y., Zhang, Y., Tong, X., Qiu, Z. (2022). Estimating the soil erosion response to land-use land-cover change using gis-based rusle and remote sensing: a case study of miyun reservoir, north china. Water, 14(5), 742. https://doi.org/10.3390/w14050742
  • Gholzom, H., Ahmadi, H., Moeini, A., Motamedvaziri, B. (2021). Soil erosion risk assessment in the natural and planted forests using icona model and gis technique. International Journal of Environmental Science and Technology, 19(5), 3947-3962. https://doi.org/10.1007/s13762-021-03536-3
  • Hailu, L. (2019). Effects of soil and water conservation on selected soil physicochemical properties and its implication on soil productivity in ethiopia. a review. JEES. https://doi.org/10.7176/jees/9-5-02
  • Hu, Y. (2022). Effect of conservation tillage on soil and water quality. Academic Journal of Science and Technology, 3(3), 124-126. https://doi.org/10.54097/ajst.v3i3.2834
  • ICONA, (1997) Guidelines for Mapping and Measurement of Rainfall-inducedErosion Processes in the Mediterranean Coastal Areas. Priority actionprogramme regional activity Centre, Split, Croatia.
  • Jayasekara, M., Kadupitiya, H., Vitharana, U. (2018). Mapping of soil erosion hazard zones of sri lanka. Tropical Agricultural Research, 29(2), 135. https://doi.org/10.4038/tar.v29i2.8284
  • Jiang, B., Bamutaze, Y., Pilesjö, P. (2014). climate change and land degradation in africa: a case study in the mount elgon region, uganda. Geo-Spatial Information Science, 17(1), 39-53. https://doi.org/10.1080/10095020.2014.889271
  • Jiang, W., Fu, B., Lü, Y. (2020). Assessing impacts of land use/land cover conversion on changes in ecosystem services value on the loess plateau, china. Sustainability, 12(17), 7128. https://doi.org/10.3390/su12177128
  • Jiao, J., Wang, Z., Zhao, G., Wang, W., Mu, X. (2014). Changes in sediment discharge in a sediment-rich region of the yellow river from 1955 to 2010: implications for further soil erosion control. Journal of Arid Land, 6(5), 540-549. https://doi.org/10.1007/s40333-014-0006-8
  • Ji, C. (2024). A review of the satellite remote sensing techniques for assessment of runoff and sediment in soil erosion. Journal of Hydrology and Hydromechanics, 72(2), 252-267. https://doi.org/10.2478/johh-2024-0009
  • Jing, J., Li, R., Zhang, Y., Wu, Q. (2023). Identification of priority areas for soil erosion control based on minimum administrative units and karst landforms in karst areas of guizhou. Progress in Physical Geography Earth and environment, 47(6), 892-911. https://doi.org/10.1177/03091333231189350
  • Kabelka, D., Kincl, D., Janeček, M., Vopravil, J., Vráblík, P. (2019). Reduction in soil organic matter loss caused by water erosion in inter-rows of hop gardens. Soil and Water Research, 14(3), 172-182. https://doi.org/10.17221/135/2018-swr
  • Karamage, F., Zhang, C., Liu, T., Maganda, A., Isabwe, A. (2017). soil erosion risk assessment in uganda. Forests, 8(2), 52. https://doi.org/10.3390/f8020052
  • Kefi, M., Yoshino, K., Setiawan, Y., Zayani, K., Boufaroua, M. (2010). Assessment of the effects of vegetation on soil erosion risk by water: a case of study of the batta watershed in tunisia. Environmental Earth Sciences, 64(3), 707-719. https://doi.org/10.1007/s12665-010-0891-x
  • Kidane, M., Bezie, A., Kesete, N., Tolessa, T. (2019). The impact of land use and land cover (lulc) dynamics on soil erosion and sediment yield in ethiopia. Heliyon, 5(12), e02981. https://doi.org/10.1016/j.heliyon.2019.e02981 Landis JR, Koch GG. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
  • Liebl, M., Robl, J., Hergarten, S., Stüwe, K., Gradwohl, G. (2022). modelling the influence of fluvial and glacial erosion on mountain range relief using a stream-power approach.. https://doi.org/10.5194/egusphere-egu22-6121
  • Ligonja, P. and Shrestha, R. (2013). Soil erosion assessment in kondoa eroded area in tanzania using universal soil loss equation, geographic information systems and socioeconomic approach. Land Degradation and Development, 26(4), 367-379. https://doi.org/10.1002/ldr.2215
  • Liu, L., Liu, B., Song, W., Yu, H. (2023). the relationship between rural sustainability and land use: a bibliometric review. land, 12(8), 1617. https://doi.org/10.3390/land12081617
  • MTA Genel Müdürlügü ve Ankara Üniversitesi, 1999, 17 Agustos 1999 Depremi Sonrası Düzce (Bolu) _lçesi Alternatif Yerlesim Alanlarının Jeolojik incelemesi.
  • Nearing, M. (2013). Soil erosion and conservation., 365-378. https://doi.org/10.1002/9781118351475.ch22
  • Rakhimova, M. (2024). Using the revised universal soil loss equation and global climate models (cmip6) to predict potential soil erosion associated with climate change in the talas district, kazakhstan. Sustainability, 16(2), 574. https://doi.org/10.3390/su16020574
  • Sanjay, M. (2023). Environmental sustainability through soil conservation: an imperative for future generations. International Journal of Environment and Climate Change, 13(10), 1700-1707. https://doi.org/10.9734/ijecc/2023/v13i102826
  • Saputra, M. H. and Lee, H. S. (2019). Prediction of land use and land cover changes for north sumatra, indonesia, using an artificial-neural-network-based cellular automaton. Sustainability, 11(11), 3024. https://doi.org/10.3390/su11113024
  • Seutloali, K., Dube, T., Sibanda, M. (2018). developments in the remote sensing of soil erosion in the perspective of sub-saharan africa. implications on future food security and biodiversity. remote sensing Applications Society and Environment, 9, 100-106. https://doi.org/10.1016/j.rsase.2017.12.002
  • Solovida, G. and Latan, H. (2017). Linking environmental strategy to environmental performance. Sustainability Accounting Management and Policy Journal, 8(5), 595-619. https://doi.org/10.1108/sampj-08-2016-0046
  • Tamiru, H. and Wagari, M. (2021). Rusle model based annual soil loss quantification for soil erosion protection in fincha catchment, abay river basin, ethiopia... https://doi.org/10.21203/rs.3.rs-250848/v1
  • Thapa, P. (2020). Spatial estimation of soil erosion using rusle modeling: a case study of dolakha district, nepal. Environmental Systems Research, 9(1). https://doi.org/10.1186/s40068-020-00177-2
  • Tucker CJ. (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, (8), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  • USGS (2024). United States Geological Survey. Available online: https://earthexplorer.usgs.gov/
  • Wachiye, S., Kuria, D. N., Musiega, D. (2013). Gis based forest cover change and vulnerability analysis: a case study of the nandi north forest zone. Journal of Geography and Regional Planning, 6(5), 159-171. https://doi.org/10.5897/jgrp12.063
  • Wang, L., Xiao, Y., Rao, E., Jiang, L., Xiao, Y., Ouyang, Z. (2018). An assessment of the impact of urbanization on soil erosion in inner mongolia. International Journal of Environmental Research and Public Health, 15(3), 550. https://doi.org/10.3390/ijerph15030550.
  • Wang, X. (2006). Soil erosion prediction using rusle with gis: a case study in upper chaobai river basin of china., 1086-1089. https://doi.org/10.1109/igarss.2006.280
  • Widjonarko, W. and Maryono, M. (2022). Sustainable land use model in garang watershed. IOP Conference Series: Earth and Environmental Science, 1082(1), 012028. https://doi.org/10.1088/1755-1315/1082/1/012028
  • Xingtao, W. and Lu, X. (2023). Spatial and temporal variation of soil conservation on the southern slopes of qilian mountains, china. Malaysian Journal of Social Sciences and Humanities (Mjssh), 8(6), e002366. https://doi.org/10.47405/mjssh.v8i6.2366
  • Xiao, J., Xie, B., Zhou, K., Shi, S., Li, J., Yang, M., Liu, C. (2021). Assessment of soil erosion in the dongting lake basin, china: patterns, drivers, and implications. Plos One, 16(12), e0261842. https://doi.org/10.1371/journal.pone.0261842
  • Yang, Z. and Zhou, M. (2014). Kappa statistic for clustered matched-pair data. Statistics in Medicine, 33(15), 2612-2633. https://doi.org/10.1002/sim.6113
  • Yıldız NE, ve Kahveci, B. (2024). Estimation of soil erosion risk using ICONA model: The case of Ankara. Anadolu Çev. ve Hay. Dergisi, 9(4), 822-831. https://doi.org/10.35229/jaes.1591959
  • Zhang, Y., Du, B., Zhang, L., Li, R., Dou, Y. (2019). Accelerated inference framework of sparse neural network based on nested bitmask structure., 4355-4361. https://doi.org/10.24963/ijcai.2019/605
  • Ziadat, F. and Ay, T. (2013). Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation and Development, 24(6), 582-590. https://doi.org/10.1002/ldr.2239
  • Zuo, Y. (2023). Driving mechanism of comprehensive land consolidation on urban–rural development elements integration. land, 12(11), 2037. https://doi.org/10.3390/land12112037
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Environmental Management (Other)
Journal Section Research Articles
Authors

Ahmet Salih Değermenci 0000-0002-3866-0878

Early Pub Date April 21, 2025
Publication Date
Submission Date December 27, 2024
Acceptance Date April 9, 2025
Published in Issue Year 2025 Volume: 27 Issue: 1

Cite

APA Değermenci, A. S. (n.d.). Uğursuyu Havzası Erozyon Risk Durumundaki Dönemsel Değişimlerin Belirlenmesi. Bartın Orman Fakültesi Dergisi, 27(1), 15-32. https://doi.org/10.24011/barofd.1608259


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com