Review
BibTex RIS Cite

Mikroalg ekstraktlarının meme kanserinde koruyucu etkisi

Year 2025, Volume: 6 Issue: 1, 60 - 73, 30.04.2025
https://doi.org/10.53445/batd.1599916

Abstract

Meme kanseri, 2020 yılında tahmini 2,3 milyon yeni vaka ile kadınlarda en sık teşhis edilen kanser türü haline gelen önemli bir küresel sağlık sorunudur. Genetik ve çevresel risk faktörlerinin anlaşılmasındaki ilerlemeler, son otuz yılda ölüm oranlarında önemli bir düşüşe katkıda bulunmuş ve iyileştirilmiş tanı ve tedavi stratejilerine yol açmıştır. Meme kanseri farkındalığı ve tedavisinde önemli ilerlemeler kaydedilmiş olsa da özellikle düşük kaynaklı ortamlarda bakıma ve erken tanıya erişimdeki eşitsizlikler büyük bir zorluk olmaya devam etmektedir. Bu boşlukları ele almak, dünya çapında sonuçları iyileştirmek için kritik öneme sahiptir. Meme kanseri için doğal tedaviler, yan etkileri en aza indirirken geleneksel tedavileri tamamlayabilmeleri veya geliştirebilmeleri nedeniyle giderek daha fazla ilgi görmektedir. Fitokimyasallar da dahil olmak üzere çeşitli doğal ürünler, birden fazla mekanizma yoluyla önemli kanser karşıtı özellikler göstermiştir ve bu da onları meme kanserinin tedavisi için umut verici adaylar haline getirmektedir. Mikroalgler, apoptozu indüklediği ve kanser hücrelerinin çoğalmasını engellediği gösterilen flavonoidler ve fenolik asitler de dahil olmak üzere çeşitli biyoaktif bileşikler içerir. Mikroalg özleri, antioksidan aktivite, apoptozis indüksiyonu ve bağışıklık modülasyonu yoluyla meme kanserine karşı önemli bir koruyucu etkiye sahiptir. Çalışmalar, Spirulina ve Haematococcus pluvialis gibi mikroalglerin meme kanseri modellerinde tümör büyümesini engelleyebileceğini ve hücre ölümünü teşvik edebileceğini göstererek, tamamlayıcı terapiler olarak potansiyellerini vurgulamaktadır. Mikroalg özlerinin koruyucu etkileri ümit verici olsa da bunların işleyişini ve geleneksel kanser tedavilerine olası katılımını tam olarak kavramak için daha fazla araştırma gerekmektedir. Bu derleme, meme kanserine karşı etkinliklerine dayanarak, mikroalglerin ve mikroalg özlerinin antikanser ajanları kaynağı olarak potansiyelini vurgulamaktadır.

References

  • Ades, F., Zardavas, D., Bozovic-Spasojevic, I., Pugliano, L., Fumagalli, D., De Azambuja, E., Viale, G., Sotiriou, C., & Piccart, M. (2014). Luminal B Breast Cancer: molecular characterization, clinical management, and future perspectives. Journal of Clinical Oncology, 32(25), 2794–2803. https://doi.org/10.1200/jco.2013.54.1870
  • Ahmad, I., & Hellebust, J. A. (1984). Osmoregulation in the Extremely Euryhaline Marine Micro-Alga Chlorella autotrophica. Plant Physiology, 74, 1010–1015. https://doi.org/10.1104/pp.74.4.1010
  • Andeden, E. E., Ozturk, S., & Aslim, B. (2018). Antiproliferative, neurotoxic, genotoxic and mutagenic effects of toxic cyanobacterial extracts. Interdisciplinary Toxicology, 11(4), 267–274. https://doi.org/10.2478/intox-2018-0026
  • Bai, X., Song, H., Lavoie, M., Zhu, K., Su, Y., Ye, H., Chen, S., Fu, Z., & Qian, H. (2016). Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Scientific Reports, 6(1). https://doi.org/10.1038/srep25494
  • Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for High-Value products towards human health and nutrition. Marine Drugs, 17(5), 304. https://doi.org/10.3390/md17050304
  • Barzaman, K., Karami, J., Zarei, Z., Hosseinzadeh, A., Kazemi, M. H., Moradi-Kalbolandi, S., Safari, E., & Farahmand, L. (2020). Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology, 84, 106535. https://doi.org/10.1016/j.intimp.2020.106535
  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207-210. https://doi.org/10.1016/j.biotechadv.2006.11.002
  • Bello, A. S., Saadaoui, I., & Ben-Hamadou, R. (2021). “Beyond the source of bioenergy”: microalgae in modern agriculture as a biostimulant, biofertilizer, and anti-abiotic stress. Agronomy, 11(8), 1610. https://doi.org/10.3390/agronomy11081610
  • Bergin, A. R. T., & Loi, S. (2019). Triple-negative breast cancer: Recent treatment advances. F1000Research, 8 (F1000 Faculty Rev), 1342. https://doi.org/10.12688/f1000research.18888.1
  • Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2013). Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology, 143, 1-9. https://doi.org/10.1016/j.biortech.2013.05.105
  • Bürck, M., Ramos, S. D. P., & Braga, A. R. C. (2024). Enhancing the Biological Effects of Bioactive Compounds from Microalgae through Advanced Processing Techniques: Pioneering Ingredients for Next-Generation Food Production. Foods, 13(12), 1811. https://doi.org/10.3390/foods13121811
  • Calijuri, M. L., Silva, T. A., Magalhães, I. B., De Paula Pereira, A. S. A., Marangon, B. B., De Assis, L. R., & Lorentz, J. F. (2022). Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. Chemosphere, 305, 135508. https://doi.org/10.1016/j.chemosphere.2022.135508
  • Campenni’, L., Nobre, B. P., Santos, C. A., Oliveira, A. C., Aires-Barros, M. R., Palavra, A. M. F., & Gouveia, L. (2013). Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Applied Microbiology and Biotechnology, 97, 1383–1393. https://doi.org/10.1007/s00253-012-4570-6
  • Carvalho, A. P., & Malcata, F. X. (2005). Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Marine Biotechnology, 7, 381-388. https://doi.org/10.1007/s10126-004-4047-4
  • Cezare-Gomes, E. A., Del Carmen Mejia-Da-Silva, L., Pérez-Mora, L. S., Matsudo, M. C., Ferreira-Camargo, L. S., Singh, A. K., & De Carvalho, J. C. M. (2019). Potential of Microalgae Carotenoids for Industrial Application. Applied Biochemistry and Biotechnology, 188, 602–634. https://doi.org/10.1007/s12010-018-02945-4
  • Chen, B., Wan, C., Mehmood, M. A., Chang, J., Bai, F., & Zhao, X. (2017). Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresource Technology, 244, 1198–1206. https://doi.org/10.1016/j.biortech.2017.05.170
  • Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. S., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102(2), 1649–1655. https://doi.org/10.1016/j.biortech.2010.09.062
  • Chen, P. B., Wang, H. C., Liu, Y. W., Lin, S. H., Chou, H. N., & Sheen, L. Y. (2014). Immunomodulatory activities of polysaccharides from Chlorella pyrenoidosa in a mouse model of Parkinson's disease. Journal of Functional Foods, 11, 103-113.
  • Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2017). Oxidative stress-induced bioprospecting of microalgae. Systems Biology of Marine Ecosystems, 251-276. https://doi.org/10.1007/978-3-319-62094-7_13
  • Chu, W. L. (2012). Biotechnological applications of microalgae. International E-Journal of Science, Medicine & Education, 6(1), S24-S37.
  • Cichoński, J., & Chrzanowski, G. (2022). Microalgae as a Source of Valuable Phenolic Compounds and Carotenoids. Molecules, 27(24), 8852. https://doi.org/10.3390/molecules27248852
  • Correa, I., Drews, P., Botelho, S., De Souza, M. S., & Tavano, V. M. (2017). Deep learning for microalgae classification. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 20–25. https://doi.org/10.1109/icmla.2017.0-183
  • D’Alessandro, E. B., & Antoniosi Filho, N. R. (2016). Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews, 58, 832-841. https://doi.org/10.1016/j.rser.2015.12.162
  • Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., & Brunet, C. (2020). Challenging microalgal vitamins for human health. Microbial Cell Factories, 19, 1-23. https://doi.org/10.1186/s12934-020-01459-1
  • Demetriou, G., Neonaki, C., Navakoudis, E., & Kotzabasis, K. (2007). Salt stress impact on the molecular structure and function of the photosynthetic apparatus—The protective role of polyamines. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(4), 272–280. https://doi.org/10.1016/j.bbabio.2007.02.020
  • de Morais, M. G., Vaz, B. d. S., de Morais, E. G., & Costa, J. A. (2015). Biologically Active Metabolites Synthesized by Microalgae. BioMed research international, 2015, 835761. https://doi.org/10.1155/2015/835761
  • Deniz, I., García-Vaquero, M., & Imamoglu, E. (2017). Trends in red biotechnology: Microalgae for pharmaceutical applications. In Microalgae-Based biofuels and Bioproducts (pp. 429-460). WoodheadPublishing. https://doi.org/10.1016/B978-0-08-101023-5.00018-2
  • Ebrahimi Nigjeh, S., Yusoff, F. M., Mohamed Alitheen, N. B., Rasoli, M., Keong, Y. S., & Omar, A. R. B. (2013). Cytotoxic effect of ethanol extract of microalga, Chaetoceros calcitrans, and its mechanisms in inducing apoptosis in human breast cancer cell line. Bio Med Research International, 2013(1), 783690. https://doi.org/10.1155/2013/783690
  • Edward, U., Obeagu, E. I., Okorie, H. M., Vincent, C. C. N., & Bot, Y. S. (2021). Studies of serum calcium, inorganic phosphate and magnesium levels in lactating mothers in Owerri. Journal of Pharmaceutical Research International, 33(41B), 209-216.
  • Ejike, C. E., Collins, S. A., Balasuriya, N., Swanson, A. K., Mason, B., & Udenigwe, C. C. (2017). Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology, 59, 30-36. https://doi.org/10.1016/j.tifs.2016.10.026
  • El Arroussi, H., Elbaouchi, A., Benhima, R., Bendaou, N., Smouni, A., & Wahby, I. (2015). Halophilic microalgae Dunaliella salina extracts improve seed germination and seedling growth of Triticum aestivum L. under salt stress. In II World Congress on The Use of Biostimulants in Agriculture, 1148, 13-26.
  • Elkhateeb, W., El-Sayed, H., Fayad, W., Emam, M., & Daba, G. (2020). In vitro Anti-breast cancer and antifungal Bio-efficiency of some microalgal extracts. Egyptian Journal of Aquatic Biology and Fisheries, 24(1), 263-279.
  • Farooqi, A. A., Butt, G., & Razzaq, Z. (2012). Algae extracts and methyl jasmonate anti-cancer activities in prostate cancer: choreographers of ‘the dance macabre’. Cancer cell international, 12(1), 50. https://doi.org/10.1186/1475-2867-12-50
  • Farshi, E. (2024). Comprehensive overview of 31 types of cancer: Incidence, categories, treatment options, and survival rates. International Journal of Gastroenterology and Hepatology, 5(3), 1-11.
  • Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer, 144(8), 1941–1953. https://doi.org/10.1002/ijc.31937
  • Fernandes, J. C., García-Angulo, P., Goulao, L. F., Acebes, J. L., & Amâncio, S. (2013). Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.) callus. Plant science: an international journal of experimental plant biology, 205-206, 111–120. https://doi.org/10.1016/j.plantsci.2013.01.013
  • Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., & Llamas, B. (2021). The role of microalgae in the bioeconomy. New Biotechnology, 61, 99-107. https://doi.org/10.1016/j.nbt.2020.11.011
  • Fleischauer, A. T., Simonsen, N., & Arab, L. (2003). Antioxidant supplements and risk of breast cancer recurrence and breast cancer-related mortality among postmenopausal women. Nutrition and Cancer, 46(1), 15-22. https://doi.org/10.1207/S15327914NC4601_02
  • Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. The New England journal of medicine, 363(20), 1938–1948. https://doi.org/10.1056/NEJMra1001389
  • Fu, W., Nelson, D. R., Mystikou, A., Daakour, S., & Salehi-Ashtiani, K. (2019). Advances in microalgal research and engineering development. Current Opinion in Biotechnology, 59, 157-164. https://doi.org/10.1016/j.copbio.2019.05.013
  • Gao, J. J., & Swain, S. M. (2018). Luminal a breast cancer and molecular assays: a review. The Oncologist, 23(5), 556-565. https://doi.org/10.1634/theoncologist.2017-0535
  • Gebser, B., & Pohnert, G. (2013). Synchronized regulation of different zwitterionic metabolites in the osmoadaption of phytoplankton. Marine Drugs, 11(6), 2168-2182. https://doi.org/10.3390/md11062168
  • Geng, W., Xiao, X., Zhang, L., Ni, W., Li, N., & Li, Y. (2022). Response and tolerance ability of Chlorella vulgaris to cadmium pollution stress. Environmental Technology, 43(27), 4391-4401. https://doi.org/10.1080/09593330.2021.1950841
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Gong, B., Ma, S., Yan, Y., & Wang, Z. (2024). Progress on the biological characteristics and physiological activities of fucoxanthin produced by marine microalgae. Frontiers in Marine Science, 11, 1357425. https://doi.org/10.3389/fmars.2024.1357425
  • Gu, P., Li, Q., Zhang, W., Zheng, Z., & Luo, X. (2020). Effects of different metal ions (Ca, Cu, Pb, Cd) on formation of cyanobacterial blooms. Ecotoxicology and Environmental Safety, 189, 109976. https://doi.org/10.1016/j.ecoenv.2019.109976
  • Hamed, S. M., Selim, S., Klöck, G., & AbdElgawad, H. (2017). Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicology and Environmental Safety, 144, 19-25. https://doi.org/10.1016/j.ecoenv.2017.05.048
  • Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., Ruddy, K., Tsang, J., & Cardoso, F. (2019). Breast cancer. Nature Reviews Disease Primers, 5(1), 66. https://doi.org/10.1038/s41572-019-0111-2
  • He, Q., Yang, H., Wu, L., & Hu, C. (2015). Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource Technology, 191, 219-228. https://doi.org/10.1016/j.biortech.2015.05.021
  • Hema R., Senthil-Kumar M., Shivakumar S., Reddy P.C., & Udayakumar M. (2007). Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta, 226, 655–670. https://doi.org/10.1007/s00425-007-0514-2
  • Henríquez, V., Escobar, C., Galarza, J., & Gimpel, J. (2016). Carotenoids in microalgae. Carotenoids in nature: biosynthesis, regulation and function, 219-237.
  • Hon, J. D., Singh, B., Sahin, A., Du, G., Wang, J., Wang, V. Y., Deng, F. M., Zhang, D. Y., Monaco, M. E., & Lee, P. (2016). Breast cancer molecular subtypes: from TNBC to QNBC. American journal of cancer research, 6(9), 1864–1872.
  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54-67. https://doi.org/10.1016/j.biotechadv.2017.09.009
  • Huang, H., Lang, Y., & Zhou, M. (2024). A comprehensive review on medical applications of microalgae. Algal Research, 80, 103504. https://doi.org/10.1016/j.algal.2024.103504
  • Ibekwe, A. M., Obeagu, E. I., Ibekwe, C. E., Onyekwuo, C., Ibekwe, C. V., Okoro, A. D., & Ifezue, C. B. (2022). Challenges of Exclusive Breastfeeding among Working Class Women in a Teaching Hospital South East, Nigeria. Journal of Pharmaceutical Research International, 34(46A), 1–10. https://doi.org/10.9734/jpri/2022/v34i46A36371
  • Irigoien, X., Huisman, J., & Harris, R. P. (2004). Global biodiversity patterns of marine phytoplankton and zooplankton. Nature, 429(6994), 863–867. https://doi.org/10.1038/nature02593
  • Japar, A. S., Takriff, M. S., & Yasin, N. H. M. (2021). Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Research, 53, 102163. https://doi.org/10.1016/j.algal.2020.102163
  • Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., & Gómez-Pinchetti, J. L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. Journal of Food Quality, 2017(1), 2924508.
  • Joshi, H., & Press, M. F. (2018). Molecular oncology of breast cancer. In The Breast, 282-307. Elsevier. https://doi.org/10.1016/B978-0-323-35955-9.00022-2
  • Kaçka, A., & Dönmez, G. (2008). Isolation of Dunaliella spp. from a hypersaline lake and their ability to accumulate glycerol. Bioresource technology, 99(17), 8348–8352. https://doi.org/10.1016/j.biortech.2008.02.042
  • Kehrer, J. P. (2000). The Haber–Weiss reaction and mechanisms of toxicity. Toxicology, 149(1), 43-50. https://doi.org/10.1016/S0300-483X(00)00231-6
  • Khona D. K., Shirolikar S. M., Gawde K. K., Hom E., Deodhar M. A., & D’Souza J. S. (2016). Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal Research, 16, 434–448. https://doi.org/10.1016/j.algal.2016.03.035
  • Ko, S. C., Kim, D., & Jeon, Y. J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and chemical toxicology, 50(7), 2294-2302.
  • Kumar, B. R., Mathimani, T., Sudhakar, M., Rajendran, K., Nizami, A., Brindhadevi, K., & Pugazhendhi, A. (2020). A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 138, 110649. https://doi.org/10.1016/j.rser.2020.110649
  • Kumar, S. R., Hosokawa, M., & Miyashita, K. (2013). Fucoxanthin: A marine carotenoidexerting anti-cancer effects by affecting multiple mechanisms. Marine Drugs, 11(12), 5130-5147. https://doi.org/10.3390/md11125130
  • Lee, J. C., Hou, M. F., Huang, H. W., Chang, F. R., Yeh, C. C., Tang, J. Y., & Chang, H. W. (2013). Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer cell international, 13(1), 55. https://doi.org/10.1186/1475-2867-13-55
  • Liao, W., Chen, Y., Shan, S., Chen, Z., Wen, Y., Chen, W., & Zhao, C. (2024). Marine algae-derived characterized bioactive compounds as therapy for cancer: A review on their classification, mechanism of action, and future perspectives. Phytotherapy research: PTR, 38(8), 4053–4080. https://doi.org/10.1002/ptr.8240
  • Li, J., Zhu, D., Niu, J., Shen, S., & Wang, G. (2011). An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances, 29(6), 568-574. https://doi.org/10.1016/j.biotechadv.2011.04.001
  • Li, R., Chen, G. Z., Tam, N. F., Luan, T. G., Shin, P. K., Cheung, S. G., & Liu, Y. (2009). Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicology and environmental safety, 72(2), 321–328. https://doi.org/10.1016/j.ecoenv.2008.05.012
  • Liu, R., Li, S., Tu, Y., Hao, X., & Qiu, F. (2022). Recovery of value-added products by mining microalgae. Journal of Environmental Management, 307, 114512. https://doi.org/10.1016/j.jenvman.2022.114512
  • Liu, X., Xin, J., Sun, Y., Zhao, F., Niu, C., & Liu, S. (2024). Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs. Marine Drugs, 22(8), 347. https://doi.org/10.3390/md22080347
  • Loibl, S., & Gianni, L. (2017). HER2-positive breast cancer. The Lancet, 389(10087), 2415-2429.
  • Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6), 1056-1100. https://doi.org/10.3390/md9061056
  • Mahapatra, D. M., Varma, V. S., Muthusamy, S., & Rajendran, K. (2018). Wastewater algae to value-added products. Waste to Wealth, 365-393. https://doi.org/10.1007/978-981-10-7431-8_16
  • Mahdavi, M., Nassiri, M., Kooshyar, M. M., Vakili‐Azghandi, M., Avan, A., Sandry, R., Pillai, S., Lam, A. K., & Gopalan, V. (2018). Hereditary breast cancer; Genetic penetrance and current status with BRCA. Journal of Cellular Physiology, 234(5), 5741–5750. https://doi.org/10.1002/jcp.27464
  • Maltsev, Y., & Maltseva, K. (2021). Fatty acids of microalgae: Diversity and applications. Reviews in Environmental Science and Bio/Technology, 20, 515-547. https://doi.org/10.1007/s11157-021-09571-3
  • Manivannan, K., Anantharaman, P., & Balasubramanian, T. (2012). Evaluation of antioxidant properties of marine microalga Chlorella marina (Butcher, 1952). Asian Pacific Journal of Tropical Biomedicine, 2(1), S342-S346.
  • Matulja, D., Vranješević, F., Kolympadi Markovic, M., Pavelić, S. K., & Marković, D. (2022). Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules (Basel, Switzerland), 27(4), 1449. https://doi.org/10.3390/molecules27041449
  • Maurya, R., Paliwal, C., Ghosh, T., Pancha, I., Chokshi, K., Mitra, M., Ghosh, A., & Mishra, S. (2016). Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Bioresource Technology, 214, 787–796. https://doi.org/10.1016/j.biortech.2016.04.115
  • McSherry E. A., Donatello S., Hopkins A. M., & McDonnell S. (2007). Molecular basis of invasion in breast cancer. Cellular and Molecular Life Sciences, 64, 3201–3218. https://doi.org/10.1007/s00018-007-7388-0
  • Míguez, L., Esperanza, M., Seoane, M., & Cid, Á. (2021). Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. Ecotoxicology and Environmental Safety, 208, 111646. https://doi.org/10.1016/j.ecoenv.2020.111646
  • Mitra, M., Patidar, S. K., & Mishra, S. (2015). Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Bioresource Technology, 193, 363-369. https://doi.org/10.1016/j.biortech.2015.06.033
  • Nakashima, Y., Ohsawa, I., Konishi, F., Hasegawa, T., Kumamoto, S., Suzuki, Y., & Ohta, S. (2009). Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice. Neuroscience letters, 464(3), 193-198.
  • Narayan, A. K., Al-Naemi, H., Aly, A., Kharita, M. H., Khera, R. D., Hajaj, M., & Rehani, M. M. (2020). Breast Cancer Detection in Qatar: Evaluation of Mammography Image Quality Using A Standardized Assessment Tool. European journal of breast health, 16(2), 124–128. https://doi.org/10.5152/ejbh.2020.5115
  • Niranjana, R., Gayathri, R., Mol, S. N., Sugawara, T., Hirata, T., Miyashita, K., & Ganesan, P. (2015). Carotenoids modulate the hallmarks of cancer cells. Journal of Functional Foods, 18, 968–985. https://doi.org/10.1016/j.jff.2014.10.017
  • Obeagu, E. I., Ahmed, Y. A., Obeagu, G. U., Bunu, U. O., Ugwu, O. P. C., & Alum, E. U. (2023). Biomarkers of breast cancer: Overview. Int. J. Curr. Res. Biol. Med, 1, 8-16.
  • Obeagu, E. I., Babar, Q., Vincent, C. C. N., Udenze, C. L., Eze, R., Okafor, C. J., Ifionu, B. I., Amaeze, A. A., & Amaeze, F. N. (2021). Therapeutic Targets In Breast Cancer Signaling: A Review. Journal of Pharmaceutical Research International, 33(56A), 82–99. https://doi.org/10.9734/jpri/2021/v33i56A33889
  • O’Connor, M. J. (2015). Targeting the DNA damage response in cancer. Molecular Cell, 60(4), 547-560. https://doi.org/10.1016/j.molcel.2015.10.040
  • Oliver, L., Dietrich, T., Marañón, I., Villarán, M. C., & Barrio, R. J. (2020). Producing omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market. Resources, 9(12), 148. https://doi.org/10.3390/resources9120148
  • O’Sullivan, C. C., Loprinzi, C. L., & Haddad, T. C. (2018). Updates in the evaluation and management of breast cancer. In Mayo Clinic Proceedings, 93(6), 794-807. Elsevier.
  • Pagels, F., Salvaterra, D., Amaro, H. M., & Guedes, A. C. (2020). Pigments from microalgae. In Handbook of Microalgae-Based Processes and Products, 465-492. Academic Press. https://doi.org/10.1016/B978-0-12-818536-0.00018-X
  • Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216-1226. https://doi.org/10.1016/j.biortech.2017.05.058
  • Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource technology, 156, 146–154. https://doi.org/10.1016/j.biortech.2014.01.025
  • Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S. K., Ghosh, A., & Mishra, S. (2015). Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource technology, 189, 341–348. https://doi.org/10.1016/j.biortech.2015.04.017
  • Peng, J., Yuan, J. P., Wu, C. F., & Wang, J. H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms:Metabolism and bioactivities relevant to human health. Marine Drugs, 9(10), 1806-1828. https://doi.org/10.3390/md9101806
  • Pistelli, L., Sansone, C., Smerilli, A., Festa, M., Noonan, D., Albini, A., & Brunet, C. (2021). MMP-9 and IL-1β as targets for diatoxanthin and related microalgal pigments: potential chemopreventive and photoprotective agents. Marine Drugs, 19(7), 354. https://doi.org/10.3390/md19070354
  • Plaza, M., Herrero, M., Cifuentes, A., & Ibanez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57(16), 7159-7170.
  • Pradhan, D., Sukla, L. B., Mishra, B. B., & Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209, 617-629. https://doi.org/10.1016/j.jclepro.2018.10.288
  • Premaratne, M., Liyanaarachchi, V. C., Nimarshana, P. H. V., Ariyadasa, T. U., Malik, A., & Attalage, R. A. (2021). Co-production of fucoxanthin, docosahexaenoic acid (DHA) and bioethanol from the marine microalga Tisochrysislutea. Biochemical Engineering Journal, 176, 108160. https://doi.org/10.1016/j.bej.2021.108160
  • Podo, F., Buydens, L. M., Degani, H., Hilhorst, R., Klipp, E., Gribbestad, I. S., Van Huffel, S., van Laarhoven, H. W., Luts, J., Monleon, D., Postma, G. J., Schneiderhan-Marra, N., Santoro, F., Wouters, H., Russnes, H. G., Sørlie, T., Tagliabue, E., Børresen-Dale, A. L., & FEMME Consortium (2010). Triple-negative breast cancer: present challenges and new perspectives. Molecular oncology, 4(3), 209–229. https://doi.org/10.1016/j.molonc.2010.04.006
  • Pourkarimi, S., Hallajisani, A., Alizadehdakhel, A., Nouralishahi, A., & Golzary, A. (2020). Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatalysis and Agricultural Biotechnology, 29, 101771. https://doi.org/10.1016/j.bcab.2020.101771
  • Priyadarshani, I., Sahu, D., & Rath, B. (2011). Microalgal bioremediation: Current practices and perspectives. Journal of Biochemical Technology, 3(3), 299–304.
  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied microbiology and biotechnology, 65(6), 635–648. https://doi.org/10.1007/s00253-004-1647-x
  • Rammuni, M. N., Ariyadasa, T. U., Nimarshana, P. H. V., & Attalage, R. A. (2019). Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry, 277, 128-134. https://doi.org/10.1016/j.foodchem.2018.10.066
  • Razz, S. A. (2024). Comprehensive overview of microalgae-derived carotenoids and their applications in diverse industries. Algal Research, 78, 103422. https://doi.org/10.1016/j.algal.2024.103422
  • Rezayian, M., Niknam, V., & Ebrahimzadeh, H. (2019). Oxidative damage and antioxidative system in algae. Toxicology Reports, 6, 1309-1313. https://doi.org/10.1016/j.toxrep.2019.10.001
  • Ruddy, K. J., & Ganz, P. A. (2019). Treatment of Nonmetastatic Breast Cancer. JAMA, 321(17), 1716–1717. https://doi.org/10.1001/jama.2019.3927
  • Shanab, S. M., Mostafa, S. S., Shalaby, E. A., & Mahmoud, G. I. (2012). Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pacific Journal of Tropical Biomedicine, 2(8), 608-615.
  • Sharma, J., Sarmah, P., & Bishnoi, N. R. (2020). Market perspective of EPA and DHA production from microalgae. Nutraceutical fatty acids from oleaginous microalgae: A Human Health Perspective, 281-297. https://doi.org/10.1002/9781119631729.ch11
  • Shetty, P., Gitau, M. M., & Maróti, G. (2019). Salinity Stress Responses and Adaptation Mechanisms in Eukaryotic Green Microalgae. Cells, 8(12), 1657. https://doi.org/10.3390/cells8121657
  • Siddiki, S. Y. A., Mofijur, M., Kumar, P. S., Ahmed, S. F., Inayat, A., Kusumo, F., Badruddin, I. A., Khan, T. Y., Nghiem, L., Ong, H. C., & Mahlia, T. (2021). Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 307, 121782. https://doi.org/10.1016/j.fuel.2021.121782
  • Siddiq, A., & Dembitsky, V. (2008). Acetylenicanticancer agents. Anti-cancer agents in medicinal chemistry. Formerly Current Medicinal Chemistry-Anti-Cancer Agents, 8(2), 132-170.
  • Sigamani, S., Jayaraj, P., Balaji, R., Narayanasamy, M., Ramamurthy, D., & Natarajan, H. (2019). Antiproliferative activity of the Chlorella sp., SRD3 crude extracts against MCF-7 and Hep2 cell lines. International Journal of Life Sciences Research, 7(2), 145-150.
  • Singh, R., Upadhyay, A. K., Chandra, P., & Singh, D. P. (2018). Sodium chloride incites reactive oxygen species in green algae Chlorococcumhumicola and Chlorella vulgaris: implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresource Technology, 270, 489-497. https://doi.org/10.1016/j.biortech.2018.09.065
  • Sinha, T. (2018). Tumors: benign and malignant. Cancer Therapy & Oncology International Journal, 10(3). https://doi.org/10.19080/ctoij.2018.10.555790
  • Sun, X., Geng, L., Ren, L., Ji, X., Hao, N., Chen, K., & Huang, H. (2017). Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. Bioresource Technology, 250, 868–876. https://doi.org/10.1016/j.biortech.2017.11.005
  • Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for Biofuels, 11, 1-16. https://doi.org/10.1186/s13068-018-1275-9
  • Sun, Y. S., Zhao, Z., Yang, Z. N., Xu, F., Lu, H. J., Zhu, Z. Y., Shi, W., Jiang, J., Yao, P. P., Zhu, H. P. (2017). Risk Factors and Preventions of Breast Cancer. International Journal of Biological Sciences, 13(11), 1387-1397. https://doi.org/10.7150/ijbs.21635.
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96. https://doi.org/10.1263/jbb.101.87
  • Takahashi, K., Hosokawa, M., Kasajima, H., Hatanaka, K., Kudo, K., Shimoyama, N., & Miyashita, K. (2015). Anticancer effects of fucoxanthin and fucoxanthinol on colorectal cancer cell lines and colorectal cancer tissues. Oncology Letters, 10, 1463-1467. https://doi.org/10.3892/ol.2015.3380
  • Talebi A. F., Tabatabaei M., Mohtashami S. K., Tohidfar M., & Moradi F. (2013). Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae. Notulae Scientia Biologicae, 5(3), 309–315. https://doi.org/10.15835/nsb539114
  • Talero, E., García-Mauriño, S., Ávila-Román, J., Rodríguez-Luna, A., Alcaide, A., & Motilva, V. (2015). Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Marine Drugs, 13(10), 6152-6209. https://doi.org/10.3390/md13106152
  • Vilakazi, H., Olasehinde, T. A., & Olaniran, A. O. (2021). Chemical characterization, antiproliferative and antioxidant activities of polyunsaturated fatty acid-rich extracts from Chlorella sp. S14. Molecules, 26(14), 4109. https://doi.org/10.3390/molecules26144109
  • Wu, M., Zhu, R., Lu, J., Lei, A., Zhu, H., Hu, Z., & Wang, J. (2020). Effects of different abiotic stresses on carotenoid and fatty acid metabolism in the green microalga Dunaliella salina Y6. Annals of Microbiology, 70, 1-9. https://doi.org/10.1186/s13213-020-01588-3
  • Xiao, X., Li, W., Jin, M., Zhang, L., Qin, L., & Geng, W. (2023). Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. Marine environmental research, 183, 105805. https://doi.org/10.1016/j.marenvres.2022.105805
  • Xi, Y., Wang, J., Xue, S., & Chi, Z. (2020). β-Carotene production from Dunaliella salina cultivated with bicarbonate as carbon source. Journal of Microbiology and Biotechnology, 30(6), 868.
  • Yan, N., Fan, C., Chen, Y., & Hu, Z. (2016). The potential for microalgae as bioreactors to produce pharmaceuticals. International Journal of Molecular Sciences, 17(6), 962. https://doi.org/10.3390/ijms17060962
  • Zamani-Ahmadmahmoodi, R., Malekabadi, M. B., Rahimi, R., & Johari, S. A. (2020). Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata. Environmental Monitoring and Assessment, 192, 1-11. https://doi.org/10.1007/s10661-020-8222-5

Protective effect of microalgae extracts in breast cancer

Year 2025, Volume: 6 Issue: 1, 60 - 73, 30.04.2025
https://doi.org/10.53445/batd.1599916

Abstract

Breast cancer is a major global health problem, with an estimated 2.3 million new cases in 2020, making it the most commonly diagnosed cancer in women. Advances in the understanding of genetic and environmental risk factors have contributed to a significant decline in mortality rates over the past three decades and have led to improved diagnosis and treatment strategies. While significant progress has been made in breast cancer awareness and treatment, inequalities in access to care and early diagnosis, particularly in low-resource settings, remain a major challenge. Addressing these gaps is critical to improving outcomes worldwide. Natural treatments for breast cancer are gaining increasing attention as they can complement or enhance conventional treatments while minimizing side effects. Several natural products, including phytochemicals, have shown significant anti-cancer properties through multiple mechanisms, making them promising candidates for the treatment of breast cancer. Microalgae contain several bioactive compounds, including flavonoids and phenolic acids, which have been shown to induce apoptosis and inhibit the proliferation of cancer cells. Microalgae extracts have a significant protective effect against breast cancer through antioxidant activity, apoptosis induction, and immune modulation. Studies show that microalgae such as Spirulina and Haematococcus pluvialis can inhibit tumor growth and promote cell death in breast cancer models, highlighting their potential as complementary therapies. Although the protective effects of microalgae extracts are promising, to completely comprehend their workings and possible incorporation into traditional cancer treatments, more investigation is required. This review highlights the potential of microalgae and microalgae extracts as a source of anticancer agents based on their efficacy against breast cancer.

References

  • Ades, F., Zardavas, D., Bozovic-Spasojevic, I., Pugliano, L., Fumagalli, D., De Azambuja, E., Viale, G., Sotiriou, C., & Piccart, M. (2014). Luminal B Breast Cancer: molecular characterization, clinical management, and future perspectives. Journal of Clinical Oncology, 32(25), 2794–2803. https://doi.org/10.1200/jco.2013.54.1870
  • Ahmad, I., & Hellebust, J. A. (1984). Osmoregulation in the Extremely Euryhaline Marine Micro-Alga Chlorella autotrophica. Plant Physiology, 74, 1010–1015. https://doi.org/10.1104/pp.74.4.1010
  • Andeden, E. E., Ozturk, S., & Aslim, B. (2018). Antiproliferative, neurotoxic, genotoxic and mutagenic effects of toxic cyanobacterial extracts. Interdisciplinary Toxicology, 11(4), 267–274. https://doi.org/10.2478/intox-2018-0026
  • Bai, X., Song, H., Lavoie, M., Zhu, K., Su, Y., Ye, H., Chen, S., Fu, Z., & Qian, H. (2016). Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Scientific Reports, 6(1). https://doi.org/10.1038/srep25494
  • Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for High-Value products towards human health and nutrition. Marine Drugs, 17(5), 304. https://doi.org/10.3390/md17050304
  • Barzaman, K., Karami, J., Zarei, Z., Hosseinzadeh, A., Kazemi, M. H., Moradi-Kalbolandi, S., Safari, E., & Farahmand, L. (2020). Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology, 84, 106535. https://doi.org/10.1016/j.intimp.2020.106535
  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207-210. https://doi.org/10.1016/j.biotechadv.2006.11.002
  • Bello, A. S., Saadaoui, I., & Ben-Hamadou, R. (2021). “Beyond the source of bioenergy”: microalgae in modern agriculture as a biostimulant, biofertilizer, and anti-abiotic stress. Agronomy, 11(8), 1610. https://doi.org/10.3390/agronomy11081610
  • Bergin, A. R. T., & Loi, S. (2019). Triple-negative breast cancer: Recent treatment advances. F1000Research, 8 (F1000 Faculty Rev), 1342. https://doi.org/10.12688/f1000research.18888.1
  • Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2013). Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology, 143, 1-9. https://doi.org/10.1016/j.biortech.2013.05.105
  • Bürck, M., Ramos, S. D. P., & Braga, A. R. C. (2024). Enhancing the Biological Effects of Bioactive Compounds from Microalgae through Advanced Processing Techniques: Pioneering Ingredients for Next-Generation Food Production. Foods, 13(12), 1811. https://doi.org/10.3390/foods13121811
  • Calijuri, M. L., Silva, T. A., Magalhães, I. B., De Paula Pereira, A. S. A., Marangon, B. B., De Assis, L. R., & Lorentz, J. F. (2022). Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. Chemosphere, 305, 135508. https://doi.org/10.1016/j.chemosphere.2022.135508
  • Campenni’, L., Nobre, B. P., Santos, C. A., Oliveira, A. C., Aires-Barros, M. R., Palavra, A. M. F., & Gouveia, L. (2013). Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Applied Microbiology and Biotechnology, 97, 1383–1393. https://doi.org/10.1007/s00253-012-4570-6
  • Carvalho, A. P., & Malcata, F. X. (2005). Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Marine Biotechnology, 7, 381-388. https://doi.org/10.1007/s10126-004-4047-4
  • Cezare-Gomes, E. A., Del Carmen Mejia-Da-Silva, L., Pérez-Mora, L. S., Matsudo, M. C., Ferreira-Camargo, L. S., Singh, A. K., & De Carvalho, J. C. M. (2019). Potential of Microalgae Carotenoids for Industrial Application. Applied Biochemistry and Biotechnology, 188, 602–634. https://doi.org/10.1007/s12010-018-02945-4
  • Chen, B., Wan, C., Mehmood, M. A., Chang, J., Bai, F., & Zhao, X. (2017). Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresource Technology, 244, 1198–1206. https://doi.org/10.1016/j.biortech.2017.05.170
  • Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. S., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102(2), 1649–1655. https://doi.org/10.1016/j.biortech.2010.09.062
  • Chen, P. B., Wang, H. C., Liu, Y. W., Lin, S. H., Chou, H. N., & Sheen, L. Y. (2014). Immunomodulatory activities of polysaccharides from Chlorella pyrenoidosa in a mouse model of Parkinson's disease. Journal of Functional Foods, 11, 103-113.
  • Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2017). Oxidative stress-induced bioprospecting of microalgae. Systems Biology of Marine Ecosystems, 251-276. https://doi.org/10.1007/978-3-319-62094-7_13
  • Chu, W. L. (2012). Biotechnological applications of microalgae. International E-Journal of Science, Medicine & Education, 6(1), S24-S37.
  • Cichoński, J., & Chrzanowski, G. (2022). Microalgae as a Source of Valuable Phenolic Compounds and Carotenoids. Molecules, 27(24), 8852. https://doi.org/10.3390/molecules27248852
  • Correa, I., Drews, P., Botelho, S., De Souza, M. S., & Tavano, V. M. (2017). Deep learning for microalgae classification. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 20–25. https://doi.org/10.1109/icmla.2017.0-183
  • D’Alessandro, E. B., & Antoniosi Filho, N. R. (2016). Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews, 58, 832-841. https://doi.org/10.1016/j.rser.2015.12.162
  • Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., & Brunet, C. (2020). Challenging microalgal vitamins for human health. Microbial Cell Factories, 19, 1-23. https://doi.org/10.1186/s12934-020-01459-1
  • Demetriou, G., Neonaki, C., Navakoudis, E., & Kotzabasis, K. (2007). Salt stress impact on the molecular structure and function of the photosynthetic apparatus—The protective role of polyamines. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(4), 272–280. https://doi.org/10.1016/j.bbabio.2007.02.020
  • de Morais, M. G., Vaz, B. d. S., de Morais, E. G., & Costa, J. A. (2015). Biologically Active Metabolites Synthesized by Microalgae. BioMed research international, 2015, 835761. https://doi.org/10.1155/2015/835761
  • Deniz, I., García-Vaquero, M., & Imamoglu, E. (2017). Trends in red biotechnology: Microalgae for pharmaceutical applications. In Microalgae-Based biofuels and Bioproducts (pp. 429-460). WoodheadPublishing. https://doi.org/10.1016/B978-0-08-101023-5.00018-2
  • Ebrahimi Nigjeh, S., Yusoff, F. M., Mohamed Alitheen, N. B., Rasoli, M., Keong, Y. S., & Omar, A. R. B. (2013). Cytotoxic effect of ethanol extract of microalga, Chaetoceros calcitrans, and its mechanisms in inducing apoptosis in human breast cancer cell line. Bio Med Research International, 2013(1), 783690. https://doi.org/10.1155/2013/783690
  • Edward, U., Obeagu, E. I., Okorie, H. M., Vincent, C. C. N., & Bot, Y. S. (2021). Studies of serum calcium, inorganic phosphate and magnesium levels in lactating mothers in Owerri. Journal of Pharmaceutical Research International, 33(41B), 209-216.
  • Ejike, C. E., Collins, S. A., Balasuriya, N., Swanson, A. K., Mason, B., & Udenigwe, C. C. (2017). Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology, 59, 30-36. https://doi.org/10.1016/j.tifs.2016.10.026
  • El Arroussi, H., Elbaouchi, A., Benhima, R., Bendaou, N., Smouni, A., & Wahby, I. (2015). Halophilic microalgae Dunaliella salina extracts improve seed germination and seedling growth of Triticum aestivum L. under salt stress. In II World Congress on The Use of Biostimulants in Agriculture, 1148, 13-26.
  • Elkhateeb, W., El-Sayed, H., Fayad, W., Emam, M., & Daba, G. (2020). In vitro Anti-breast cancer and antifungal Bio-efficiency of some microalgal extracts. Egyptian Journal of Aquatic Biology and Fisheries, 24(1), 263-279.
  • Farooqi, A. A., Butt, G., & Razzaq, Z. (2012). Algae extracts and methyl jasmonate anti-cancer activities in prostate cancer: choreographers of ‘the dance macabre’. Cancer cell international, 12(1), 50. https://doi.org/10.1186/1475-2867-12-50
  • Farshi, E. (2024). Comprehensive overview of 31 types of cancer: Incidence, categories, treatment options, and survival rates. International Journal of Gastroenterology and Hepatology, 5(3), 1-11.
  • Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer, 144(8), 1941–1953. https://doi.org/10.1002/ijc.31937
  • Fernandes, J. C., García-Angulo, P., Goulao, L. F., Acebes, J. L., & Amâncio, S. (2013). Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.) callus. Plant science: an international journal of experimental plant biology, 205-206, 111–120. https://doi.org/10.1016/j.plantsci.2013.01.013
  • Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., & Llamas, B. (2021). The role of microalgae in the bioeconomy. New Biotechnology, 61, 99-107. https://doi.org/10.1016/j.nbt.2020.11.011
  • Fleischauer, A. T., Simonsen, N., & Arab, L. (2003). Antioxidant supplements and risk of breast cancer recurrence and breast cancer-related mortality among postmenopausal women. Nutrition and Cancer, 46(1), 15-22. https://doi.org/10.1207/S15327914NC4601_02
  • Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. The New England journal of medicine, 363(20), 1938–1948. https://doi.org/10.1056/NEJMra1001389
  • Fu, W., Nelson, D. R., Mystikou, A., Daakour, S., & Salehi-Ashtiani, K. (2019). Advances in microalgal research and engineering development. Current Opinion in Biotechnology, 59, 157-164. https://doi.org/10.1016/j.copbio.2019.05.013
  • Gao, J. J., & Swain, S. M. (2018). Luminal a breast cancer and molecular assays: a review. The Oncologist, 23(5), 556-565. https://doi.org/10.1634/theoncologist.2017-0535
  • Gebser, B., & Pohnert, G. (2013). Synchronized regulation of different zwitterionic metabolites in the osmoadaption of phytoplankton. Marine Drugs, 11(6), 2168-2182. https://doi.org/10.3390/md11062168
  • Geng, W., Xiao, X., Zhang, L., Ni, W., Li, N., & Li, Y. (2022). Response and tolerance ability of Chlorella vulgaris to cadmium pollution stress. Environmental Technology, 43(27), 4391-4401. https://doi.org/10.1080/09593330.2021.1950841
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Gong, B., Ma, S., Yan, Y., & Wang, Z. (2024). Progress on the biological characteristics and physiological activities of fucoxanthin produced by marine microalgae. Frontiers in Marine Science, 11, 1357425. https://doi.org/10.3389/fmars.2024.1357425
  • Gu, P., Li, Q., Zhang, W., Zheng, Z., & Luo, X. (2020). Effects of different metal ions (Ca, Cu, Pb, Cd) on formation of cyanobacterial blooms. Ecotoxicology and Environmental Safety, 189, 109976. https://doi.org/10.1016/j.ecoenv.2019.109976
  • Hamed, S. M., Selim, S., Klöck, G., & AbdElgawad, H. (2017). Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicology and Environmental Safety, 144, 19-25. https://doi.org/10.1016/j.ecoenv.2017.05.048
  • Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., Ruddy, K., Tsang, J., & Cardoso, F. (2019). Breast cancer. Nature Reviews Disease Primers, 5(1), 66. https://doi.org/10.1038/s41572-019-0111-2
  • He, Q., Yang, H., Wu, L., & Hu, C. (2015). Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource Technology, 191, 219-228. https://doi.org/10.1016/j.biortech.2015.05.021
  • Hema R., Senthil-Kumar M., Shivakumar S., Reddy P.C., & Udayakumar M. (2007). Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta, 226, 655–670. https://doi.org/10.1007/s00425-007-0514-2
  • Henríquez, V., Escobar, C., Galarza, J., & Gimpel, J. (2016). Carotenoids in microalgae. Carotenoids in nature: biosynthesis, regulation and function, 219-237.
  • Hon, J. D., Singh, B., Sahin, A., Du, G., Wang, J., Wang, V. Y., Deng, F. M., Zhang, D. Y., Monaco, M. E., & Lee, P. (2016). Breast cancer molecular subtypes: from TNBC to QNBC. American journal of cancer research, 6(9), 1864–1872.
  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54-67. https://doi.org/10.1016/j.biotechadv.2017.09.009
  • Huang, H., Lang, Y., & Zhou, M. (2024). A comprehensive review on medical applications of microalgae. Algal Research, 80, 103504. https://doi.org/10.1016/j.algal.2024.103504
  • Ibekwe, A. M., Obeagu, E. I., Ibekwe, C. E., Onyekwuo, C., Ibekwe, C. V., Okoro, A. D., & Ifezue, C. B. (2022). Challenges of Exclusive Breastfeeding among Working Class Women in a Teaching Hospital South East, Nigeria. Journal of Pharmaceutical Research International, 34(46A), 1–10. https://doi.org/10.9734/jpri/2022/v34i46A36371
  • Irigoien, X., Huisman, J., & Harris, R. P. (2004). Global biodiversity patterns of marine phytoplankton and zooplankton. Nature, 429(6994), 863–867. https://doi.org/10.1038/nature02593
  • Japar, A. S., Takriff, M. S., & Yasin, N. H. M. (2021). Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Research, 53, 102163. https://doi.org/10.1016/j.algal.2020.102163
  • Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., & Gómez-Pinchetti, J. L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. Journal of Food Quality, 2017(1), 2924508.
  • Joshi, H., & Press, M. F. (2018). Molecular oncology of breast cancer. In The Breast, 282-307. Elsevier. https://doi.org/10.1016/B978-0-323-35955-9.00022-2
  • Kaçka, A., & Dönmez, G. (2008). Isolation of Dunaliella spp. from a hypersaline lake and their ability to accumulate glycerol. Bioresource technology, 99(17), 8348–8352. https://doi.org/10.1016/j.biortech.2008.02.042
  • Kehrer, J. P. (2000). The Haber–Weiss reaction and mechanisms of toxicity. Toxicology, 149(1), 43-50. https://doi.org/10.1016/S0300-483X(00)00231-6
  • Khona D. K., Shirolikar S. M., Gawde K. K., Hom E., Deodhar M. A., & D’Souza J. S. (2016). Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal Research, 16, 434–448. https://doi.org/10.1016/j.algal.2016.03.035
  • Ko, S. C., Kim, D., & Jeon, Y. J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and chemical toxicology, 50(7), 2294-2302.
  • Kumar, B. R., Mathimani, T., Sudhakar, M., Rajendran, K., Nizami, A., Brindhadevi, K., & Pugazhendhi, A. (2020). A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 138, 110649. https://doi.org/10.1016/j.rser.2020.110649
  • Kumar, S. R., Hosokawa, M., & Miyashita, K. (2013). Fucoxanthin: A marine carotenoidexerting anti-cancer effects by affecting multiple mechanisms. Marine Drugs, 11(12), 5130-5147. https://doi.org/10.3390/md11125130
  • Lee, J. C., Hou, M. F., Huang, H. W., Chang, F. R., Yeh, C. C., Tang, J. Y., & Chang, H. W. (2013). Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer cell international, 13(1), 55. https://doi.org/10.1186/1475-2867-13-55
  • Liao, W., Chen, Y., Shan, S., Chen, Z., Wen, Y., Chen, W., & Zhao, C. (2024). Marine algae-derived characterized bioactive compounds as therapy for cancer: A review on their classification, mechanism of action, and future perspectives. Phytotherapy research: PTR, 38(8), 4053–4080. https://doi.org/10.1002/ptr.8240
  • Li, J., Zhu, D., Niu, J., Shen, S., & Wang, G. (2011). An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances, 29(6), 568-574. https://doi.org/10.1016/j.biotechadv.2011.04.001
  • Li, R., Chen, G. Z., Tam, N. F., Luan, T. G., Shin, P. K., Cheung, S. G., & Liu, Y. (2009). Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicology and environmental safety, 72(2), 321–328. https://doi.org/10.1016/j.ecoenv.2008.05.012
  • Liu, R., Li, S., Tu, Y., Hao, X., & Qiu, F. (2022). Recovery of value-added products by mining microalgae. Journal of Environmental Management, 307, 114512. https://doi.org/10.1016/j.jenvman.2022.114512
  • Liu, X., Xin, J., Sun, Y., Zhao, F., Niu, C., & Liu, S. (2024). Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs. Marine Drugs, 22(8), 347. https://doi.org/10.3390/md22080347
  • Loibl, S., & Gianni, L. (2017). HER2-positive breast cancer. The Lancet, 389(10087), 2415-2429.
  • Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6), 1056-1100. https://doi.org/10.3390/md9061056
  • Mahapatra, D. M., Varma, V. S., Muthusamy, S., & Rajendran, K. (2018). Wastewater algae to value-added products. Waste to Wealth, 365-393. https://doi.org/10.1007/978-981-10-7431-8_16
  • Mahdavi, M., Nassiri, M., Kooshyar, M. M., Vakili‐Azghandi, M., Avan, A., Sandry, R., Pillai, S., Lam, A. K., & Gopalan, V. (2018). Hereditary breast cancer; Genetic penetrance and current status with BRCA. Journal of Cellular Physiology, 234(5), 5741–5750. https://doi.org/10.1002/jcp.27464
  • Maltsev, Y., & Maltseva, K. (2021). Fatty acids of microalgae: Diversity and applications. Reviews in Environmental Science and Bio/Technology, 20, 515-547. https://doi.org/10.1007/s11157-021-09571-3
  • Manivannan, K., Anantharaman, P., & Balasubramanian, T. (2012). Evaluation of antioxidant properties of marine microalga Chlorella marina (Butcher, 1952). Asian Pacific Journal of Tropical Biomedicine, 2(1), S342-S346.
  • Matulja, D., Vranješević, F., Kolympadi Markovic, M., Pavelić, S. K., & Marković, D. (2022). Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules (Basel, Switzerland), 27(4), 1449. https://doi.org/10.3390/molecules27041449
  • Maurya, R., Paliwal, C., Ghosh, T., Pancha, I., Chokshi, K., Mitra, M., Ghosh, A., & Mishra, S. (2016). Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Bioresource Technology, 214, 787–796. https://doi.org/10.1016/j.biortech.2016.04.115
  • McSherry E. A., Donatello S., Hopkins A. M., & McDonnell S. (2007). Molecular basis of invasion in breast cancer. Cellular and Molecular Life Sciences, 64, 3201–3218. https://doi.org/10.1007/s00018-007-7388-0
  • Míguez, L., Esperanza, M., Seoane, M., & Cid, Á. (2021). Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. Ecotoxicology and Environmental Safety, 208, 111646. https://doi.org/10.1016/j.ecoenv.2020.111646
  • Mitra, M., Patidar, S. K., & Mishra, S. (2015). Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Bioresource Technology, 193, 363-369. https://doi.org/10.1016/j.biortech.2015.06.033
  • Nakashima, Y., Ohsawa, I., Konishi, F., Hasegawa, T., Kumamoto, S., Suzuki, Y., & Ohta, S. (2009). Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice. Neuroscience letters, 464(3), 193-198.
  • Narayan, A. K., Al-Naemi, H., Aly, A., Kharita, M. H., Khera, R. D., Hajaj, M., & Rehani, M. M. (2020). Breast Cancer Detection in Qatar: Evaluation of Mammography Image Quality Using A Standardized Assessment Tool. European journal of breast health, 16(2), 124–128. https://doi.org/10.5152/ejbh.2020.5115
  • Niranjana, R., Gayathri, R., Mol, S. N., Sugawara, T., Hirata, T., Miyashita, K., & Ganesan, P. (2015). Carotenoids modulate the hallmarks of cancer cells. Journal of Functional Foods, 18, 968–985. https://doi.org/10.1016/j.jff.2014.10.017
  • Obeagu, E. I., Ahmed, Y. A., Obeagu, G. U., Bunu, U. O., Ugwu, O. P. C., & Alum, E. U. (2023). Biomarkers of breast cancer: Overview. Int. J. Curr. Res. Biol. Med, 1, 8-16.
  • Obeagu, E. I., Babar, Q., Vincent, C. C. N., Udenze, C. L., Eze, R., Okafor, C. J., Ifionu, B. I., Amaeze, A. A., & Amaeze, F. N. (2021). Therapeutic Targets In Breast Cancer Signaling: A Review. Journal of Pharmaceutical Research International, 33(56A), 82–99. https://doi.org/10.9734/jpri/2021/v33i56A33889
  • O’Connor, M. J. (2015). Targeting the DNA damage response in cancer. Molecular Cell, 60(4), 547-560. https://doi.org/10.1016/j.molcel.2015.10.040
  • Oliver, L., Dietrich, T., Marañón, I., Villarán, M. C., & Barrio, R. J. (2020). Producing omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market. Resources, 9(12), 148. https://doi.org/10.3390/resources9120148
  • O’Sullivan, C. C., Loprinzi, C. L., & Haddad, T. C. (2018). Updates in the evaluation and management of breast cancer. In Mayo Clinic Proceedings, 93(6), 794-807. Elsevier.
  • Pagels, F., Salvaterra, D., Amaro, H. M., & Guedes, A. C. (2020). Pigments from microalgae. In Handbook of Microalgae-Based Processes and Products, 465-492. Academic Press. https://doi.org/10.1016/B978-0-12-818536-0.00018-X
  • Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216-1226. https://doi.org/10.1016/j.biortech.2017.05.058
  • Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource technology, 156, 146–154. https://doi.org/10.1016/j.biortech.2014.01.025
  • Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S. K., Ghosh, A., & Mishra, S. (2015). Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource technology, 189, 341–348. https://doi.org/10.1016/j.biortech.2015.04.017
  • Peng, J., Yuan, J. P., Wu, C. F., & Wang, J. H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms:Metabolism and bioactivities relevant to human health. Marine Drugs, 9(10), 1806-1828. https://doi.org/10.3390/md9101806
  • Pistelli, L., Sansone, C., Smerilli, A., Festa, M., Noonan, D., Albini, A., & Brunet, C. (2021). MMP-9 and IL-1β as targets for diatoxanthin and related microalgal pigments: potential chemopreventive and photoprotective agents. Marine Drugs, 19(7), 354. https://doi.org/10.3390/md19070354
  • Plaza, M., Herrero, M., Cifuentes, A., & Ibanez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57(16), 7159-7170.
  • Pradhan, D., Sukla, L. B., Mishra, B. B., & Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209, 617-629. https://doi.org/10.1016/j.jclepro.2018.10.288
  • Premaratne, M., Liyanaarachchi, V. C., Nimarshana, P. H. V., Ariyadasa, T. U., Malik, A., & Attalage, R. A. (2021). Co-production of fucoxanthin, docosahexaenoic acid (DHA) and bioethanol from the marine microalga Tisochrysislutea. Biochemical Engineering Journal, 176, 108160. https://doi.org/10.1016/j.bej.2021.108160
  • Podo, F., Buydens, L. M., Degani, H., Hilhorst, R., Klipp, E., Gribbestad, I. S., Van Huffel, S., van Laarhoven, H. W., Luts, J., Monleon, D., Postma, G. J., Schneiderhan-Marra, N., Santoro, F., Wouters, H., Russnes, H. G., Sørlie, T., Tagliabue, E., Børresen-Dale, A. L., & FEMME Consortium (2010). Triple-negative breast cancer: present challenges and new perspectives. Molecular oncology, 4(3), 209–229. https://doi.org/10.1016/j.molonc.2010.04.006
  • Pourkarimi, S., Hallajisani, A., Alizadehdakhel, A., Nouralishahi, A., & Golzary, A. (2020). Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatalysis and Agricultural Biotechnology, 29, 101771. https://doi.org/10.1016/j.bcab.2020.101771
  • Priyadarshani, I., Sahu, D., & Rath, B. (2011). Microalgal bioremediation: Current practices and perspectives. Journal of Biochemical Technology, 3(3), 299–304.
  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied microbiology and biotechnology, 65(6), 635–648. https://doi.org/10.1007/s00253-004-1647-x
  • Rammuni, M. N., Ariyadasa, T. U., Nimarshana, P. H. V., & Attalage, R. A. (2019). Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry, 277, 128-134. https://doi.org/10.1016/j.foodchem.2018.10.066
  • Razz, S. A. (2024). Comprehensive overview of microalgae-derived carotenoids and their applications in diverse industries. Algal Research, 78, 103422. https://doi.org/10.1016/j.algal.2024.103422
  • Rezayian, M., Niknam, V., & Ebrahimzadeh, H. (2019). Oxidative damage and antioxidative system in algae. Toxicology Reports, 6, 1309-1313. https://doi.org/10.1016/j.toxrep.2019.10.001
  • Ruddy, K. J., & Ganz, P. A. (2019). Treatment of Nonmetastatic Breast Cancer. JAMA, 321(17), 1716–1717. https://doi.org/10.1001/jama.2019.3927
  • Shanab, S. M., Mostafa, S. S., Shalaby, E. A., & Mahmoud, G. I. (2012). Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pacific Journal of Tropical Biomedicine, 2(8), 608-615.
  • Sharma, J., Sarmah, P., & Bishnoi, N. R. (2020). Market perspective of EPA and DHA production from microalgae. Nutraceutical fatty acids from oleaginous microalgae: A Human Health Perspective, 281-297. https://doi.org/10.1002/9781119631729.ch11
  • Shetty, P., Gitau, M. M., & Maróti, G. (2019). Salinity Stress Responses and Adaptation Mechanisms in Eukaryotic Green Microalgae. Cells, 8(12), 1657. https://doi.org/10.3390/cells8121657
  • Siddiki, S. Y. A., Mofijur, M., Kumar, P. S., Ahmed, S. F., Inayat, A., Kusumo, F., Badruddin, I. A., Khan, T. Y., Nghiem, L., Ong, H. C., & Mahlia, T. (2021). Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 307, 121782. https://doi.org/10.1016/j.fuel.2021.121782
  • Siddiq, A., & Dembitsky, V. (2008). Acetylenicanticancer agents. Anti-cancer agents in medicinal chemistry. Formerly Current Medicinal Chemistry-Anti-Cancer Agents, 8(2), 132-170.
  • Sigamani, S., Jayaraj, P., Balaji, R., Narayanasamy, M., Ramamurthy, D., & Natarajan, H. (2019). Antiproliferative activity of the Chlorella sp., SRD3 crude extracts against MCF-7 and Hep2 cell lines. International Journal of Life Sciences Research, 7(2), 145-150.
  • Singh, R., Upadhyay, A. K., Chandra, P., & Singh, D. P. (2018). Sodium chloride incites reactive oxygen species in green algae Chlorococcumhumicola and Chlorella vulgaris: implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresource Technology, 270, 489-497. https://doi.org/10.1016/j.biortech.2018.09.065
  • Sinha, T. (2018). Tumors: benign and malignant. Cancer Therapy & Oncology International Journal, 10(3). https://doi.org/10.19080/ctoij.2018.10.555790
  • Sun, X., Geng, L., Ren, L., Ji, X., Hao, N., Chen, K., & Huang, H. (2017). Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. Bioresource Technology, 250, 868–876. https://doi.org/10.1016/j.biortech.2017.11.005
  • Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for Biofuels, 11, 1-16. https://doi.org/10.1186/s13068-018-1275-9
  • Sun, Y. S., Zhao, Z., Yang, Z. N., Xu, F., Lu, H. J., Zhu, Z. Y., Shi, W., Jiang, J., Yao, P. P., Zhu, H. P. (2017). Risk Factors and Preventions of Breast Cancer. International Journal of Biological Sciences, 13(11), 1387-1397. https://doi.org/10.7150/ijbs.21635.
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96. https://doi.org/10.1263/jbb.101.87
  • Takahashi, K., Hosokawa, M., Kasajima, H., Hatanaka, K., Kudo, K., Shimoyama, N., & Miyashita, K. (2015). Anticancer effects of fucoxanthin and fucoxanthinol on colorectal cancer cell lines and colorectal cancer tissues. Oncology Letters, 10, 1463-1467. https://doi.org/10.3892/ol.2015.3380
  • Talebi A. F., Tabatabaei M., Mohtashami S. K., Tohidfar M., & Moradi F. (2013). Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae. Notulae Scientia Biologicae, 5(3), 309–315. https://doi.org/10.15835/nsb539114
  • Talero, E., García-Mauriño, S., Ávila-Román, J., Rodríguez-Luna, A., Alcaide, A., & Motilva, V. (2015). Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Marine Drugs, 13(10), 6152-6209. https://doi.org/10.3390/md13106152
  • Vilakazi, H., Olasehinde, T. A., & Olaniran, A. O. (2021). Chemical characterization, antiproliferative and antioxidant activities of polyunsaturated fatty acid-rich extracts from Chlorella sp. S14. Molecules, 26(14), 4109. https://doi.org/10.3390/molecules26144109
  • Wu, M., Zhu, R., Lu, J., Lei, A., Zhu, H., Hu, Z., & Wang, J. (2020). Effects of different abiotic stresses on carotenoid and fatty acid metabolism in the green microalga Dunaliella salina Y6. Annals of Microbiology, 70, 1-9. https://doi.org/10.1186/s13213-020-01588-3
  • Xiao, X., Li, W., Jin, M., Zhang, L., Qin, L., & Geng, W. (2023). Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. Marine environmental research, 183, 105805. https://doi.org/10.1016/j.marenvres.2022.105805
  • Xi, Y., Wang, J., Xue, S., & Chi, Z. (2020). β-Carotene production from Dunaliella salina cultivated with bicarbonate as carbon source. Journal of Microbiology and Biotechnology, 30(6), 868.
  • Yan, N., Fan, C., Chen, Y., & Hu, Z. (2016). The potential for microalgae as bioreactors to produce pharmaceuticals. International Journal of Molecular Sciences, 17(6), 962. https://doi.org/10.3390/ijms17060962
  • Zamani-Ahmadmahmoodi, R., Malekabadi, M. B., Rahimi, R., & Johari, S. A. (2020). Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata. Environmental Monitoring and Assessment, 192, 1-11. https://doi.org/10.1007/s10661-020-8222-5
There are 129 citations in total.

Details

Primary Language English
Subjects Traditional, Complementary and Integrative Medicine (Other)
Journal Section Review Articles
Authors

Solange Kolie 0009-0008-1772-7173

Pınar Altın Çelik 0000-0001-8429-009X

Hamiyet Altuntaş 0000-0001-6473-5813

Muazzez Derya Andeden 0000-0003-4390-5769

Early Pub Date April 30, 2025
Publication Date April 30, 2025
Submission Date December 11, 2024
Acceptance Date April 3, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Kolie, S., Altın Çelik, P., Altuntaş, H., Derya Andeden, M. (2025). Protective effect of microalgae extracts in breast cancer. Bütünleyici Ve Anadolu Tıbbı Dergisi, 6(1), 60-73. https://doi.org/10.53445/batd.1599916

J Integrative Anatolian Med Bütünleyici Anadolu Tıbbı Derg

◆◆


◆◆◆
by-nc.png