Research Article
BibTex RIS Cite
Year 2025, Volume: 34 Issue: SI, 9 - 17
https://doi.org/10.38042/biotechstudies.1677389

Abstract

References

  • Ahmad, M. Z., Saeed, A. M., Elnoubi, O. A., Alasiri, A. S., Abdel-Wahab, B. A., Alqahtani, A. A., Pathak, K., Saikia, R., Kakoti, B. B., & Das, A. (2024). Chitosan-based topical formulation integrated with green-synthesized silver nanoparticles utilizing Camellia sinensis leaf extracts: A promising approach for managing infected wounds. International Journal of Biological Macromolecules, 257, 128573. https://doi.org/10.1016/j.ijbiomac.2023.128573
  • Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., Bilal, M., Omer, M., Alamzeb, M., Salman, S M., & Ali, S. (2019). Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. International journal of nanomedicine, 5087-5107. https://doi.org/10.2147/IJN.S200254
  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of radiation research and applied sciences, 9(1), 1-7. https://doi.org/10.1016/j.jrras.2015.06.006
  • Alavi, M., Rai, M., Martinez, F., Kahrizi, D., Khan, H., Rose Alencar De Menezes, I., Coutinho, H. D., & Costa, J. G. M. (2022). The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: different mechanisms of action. Cellular, Molecular and Biomedical Reports, 2(1), 10-21. https://doi.org/10.55705/cmbr.2022.147090.1023
  • Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A., & Lin, M. (2018). Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171, 398-405. https://doi.org/10.1016/j.colsurfb.2018.07.059
  • Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., & Umbreen, S. (2022). Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-Response, 20(2), 15593258221088709. https://doi.org/10.1177/15593258221088709
  • Azarbani, F., & Shiravand, S. (2020). Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, antifungal and toxic effects. Green Chemistry Letters and Reviews, 13(1), 41-49. https://doi.org/10.1080/17518253.2020.1726504
  • Barabadi, H., Mojab, F., Vahidi, H., Marashi, B., Talank, N., Hosseini, O., & Saravanan, M. (2021). Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorganic Chemistry Communications, 129, 108647. https://doi.org/10.1016/j.inoche.2021.108647
  • Bozaci, E., & Altınışık Tağaç, A. (2022). Extraction and characterization of new cellulosic fiber from Catalpa bignonioides fruits for potential use in sustainable products. Polymers, 15(1), 201. https://doi.org/10.3390/polym15010201
  • Chen, Y., Mastalerz, M., & Schimmelmann, A. (2012). Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology, 104, 22-33. https://doi.org/10.1016/j.coal.2012.09.001
  • Dilshad, E., Bibi, M., Sheikh, N. A., Tamrin, K. F., Mansoor, Q., Maqbool, Q., & Nawaz, M. (2020). Synthesis of functional silver nanoparticles and microparticles with modifiers and evaluation of their antimicrobial, anticancer, and antioxidant activity. Journal of functional biomaterials, 11(4), 76. https://doi.org/10.3390/jfb11040076
  • Dolai, J., Mandal, K., & Jana, N. R. (2021). Nanoparticle size effects in biomedical applications. ACS Applied Nano Materials, 4(7), 6471-6496. https://doi.org/10.1021/acsanm.1c00987
  • Forough, M., & Farhadi, K. (2010). Biological and green synthesis of silver nanoparticles. Turkish Journal of Engineering and Environmental Sciences, 34(4), 281-287. https://doi.org/10.3906/muh-1005-30
  • Geçgel, Ü., Kocabıyık, B., & Üner, O. (2015). Adsorptive removal of methylene blue from aqueous solution by the activated carbon obtained from the fruit of catalpa bignonioides. Water, Air, & Soil Pollution, 226, 1-14. https://doi.org/10.1007/s11270-015-2513-4
  • Hassanzadeh-Tabrizi, S. A. (2023). Precise calculation of crystallite size of nanomaterials: A review. Journal of Alloys and Compounds, 171914. https://doi.org/10.1016/j.jallcom.2023.171914
  • Hesas, R. H., Niya, A. A., Daud, W. M. A. W., & Sahu, J. N. (2013). Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: optimization using surface response methodology. Chemical Engineering Research and Design, 91, 2447–2456. https://doi.org/10.1016/j.cherd.2013.06.004
  • Horikoshi, S., & Serpone, N. (Eds.). (2013). Microwaves in nanoparticle synthesis: fundamentals and applications (pp. 1-24). John Wiley & Sons. https://doi.org/10.1002/9783527648122.ch1
  • Jalilian, F., Chahardoli, A., Sadrjavadi, K., Fattahi, A., & Shokoohinia, Y. (2020). Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Advanced Powder Technology, 31(3), 1323-1332. https://doi.org/10.1016/j.apt.2020.01.011
  • Katta, V. K. M., & Dubey, R. S. (2021). Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Materials Today: Proceedings, 45, 794-798. https://doi.org/10.1016/j.matpr.2020.02.809
  • Khorsandi, K., Hosseinzadeh, R., Sadat Esfahani, H., Keyvani-Ghamsari, S., & Ur Rahman, S. (2021). Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities. Expert Review of Anti-infective Therapy, 19(10), 1299-1323. https://doi.org/10.1080/14787210.2021.1908125
  • Konyar, S. T. (2017). An Overview of Pollen and Anther Wall Development in Catalpa bignonioides Walter (BIGNONIACEAE). Trakya University Journal of Natural Sciences, 18(2), 123-132. https://doi.org/10.23902/trkjnat.309718
  • Mahiuddin, M., Saha, P., & Ochiai, B. (2020). Green synthesis and catalytic activity of silver nanoparticles based on Piper chaba stem extracts. Nanomaterials, 10(9), 1777. https://doi.org/10.3390/nano10091777
  • Martínez-Castañon, G. A., Nino-Martinez, N., Martinez-Gutierrez, F., Martínez-Mendoza, J. R., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of nanoparticle research, 10, 1343-1348. https://doi.org/10.1007/s11051-008-9428-6
  • Menichetti, A., Mavridi-Printezi, A., Mordini, D., & Montalti, M. (2023). Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. Journal of Functional Biomaterials, 14(5), 244. https://doi.org/10.3390/jfb14050244
  • Momchev, P., Ciganović, P., Jug, M., Marguí, E., Jablan, J., & Zovko Končić, M. (2020). Comparison of maceration and ultrasonication for green extraction of phenolic acids from Echinacea purpurea aerial parts. Molecules, 25(21), 5142. https://doi.org/10.3390/molecules25215142
  • Munoz-Mingarro, D., Acero, N., Llinares, F., Pozuelo, J. M., de Mera, A. G., Vicenten, J. A., Morales, L., Alguacil, L. F., & Pérez, C. (2003). Biological activity of extracts from Catalpa bignonioides Walt. (Bignoniaceae). Journal of Ethnopharmacology, 87(2-3), 163-167. https://doi.org/10.1016/S0378-8741(03)00111-9
  • Oh, Y., Lee, D., Park, S., Kim, S. H., & Kang, K. S. (2021). The chemical constituents from fruits of Catalpa bignonioides Walt. and their α-glucosidase inhibitory activity and insulin secretion effect. Molecules, 26(2), 362. https://doi.org/10.3390/molecules26020362
  • Panáček, A., Kvítek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Nevěčná, T., & Zbořil, R. (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110(33), 16248-16253. https://doi.org/10.1021/jp063826h
  • Panda, M. K., Dhal, N. K., Kumar, M., Mishra, P. M., & Behera, R. K. (2021). Green synthesis of silver nanoparticles and its potential effect on phytopathogens. Materials Today: Proceedings, 35, 233-238. https://doi.org/10.1016/j.matpr.2020.05.188
  • Patil, R. B., & Chougale, A. D. (2021). Analytical methods for the identification and characterization of silver nanoparticles: A brief review. Materials Today: Proceedings, 47, 5520-5532. https://doi.org/10.1016/j.matpr.2021.03.384
  • Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial cells, nanomedicine, and biotechnology, 45(7), 1272-1291. https://doi.org/10.1080/21691401.2016.1241792
  • Rajkumar, P. V., Prakasam, A., Rajeshkumar, S., Gomathi, M., Anbarasan, P. M., & Chandrasekaran, R. (2020). Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. South African Journal of Chemical Engineering, 32(1), 1-4. https://hdl.handle.net/10520/EJC-1d7a3051f1
  • Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100428. https://doi.org/10.1016/j.enmm.2021.100428
  • Rotaru, R., Savin, M., Tudorachi, N., Peptu, C., Samoila, P., Sacarescu, L., & Harabagiu, V. (2018). Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication. Polymer chemistry, 9(7), 860-868. https://doi.org/10.1039/C7PY01587A
  • Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances, 9(5), 2673-2702. https://doi.org/10.1039/C8RA08982E
  • Said, A., Abu-Elghait, M., Atta, H. M., & Salem, S. S. (2024). Antibacterial activity of green synthesized silver nanoparticles using Lawsonia inermis against common pathogens from urinary tract infection. Applied Biochemistry and Biotechnology, 196(1), 85-98. https://doi.org/10.1007/s12010-023-04482-1
  • Salayová, A., Bedlovičová, Z., Daneu, N., Baláž, M., Lukáčová Bujňáková, Z., Balážová, Ľ., & Tkáčiková, Ľ. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials, 11(4), 1005. https://doi.org/10.3390/nano11041005
  • Shaik, M. R., Khan, M., Kuniyil, M., Al-Warthan, A., Alkhathlan, H. Z., Siddiqui, M. R. H., Shaik, J. P., Ahamed, A., Mahmood, A., Khan, M., & Adil, S. F. (2018). Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability, 10(4), 913. https://doi.org/10.3390/su10040913
  • Singh, C., Anand, S. K., Upadhyay, R., Pandey, N., Kumar, P., Singh, D., Tiwari, P., Saini, R., Tiwari, K. N., Mishra, S. K., & Tilak, R. (2023). Green synthesis of silver nanoparticles by root extract of Premna integrifolia L. and evaluation of its cytotoxic and antibacterial activity. Materials Chemistry and Physics, 297, 127413. https://doi.org/10.1016/j.matchemphys.2023.127413
  • Tanner, E. E., Tschulik, K., Tahany, R., Jurkschat, K., Batchelor-McAuley, C., & Compton, R. G. (2015). Nanoparticle capping agent dynamics and electron transfer: polymer-gated oxidation of silver nanoparticles. The Journal of Physical Chemistry C, 119(32), 18808-18815. https://doi.org/10.1021/acs.jpcc.5b05789
  • Urnukhsaikhan, E., Bold, B. E., Gunbileg, A., Sukhbaatar, N., & Mishig-Ochir, T. (2021). Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Scientific Reports, 11(1), 21047. https://doi.org/10.1038/s41598-021-00520-2
  • Widatalla, H. A., Yassin, L. F., Alrasheid, A. A., Ahmed, S. A. R., Widdatallah, M. O., Eltilib, S. H., & Mohamed, A. A. (2022). Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances, 4(3), 911-915. https://doi.org/10.1039/D1NA00509J

Green synthesis of silver nanoparticles using Catalpa bignonioides fruit

Year 2025, Volume: 34 Issue: SI, 9 - 17
https://doi.org/10.38042/biotechstudies.1677389

Abstract

For the first time, the aqueous extract of Catalpa bignonioides fruit was used as a reducing agent in the synthesis of silver nanoparticles with antibacterial and antioxidant properties by the green method. Physicochemical, antioxidant, and antibacterial properties of silver nanoparticles were investigated. The synthesized silver nanoparticles were characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, and dynamic light scattering methods. The synthesis of silver nanoparticles was confirmed by red-brown color formation for visual observation. The surface plasmon resonance peak was observed at about 419 nm. The physicochemical test result shows that the average particle size of silver nanoparticles was between 22 and 31 nm. According to the antibacterial test results, silver nanoparticles exhibited good antibacterial properties by inhibiting the growth of gram-positive Staphylococcus aureus and gram-negative bacteria Escherichia coli. The 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity of the synthesized silver nanoparticles was investigated, and they exhibited antioxidant activity. Antibacterial and antioxidant silver nanoparticles have the potential to be used in textiles, cosmetics, food packaging, and biomedical applications.

Thanks

The author thanks to Ayşegül İnam (MSc, Manisa Celal Bayar University) and Tuğçe Mutaf Kılıç (MSc, Manisa Celal Bayar University) for their support.

References

  • Ahmad, M. Z., Saeed, A. M., Elnoubi, O. A., Alasiri, A. S., Abdel-Wahab, B. A., Alqahtani, A. A., Pathak, K., Saikia, R., Kakoti, B. B., & Das, A. (2024). Chitosan-based topical formulation integrated with green-synthesized silver nanoparticles utilizing Camellia sinensis leaf extracts: A promising approach for managing infected wounds. International Journal of Biological Macromolecules, 257, 128573. https://doi.org/10.1016/j.ijbiomac.2023.128573
  • Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., Bilal, M., Omer, M., Alamzeb, M., Salman, S M., & Ali, S. (2019). Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. International journal of nanomedicine, 5087-5107. https://doi.org/10.2147/IJN.S200254
  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of radiation research and applied sciences, 9(1), 1-7. https://doi.org/10.1016/j.jrras.2015.06.006
  • Alavi, M., Rai, M., Martinez, F., Kahrizi, D., Khan, H., Rose Alencar De Menezes, I., Coutinho, H. D., & Costa, J. G. M. (2022). The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: different mechanisms of action. Cellular, Molecular and Biomedical Reports, 2(1), 10-21. https://doi.org/10.55705/cmbr.2022.147090.1023
  • Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A., & Lin, M. (2018). Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171, 398-405. https://doi.org/10.1016/j.colsurfb.2018.07.059
  • Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., & Umbreen, S. (2022). Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-Response, 20(2), 15593258221088709. https://doi.org/10.1177/15593258221088709
  • Azarbani, F., & Shiravand, S. (2020). Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, antifungal and toxic effects. Green Chemistry Letters and Reviews, 13(1), 41-49. https://doi.org/10.1080/17518253.2020.1726504
  • Barabadi, H., Mojab, F., Vahidi, H., Marashi, B., Talank, N., Hosseini, O., & Saravanan, M. (2021). Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorganic Chemistry Communications, 129, 108647. https://doi.org/10.1016/j.inoche.2021.108647
  • Bozaci, E., & Altınışık Tağaç, A. (2022). Extraction and characterization of new cellulosic fiber from Catalpa bignonioides fruits for potential use in sustainable products. Polymers, 15(1), 201. https://doi.org/10.3390/polym15010201
  • Chen, Y., Mastalerz, M., & Schimmelmann, A. (2012). Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology, 104, 22-33. https://doi.org/10.1016/j.coal.2012.09.001
  • Dilshad, E., Bibi, M., Sheikh, N. A., Tamrin, K. F., Mansoor, Q., Maqbool, Q., & Nawaz, M. (2020). Synthesis of functional silver nanoparticles and microparticles with modifiers and evaluation of their antimicrobial, anticancer, and antioxidant activity. Journal of functional biomaterials, 11(4), 76. https://doi.org/10.3390/jfb11040076
  • Dolai, J., Mandal, K., & Jana, N. R. (2021). Nanoparticle size effects in biomedical applications. ACS Applied Nano Materials, 4(7), 6471-6496. https://doi.org/10.1021/acsanm.1c00987
  • Forough, M., & Farhadi, K. (2010). Biological and green synthesis of silver nanoparticles. Turkish Journal of Engineering and Environmental Sciences, 34(4), 281-287. https://doi.org/10.3906/muh-1005-30
  • Geçgel, Ü., Kocabıyık, B., & Üner, O. (2015). Adsorptive removal of methylene blue from aqueous solution by the activated carbon obtained from the fruit of catalpa bignonioides. Water, Air, & Soil Pollution, 226, 1-14. https://doi.org/10.1007/s11270-015-2513-4
  • Hassanzadeh-Tabrizi, S. A. (2023). Precise calculation of crystallite size of nanomaterials: A review. Journal of Alloys and Compounds, 171914. https://doi.org/10.1016/j.jallcom.2023.171914
  • Hesas, R. H., Niya, A. A., Daud, W. M. A. W., & Sahu, J. N. (2013). Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: optimization using surface response methodology. Chemical Engineering Research and Design, 91, 2447–2456. https://doi.org/10.1016/j.cherd.2013.06.004
  • Horikoshi, S., & Serpone, N. (Eds.). (2013). Microwaves in nanoparticle synthesis: fundamentals and applications (pp. 1-24). John Wiley & Sons. https://doi.org/10.1002/9783527648122.ch1
  • Jalilian, F., Chahardoli, A., Sadrjavadi, K., Fattahi, A., & Shokoohinia, Y. (2020). Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Advanced Powder Technology, 31(3), 1323-1332. https://doi.org/10.1016/j.apt.2020.01.011
  • Katta, V. K. M., & Dubey, R. S. (2021). Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Materials Today: Proceedings, 45, 794-798. https://doi.org/10.1016/j.matpr.2020.02.809
  • Khorsandi, K., Hosseinzadeh, R., Sadat Esfahani, H., Keyvani-Ghamsari, S., & Ur Rahman, S. (2021). Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities. Expert Review of Anti-infective Therapy, 19(10), 1299-1323. https://doi.org/10.1080/14787210.2021.1908125
  • Konyar, S. T. (2017). An Overview of Pollen and Anther Wall Development in Catalpa bignonioides Walter (BIGNONIACEAE). Trakya University Journal of Natural Sciences, 18(2), 123-132. https://doi.org/10.23902/trkjnat.309718
  • Mahiuddin, M., Saha, P., & Ochiai, B. (2020). Green synthesis and catalytic activity of silver nanoparticles based on Piper chaba stem extracts. Nanomaterials, 10(9), 1777. https://doi.org/10.3390/nano10091777
  • Martínez-Castañon, G. A., Nino-Martinez, N., Martinez-Gutierrez, F., Martínez-Mendoza, J. R., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of nanoparticle research, 10, 1343-1348. https://doi.org/10.1007/s11051-008-9428-6
  • Menichetti, A., Mavridi-Printezi, A., Mordini, D., & Montalti, M. (2023). Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. Journal of Functional Biomaterials, 14(5), 244. https://doi.org/10.3390/jfb14050244
  • Momchev, P., Ciganović, P., Jug, M., Marguí, E., Jablan, J., & Zovko Končić, M. (2020). Comparison of maceration and ultrasonication for green extraction of phenolic acids from Echinacea purpurea aerial parts. Molecules, 25(21), 5142. https://doi.org/10.3390/molecules25215142
  • Munoz-Mingarro, D., Acero, N., Llinares, F., Pozuelo, J. M., de Mera, A. G., Vicenten, J. A., Morales, L., Alguacil, L. F., & Pérez, C. (2003). Biological activity of extracts from Catalpa bignonioides Walt. (Bignoniaceae). Journal of Ethnopharmacology, 87(2-3), 163-167. https://doi.org/10.1016/S0378-8741(03)00111-9
  • Oh, Y., Lee, D., Park, S., Kim, S. H., & Kang, K. S. (2021). The chemical constituents from fruits of Catalpa bignonioides Walt. and their α-glucosidase inhibitory activity and insulin secretion effect. Molecules, 26(2), 362. https://doi.org/10.3390/molecules26020362
  • Panáček, A., Kvítek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Nevěčná, T., & Zbořil, R. (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110(33), 16248-16253. https://doi.org/10.1021/jp063826h
  • Panda, M. K., Dhal, N. K., Kumar, M., Mishra, P. M., & Behera, R. K. (2021). Green synthesis of silver nanoparticles and its potential effect on phytopathogens. Materials Today: Proceedings, 35, 233-238. https://doi.org/10.1016/j.matpr.2020.05.188
  • Patil, R. B., & Chougale, A. D. (2021). Analytical methods for the identification and characterization of silver nanoparticles: A brief review. Materials Today: Proceedings, 47, 5520-5532. https://doi.org/10.1016/j.matpr.2021.03.384
  • Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial cells, nanomedicine, and biotechnology, 45(7), 1272-1291. https://doi.org/10.1080/21691401.2016.1241792
  • Rajkumar, P. V., Prakasam, A., Rajeshkumar, S., Gomathi, M., Anbarasan, P. M., & Chandrasekaran, R. (2020). Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. South African Journal of Chemical Engineering, 32(1), 1-4. https://hdl.handle.net/10520/EJC-1d7a3051f1
  • Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100428. https://doi.org/10.1016/j.enmm.2021.100428
  • Rotaru, R., Savin, M., Tudorachi, N., Peptu, C., Samoila, P., Sacarescu, L., & Harabagiu, V. (2018). Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication. Polymer chemistry, 9(7), 860-868. https://doi.org/10.1039/C7PY01587A
  • Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances, 9(5), 2673-2702. https://doi.org/10.1039/C8RA08982E
  • Said, A., Abu-Elghait, M., Atta, H. M., & Salem, S. S. (2024). Antibacterial activity of green synthesized silver nanoparticles using Lawsonia inermis against common pathogens from urinary tract infection. Applied Biochemistry and Biotechnology, 196(1), 85-98. https://doi.org/10.1007/s12010-023-04482-1
  • Salayová, A., Bedlovičová, Z., Daneu, N., Baláž, M., Lukáčová Bujňáková, Z., Balážová, Ľ., & Tkáčiková, Ľ. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials, 11(4), 1005. https://doi.org/10.3390/nano11041005
  • Shaik, M. R., Khan, M., Kuniyil, M., Al-Warthan, A., Alkhathlan, H. Z., Siddiqui, M. R. H., Shaik, J. P., Ahamed, A., Mahmood, A., Khan, M., & Adil, S. F. (2018). Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability, 10(4), 913. https://doi.org/10.3390/su10040913
  • Singh, C., Anand, S. K., Upadhyay, R., Pandey, N., Kumar, P., Singh, D., Tiwari, P., Saini, R., Tiwari, K. N., Mishra, S. K., & Tilak, R. (2023). Green synthesis of silver nanoparticles by root extract of Premna integrifolia L. and evaluation of its cytotoxic and antibacterial activity. Materials Chemistry and Physics, 297, 127413. https://doi.org/10.1016/j.matchemphys.2023.127413
  • Tanner, E. E., Tschulik, K., Tahany, R., Jurkschat, K., Batchelor-McAuley, C., & Compton, R. G. (2015). Nanoparticle capping agent dynamics and electron transfer: polymer-gated oxidation of silver nanoparticles. The Journal of Physical Chemistry C, 119(32), 18808-18815. https://doi.org/10.1021/acs.jpcc.5b05789
  • Urnukhsaikhan, E., Bold, B. E., Gunbileg, A., Sukhbaatar, N., & Mishig-Ochir, T. (2021). Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Scientific Reports, 11(1), 21047. https://doi.org/10.1038/s41598-021-00520-2
  • Widatalla, H. A., Yassin, L. F., Alrasheid, A. A., Ahmed, S. A. R., Widdatallah, M. O., Eltilib, S. H., & Mohamed, A. A. (2022). Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances, 4(3), 911-915. https://doi.org/10.1039/D1NA00509J
There are 42 citations in total.

Details

Primary Language English
Subjects Nanobiotechnology
Journal Section Research Articles
Authors

Emine Altınkaya 0000-0002-5652-3156

Early Pub Date April 16, 2025
Publication Date
Submission Date August 1, 2024
Acceptance Date February 26, 2025
Published in Issue Year 2025 Volume: 34 Issue: SI

Cite

APA Altınkaya, E. (2025). Green synthesis of silver nanoparticles using Catalpa bignonioides fruit. Biotech Studies, 34(SI), 9-17. https://doi.org/10.38042/biotechstudies.1677389


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services