Research Article
BibTex RIS Cite

Ethyl vinyl acetate (EVA) composites with nanoclays and boric acid: Thermal and mechanical properties

Year 2025, Volume: 10 Issue: 1, 19 - 34, 01.04.2025
https://doi.org/10.30728/boron.1568002

Abstract

The polymers are widely used materials in various applications. Their flammability is a
concern when the material will be facing high temperatures and/or conditions resulting
in the incidence of ignition. The flame resistance of the polymers tends to be enhanced
by the utilization of inorganic materials as additives. Versatile inorganic materials can
be used for this purpose, e.g., ceramics (oxides, hydroxides, clays, etc.). The addition
of inorganic additives could alter the mechanical properties of the polymer-inorganic
composite structure, which should be considered during composite preparation as well.
In this study, two different nanoclays (up to 20/100 by weight) and boric acid (BA) were
added to ethyl vinyl acetate (EVA) to investigate possible enhancement in flame retardancy
of the polymer. The mechanical properties were also determined for the neat polymer and
polymer-inorganic composites to determine the effect of nanoclay and BA addition. The
prepared nanocomposites were evaluated in terms of their chemical structures (Fourier
transform infrared spectroscopy and X-Ray diffraction analysis), thermal characteristics
(thermogravimetric analysis), mechanical properties (tensile test), and flammability
behaviours. The NC 1.4 sample containing the highest amount of nanoclay had the longest
burning time and Young’s modulus. The NC 2.3 and NC 1.3-BA samples had relatively
higher stress-bearing capabilities. The addition of BA enhanced the stress-bearing capability
of NC 1 containing samples and it slightly increased the burning time for NC 2 containing
composites. The organic surface modifiers of nanoclays and BA addition were effective on
the thermal and mechanical characteristics of the nanoclay/EVA composites.were effective
on the thermal and mechanical characteristics of the nano-clay/EVA composites.

Thanks

HES Kablo (Kayseri, TR) should be acknowledged for its kind and generous support by supplying EVA to this research.

References

  • [1] Hou, Y., Xu, Z., Chu, F., Gui, Z., Song, L., Hu, Y., & Hu, W. (2021). A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites. Composites Part B: Engineering, 221, 109014. https://doi.org/10.1016/j.compositesb.2021.109014
  • [2] Rajczak, E., Arrigo, R., & Malucelli, G. (2020). Thermal stability and flame retardance of EVA containing DNAmodified clays. Thermochimica Acta, 686, 178546. https://doi.org/10.1016/j.tca.2020.178546
  • [3] Jeong, S. H., Park, C. H., Song, H., Heo, J. H., & Lee, J. H. (2022). Biomolecules as green flame retardants: Recent progress, challenges, and opportunities. Journal of Cleaner Production, 368, 133241. https://doi.org/10.1016/j.jclepro.2022.133241
  • [4] Xu, Y. J., Qu, L. Y., Liu, Y., & Zhu, P. (2021). An overview of alginates as flame-retardant materials: Pyrolysis behaviors, flame retardancy, and applications. Carbohydrate Polymers, 260, 117827. https://doi.org/10.1016/j.carbpol.2021.117827
  • [5] He, W., Song, P., Yu, B., Fang, Z., & Wang, H. (2020). Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science, 114, 100687. https://doi.org/10.1016/j.pmatsci.2020.100687
  • [6] Yılmaz Aydın, D., Gürü, M., Ayar, B., & Çakanyıldırım, Ç. (2016). Bor bileşiklerinin alev geciktirici ve yüksek sıcaklığa dayanıklı pigment olarak uygulanabilirliği [Applicability of boron compounds as flame retardant and high temperature resistant pigments]. Journal of Boron, 1(1), 33-39. https://dergipark.org.tr/en/download/article-file/173986
  • [7] Das, P., Manna, S., Behera, A. K., Shee, M., Basak, P., & Sharma, A. K. (2022). Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: A review. Environmental Research, 212, 113534. https://doi.org/10.1016/j.envres.2022.113534
  • [8] Rafiee, R., & Shahzadi, R. (2019). Mechanical properties of nanoclay and nanoclay reinforced polymers: A Review. Polymer Composites, 40(2), 431-445. https://doi.org/10.1002/pc.24725
  • [9] Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer-nanoclay composites. Applied Sciences, 8(9), 1696. https://doi.org/10.3390/app8091696
  • [10] Chuayjuljit, S., & Worawas, C. (2011). Nanocomposites of EVA/polystyrene nanoparticles/montmorillonite. Journal of Composite Materials, 45(6), 631-638. https://doi.org/10.1177/0021998310376116
  • [11] Ryu, H. J., Hang, N. T., Lee, J. H., Choi, J. Y., Choi, G., & Choy, J. H. (2020). Effect of organo-smectite clays on the mechanical properties and thermal stability of EVA nanocomposites. Applied Clay Science, 196, 105750. https://doi.org/10.1016/j.clay.2020.105750
  • [12] Aghjeh, M. R., Nazari, M., Khonakdar, H. A., Jafari, S. H., Wagenknecht, U., & Heinrich, G. (2015). In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: A combined theoretical and experimental approach. Materials and Design, 88, 1277-1289. https://doi.org/10.1016/j.matdes.2015.09.081
  • [13] Díez, E., Rodríguez, A., Gómez, J. M., & Galán, J. (2021). TG and DSC as tools to analyse the thermal behaviour of EVA copolymers. Journal of Elastomers and Plastics, 53(7), 792-805. https://doi.org/10.1177/0095244320988163
  • [14] Farias, G. M. G., Agrawal, P., Hanken, R. B. L., de Araújo, J. P., de Oliveira, A. D. B., & de Mélo, T. J. A. (2021). Effect of EVA copolymer containing different VA content on the thermal and rheological properties of bio-based high-density polyethylene/ethylene vinyl acetate blends. Journal of Thermal Analysis and Calorimetry, 146(5), 2127-2139. https://doi.org/10.1007/s10973-020-10423-5
  • [15] Chaudhary, D. S., Prasad, R., Gupta, R. K., & Bhattacharya, S. N. (2005). Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites. Thermochimica Acta, 433(1-2), 187-195. https://doi.org/10.1016/j.tca.2005.02.031
  • [16] Beyer, G. (2009). Nanocomposites - A new class of flame retardants. Plastics, Additives and Compounding, 11(2), 16-17, 19-21. https://doi.org/10.1016/S1464-391X(09)70048-0
  • [17] Erdem, A., & Dogan, M. (2023). Influence of boron bearing fillers on flame retardancy properties of huntite hydromagnesite filled ductile PLA biocomposites. Journal of Boron, 8(1), 16-24. https://doi.org/10.30728/boron.1135702
  • [18] Dogan, M., Dogan, S. D., Savas, L. A., Ozcelik, G., & Tayfun, U. (2021). Flame retardant effect of boron compounds in polymeric materials. Composites Part B: Engineering, 222, 109088. https://doi.org/10.1016/j.compositesb.2021.109088
  • [19] Uslu, B., Eskitoros-Togay, M., & Dilsiz, N. (2021). Improvement on flame retarding performance: Preparation and characterization of water-based indoor paints with addition of boric acid. Journal of Boron, 6(2), 309-315. https://doi.org/10.30728/boron.865316
  • [20] Bozacı, E. (2018). Application of boron compounds to polyacrylonitrile fabrics by environmentally friendly methods. Journal of Boron, 3(1), 17-23. https://doi.org/10.30728/boron.341441
  • [21] Nyambo, C., Kandare, E., & Wilkie, C. A. (2009). Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid. Polymer Degradation and Stability, 94(4), 513-520. https://doi.org/10.1016/j.polymdegradstab.2009.01.028
  • [22] Ozcelik, G., Elcin, O., Guney, S., Erdem, A., Hacioglu, F., & Dogan, M. (2022). Flame-retardant features of various boron compounds in thermoplastic polyurethane and performance comparison with aluminum trihydroxide and magnesium hydroxide. Fire and Materials, 46(7), 1020-1033. https://doi.org/10.1002/fam.3050
  • [23] Yao, M., Wu, H., Liu, H., Zhou, Z., Wang, T., Jiao, Y., & Qu, H. (2021). In-situ growth of boron nitride for the effect of layer-by-layer assembly modified magnesium hydroxide on flame retardancy, smoke suppression, toxicity and char formation in EVA. Polymer Degradation and Stability, 183, 109417. https://doi.org/10.1016/j.polymdegradstab.2020.109417
  • [24] Çeliker, H. İ., Başbozkurt, A. Ç., & Yaraş, A. (2020). Mechanical and thermal properties of boric acid and paper mill sludge reinforced polyester composites. Journal of Boron, 5(4), 163-169. https://doi.org/10.30728/boron.702466
  • [25] Titus, D., Samuel, E. J. J., & Roopan, S. M. (2019). Nanoparticle characterization techniques. In A. K. Shukla & Siavash Iravani (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles (pp. 303-319). Elsevier. https://doi.org/10.1016/b978-0-08-102579-6.00012-5
  • [26] Pedrosa, M. C. G., Filho, J. C. D., de Menezes, L. R., & da Silva, E. O. (2020). Chemical surface modification and characterization of carbon nanostructures without shape damage. Materials Research, 23(2). https://doi.org/10.1590/1980-5373-MR-2019-0493
  • [27] Varlı, H. S., Akkurt Yıldırım, M., Kızılbey, K., & Türkoğlu, N. (2024). Gene delivery via octadecylamine-based nanoparticles for iPSC generation from CCD1072- SK fibroblast cells. Current Issues in Molecular Biology, 46(11), 12588-12607. https://doi.org/10.3390/cimb46110747
  • [28] Ye, L., Miao, Y., Yan, H., Li, Z., Zhou, Y., Liu, J., & Liu, H. (2013). The synergistic effects of boroxo siloxanes with magnesium hydroxide in halogen-free flame retardant EVA/MH blends. Polymer Degradation and Stability, 98(4), 868-874. https://doi.org/10.1016/j.polymdegradstab.2013.01.001
  • [29] Luna, C. B. B., da Silva Barbosa Ferreira, E., Siqueira, D. D., dos Santos Filho, E. A., & Araújo, E. M. (2022). Additivation of the ethylene-vinyl acetate copolymer (EVA) with maleic anhydride (MA) and dicumyl peroxide (DCP): The impact of styrene monomer on cross-linking and functionalization. Polymer Bulletin, 79(9), 7323- 7346. https://doi.org/10.1007/s00289-021-03856-x
  • [30] Bartolomei, S. S., Santana, J. G., Valenzuela Díaz, F. R., Kavaklı, P. A., Guven, O., & Moura, E. A. B. (2020). Investigation of the effect of titanium dioxide and clay grafted with glycidyl methacrylate by gamma radiation on the properties of EVA flexible films. Radiation Physics and Chemistry, 169, 107973. https://doi.org/10.1016/j. radphyschem.2018.08.022
  • [31] Tambe, S. P., Naik, R. S., Singh, S. K., Patri, M., & Kumar, D. (2009). Studies on effect of nanoclay on the properties of thermally sprayable EVA and EVAI coatings. Progress in Organic Coatings, 65(4), 484- 489. https://doi.org/10.1016/j.porgcoat.2009.04.003
  • [32] Zhang, X., Yi, H., Bai, H., Zhao, Y., Min, F., & Song, S. (2017). Correlation of montmorillonite exfoliation with interlayer cations in the preparation of two-dimensional nanosheets. RSC Advances, 7(66), 41471-41478. https://doi.org/10.1039/c7ra07816a
  • [33] Osman, A. F., Tuty, T. F., Rakibuddin, M., Hashim, F., Tuan Johari, S. A. T., Ananthakrishnan, R., & Ramli, R. (2017). Pre-dispersed organo-montmorillonite (organo-MMT) nanofiller: Morphology, cytocompatibility and impact on flexibility, toughness and biostability of biomedical ethyl vinyl acetate (EVA) copolymer. Materials Science and Engineering C, 74, 194-206. https://doi.org/10.1016/j.msec.2016.11.137
  • [34] Gianelli, W., Camino, G., Dintcheva, N. T., Lo Verso, S., & La Mantia, F. P. (2004). EVA-montmorillonite nanocomposites: Effect of processing conditions. Macromolecular Materials and Engineering, 289(3), 238-244. https://doi.org/10.1002/mame.200300267
  • [35] Unlu, S. M., Dogan, S. D., & Dogan, M. (2014). Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polymers for Advanced Technologies, 25(8), 769-776. https://doi.org/10.1002/pat.3274

Nano-kil ve borik asitli Etil Vinil Asetat (EVA) kompozitleri: ısıl ve mekanik özellikler

Year 2025, Volume: 10 Issue: 1, 19 - 34, 01.04.2025
https://doi.org/10.30728/boron.1568002

Abstract

Polimerler pek çok uygulamada kullanılmaktadırlar fakat yanabilir olmaları sorun teşkil etmektedir. Polimerlere yanma dayanımı seramikler gibi (oksitler, hidroksitler, killer, vb.) inorganik malzemeler kullanılarak kazandırılabilir. Bu katkıların ilavesi polimer-inorganik kompozitlerin mekanik özelliklerini de değiştirebilir ki kompozit hazırlamada bu da dikkate alınmalıdır. Bu çalışmada etil vinil asetata (EVA) iki faklı nano-kil (ağırlıkça 20/100 oranına kadar) ve borik asit eklenerek polimerin yanmasında olası gecikme araştırılmıştır. Nano-kil ve BA ilavesinin etkisini belirlemek için saf polimer ve polimer-inorganik kompozitler için mekanik özellikler de belirlenmiştir. Hazırlanan nanokompozitlerin kimyasal yapıları (FT-IR, XRD), ısıl özellikleri (TGA), mekanik özellikleri (çekme testi) ve yanma davranışları değerlendirilmiştir. En yüksek nano-kil içeriğine sahip NC 1.4 örneği en uzun sürede yanmıştır. NC 2 örneğinin diğer örneklerden daha yüksek gerilim dayanımına ve Young katsayısına sahip olduğu bulunmuştur. Nano-killerdeki organik yüzey dönüştürücüler ve BA ilavesi nano-kil/EVA kompozitlerinin ısıl ve mekanik özellikleri üzerinde etkili olmuştur.

References

  • [1] Hou, Y., Xu, Z., Chu, F., Gui, Z., Song, L., Hu, Y., & Hu, W. (2021). A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites. Composites Part B: Engineering, 221, 109014. https://doi.org/10.1016/j.compositesb.2021.109014
  • [2] Rajczak, E., Arrigo, R., & Malucelli, G. (2020). Thermal stability and flame retardance of EVA containing DNAmodified clays. Thermochimica Acta, 686, 178546. https://doi.org/10.1016/j.tca.2020.178546
  • [3] Jeong, S. H., Park, C. H., Song, H., Heo, J. H., & Lee, J. H. (2022). Biomolecules as green flame retardants: Recent progress, challenges, and opportunities. Journal of Cleaner Production, 368, 133241. https://doi.org/10.1016/j.jclepro.2022.133241
  • [4] Xu, Y. J., Qu, L. Y., Liu, Y., & Zhu, P. (2021). An overview of alginates as flame-retardant materials: Pyrolysis behaviors, flame retardancy, and applications. Carbohydrate Polymers, 260, 117827. https://doi.org/10.1016/j.carbpol.2021.117827
  • [5] He, W., Song, P., Yu, B., Fang, Z., & Wang, H. (2020). Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science, 114, 100687. https://doi.org/10.1016/j.pmatsci.2020.100687
  • [6] Yılmaz Aydın, D., Gürü, M., Ayar, B., & Çakanyıldırım, Ç. (2016). Bor bileşiklerinin alev geciktirici ve yüksek sıcaklığa dayanıklı pigment olarak uygulanabilirliği [Applicability of boron compounds as flame retardant and high temperature resistant pigments]. Journal of Boron, 1(1), 33-39. https://dergipark.org.tr/en/download/article-file/173986
  • [7] Das, P., Manna, S., Behera, A. K., Shee, M., Basak, P., & Sharma, A. K. (2022). Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: A review. Environmental Research, 212, 113534. https://doi.org/10.1016/j.envres.2022.113534
  • [8] Rafiee, R., & Shahzadi, R. (2019). Mechanical properties of nanoclay and nanoclay reinforced polymers: A Review. Polymer Composites, 40(2), 431-445. https://doi.org/10.1002/pc.24725
  • [9] Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer-nanoclay composites. Applied Sciences, 8(9), 1696. https://doi.org/10.3390/app8091696
  • [10] Chuayjuljit, S., & Worawas, C. (2011). Nanocomposites of EVA/polystyrene nanoparticles/montmorillonite. Journal of Composite Materials, 45(6), 631-638. https://doi.org/10.1177/0021998310376116
  • [11] Ryu, H. J., Hang, N. T., Lee, J. H., Choi, J. Y., Choi, G., & Choy, J. H. (2020). Effect of organo-smectite clays on the mechanical properties and thermal stability of EVA nanocomposites. Applied Clay Science, 196, 105750. https://doi.org/10.1016/j.clay.2020.105750
  • [12] Aghjeh, M. R., Nazari, M., Khonakdar, H. A., Jafari, S. H., Wagenknecht, U., & Heinrich, G. (2015). In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: A combined theoretical and experimental approach. Materials and Design, 88, 1277-1289. https://doi.org/10.1016/j.matdes.2015.09.081
  • [13] Díez, E., Rodríguez, A., Gómez, J. M., & Galán, J. (2021). TG and DSC as tools to analyse the thermal behaviour of EVA copolymers. Journal of Elastomers and Plastics, 53(7), 792-805. https://doi.org/10.1177/0095244320988163
  • [14] Farias, G. M. G., Agrawal, P., Hanken, R. B. L., de Araújo, J. P., de Oliveira, A. D. B., & de Mélo, T. J. A. (2021). Effect of EVA copolymer containing different VA content on the thermal and rheological properties of bio-based high-density polyethylene/ethylene vinyl acetate blends. Journal of Thermal Analysis and Calorimetry, 146(5), 2127-2139. https://doi.org/10.1007/s10973-020-10423-5
  • [15] Chaudhary, D. S., Prasad, R., Gupta, R. K., & Bhattacharya, S. N. (2005). Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites. Thermochimica Acta, 433(1-2), 187-195. https://doi.org/10.1016/j.tca.2005.02.031
  • [16] Beyer, G. (2009). Nanocomposites - A new class of flame retardants. Plastics, Additives and Compounding, 11(2), 16-17, 19-21. https://doi.org/10.1016/S1464-391X(09)70048-0
  • [17] Erdem, A., & Dogan, M. (2023). Influence of boron bearing fillers on flame retardancy properties of huntite hydromagnesite filled ductile PLA biocomposites. Journal of Boron, 8(1), 16-24. https://doi.org/10.30728/boron.1135702
  • [18] Dogan, M., Dogan, S. D., Savas, L. A., Ozcelik, G., & Tayfun, U. (2021). Flame retardant effect of boron compounds in polymeric materials. Composites Part B: Engineering, 222, 109088. https://doi.org/10.1016/j.compositesb.2021.109088
  • [19] Uslu, B., Eskitoros-Togay, M., & Dilsiz, N. (2021). Improvement on flame retarding performance: Preparation and characterization of water-based indoor paints with addition of boric acid. Journal of Boron, 6(2), 309-315. https://doi.org/10.30728/boron.865316
  • [20] Bozacı, E. (2018). Application of boron compounds to polyacrylonitrile fabrics by environmentally friendly methods. Journal of Boron, 3(1), 17-23. https://doi.org/10.30728/boron.341441
  • [21] Nyambo, C., Kandare, E., & Wilkie, C. A. (2009). Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid. Polymer Degradation and Stability, 94(4), 513-520. https://doi.org/10.1016/j.polymdegradstab.2009.01.028
  • [22] Ozcelik, G., Elcin, O., Guney, S., Erdem, A., Hacioglu, F., & Dogan, M. (2022). Flame-retardant features of various boron compounds in thermoplastic polyurethane and performance comparison with aluminum trihydroxide and magnesium hydroxide. Fire and Materials, 46(7), 1020-1033. https://doi.org/10.1002/fam.3050
  • [23] Yao, M., Wu, H., Liu, H., Zhou, Z., Wang, T., Jiao, Y., & Qu, H. (2021). In-situ growth of boron nitride for the effect of layer-by-layer assembly modified magnesium hydroxide on flame retardancy, smoke suppression, toxicity and char formation in EVA. Polymer Degradation and Stability, 183, 109417. https://doi.org/10.1016/j.polymdegradstab.2020.109417
  • [24] Çeliker, H. İ., Başbozkurt, A. Ç., & Yaraş, A. (2020). Mechanical and thermal properties of boric acid and paper mill sludge reinforced polyester composites. Journal of Boron, 5(4), 163-169. https://doi.org/10.30728/boron.702466
  • [25] Titus, D., Samuel, E. J. J., & Roopan, S. M. (2019). Nanoparticle characterization techniques. In A. K. Shukla & Siavash Iravani (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles (pp. 303-319). Elsevier. https://doi.org/10.1016/b978-0-08-102579-6.00012-5
  • [26] Pedrosa, M. C. G., Filho, J. C. D., de Menezes, L. R., & da Silva, E. O. (2020). Chemical surface modification and characterization of carbon nanostructures without shape damage. Materials Research, 23(2). https://doi.org/10.1590/1980-5373-MR-2019-0493
  • [27] Varlı, H. S., Akkurt Yıldırım, M., Kızılbey, K., & Türkoğlu, N. (2024). Gene delivery via octadecylamine-based nanoparticles for iPSC generation from CCD1072- SK fibroblast cells. Current Issues in Molecular Biology, 46(11), 12588-12607. https://doi.org/10.3390/cimb46110747
  • [28] Ye, L., Miao, Y., Yan, H., Li, Z., Zhou, Y., Liu, J., & Liu, H. (2013). The synergistic effects of boroxo siloxanes with magnesium hydroxide in halogen-free flame retardant EVA/MH blends. Polymer Degradation and Stability, 98(4), 868-874. https://doi.org/10.1016/j.polymdegradstab.2013.01.001
  • [29] Luna, C. B. B., da Silva Barbosa Ferreira, E., Siqueira, D. D., dos Santos Filho, E. A., & Araújo, E. M. (2022). Additivation of the ethylene-vinyl acetate copolymer (EVA) with maleic anhydride (MA) and dicumyl peroxide (DCP): The impact of styrene monomer on cross-linking and functionalization. Polymer Bulletin, 79(9), 7323- 7346. https://doi.org/10.1007/s00289-021-03856-x
  • [30] Bartolomei, S. S., Santana, J. G., Valenzuela Díaz, F. R., Kavaklı, P. A., Guven, O., & Moura, E. A. B. (2020). Investigation of the effect of titanium dioxide and clay grafted with glycidyl methacrylate by gamma radiation on the properties of EVA flexible films. Radiation Physics and Chemistry, 169, 107973. https://doi.org/10.1016/j. radphyschem.2018.08.022
  • [31] Tambe, S. P., Naik, R. S., Singh, S. K., Patri, M., & Kumar, D. (2009). Studies on effect of nanoclay on the properties of thermally sprayable EVA and EVAI coatings. Progress in Organic Coatings, 65(4), 484- 489. https://doi.org/10.1016/j.porgcoat.2009.04.003
  • [32] Zhang, X., Yi, H., Bai, H., Zhao, Y., Min, F., & Song, S. (2017). Correlation of montmorillonite exfoliation with interlayer cations in the preparation of two-dimensional nanosheets. RSC Advances, 7(66), 41471-41478. https://doi.org/10.1039/c7ra07816a
  • [33] Osman, A. F., Tuty, T. F., Rakibuddin, M., Hashim, F., Tuan Johari, S. A. T., Ananthakrishnan, R., & Ramli, R. (2017). Pre-dispersed organo-montmorillonite (organo-MMT) nanofiller: Morphology, cytocompatibility and impact on flexibility, toughness and biostability of biomedical ethyl vinyl acetate (EVA) copolymer. Materials Science and Engineering C, 74, 194-206. https://doi.org/10.1016/j.msec.2016.11.137
  • [34] Gianelli, W., Camino, G., Dintcheva, N. T., Lo Verso, S., & La Mantia, F. P. (2004). EVA-montmorillonite nanocomposites: Effect of processing conditions. Macromolecular Materials and Engineering, 289(3), 238-244. https://doi.org/10.1002/mame.200300267
  • [35] Unlu, S. M., Dogan, S. D., & Dogan, M. (2014). Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polymers for Advanced Technologies, 25(8), 769-776. https://doi.org/10.1002/pat.3274
There are 35 citations in total.

Details

Primary Language English
Subjects Material Production Technologies, Materials Engineering (Other)
Journal Section Articles
Authors

İlker Erdem 0000-0001-5743-0835

Şeyma Avcı 0000-0003-1503-6412

Mehmet Fazıl Kapçı 0000-0003-3297-5307

Publication Date April 1, 2025
Submission Date October 16, 2024
Acceptance Date January 17, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Erdem, İ., Avcı, Ş., & Kapçı, M. F. (2025). Ethyl vinyl acetate (EVA) composites with nanoclays and boric acid: Thermal and mechanical properties. Journal of Boron, 10(1), 19-34. https://doi.org/10.30728/boron.1568002