SYNTHESIS OF MEDICINAL LEECH (HİRUDO VERBANA) SALIVA-INCORPORATED HYBRID NANOFLOWERS AND EVALUATIONS OF THEIR BIOLOGICAL APPLICATIONS
Year 2025,
Volume: 6 Issue: 1, 35 - 40, 30.06.2025
Erdal Yılmaz
,
Fatih Doğan Koca
,
Ayşe Demirbaş
,
Izzet Burcin Saticioglu
,
Behzat Çimen
,
İsmail Öçsoy
Abstract
Herein, we reported the formation of medicinal leech saliva (LS)-incorporated organic-inorganic nanoflower (LS-NF) with peroxidase mimic and antimicrobial activities. The medicinal leech saliva was used as an organic component and copper ion (Cu2+) acted as an inorganic part in the synthesis of LS-NF. Leech saliva was obtained from medicinal leeches Hirudo verbana, contains various amino acids, and it can react with Cu2+ ions in phosphate buffer through its accessible amine groups to form flower-shaped structures. These LS-NFs showed quite uniform and monodispersed morphology. They were systematically characterized with SEM, FTIR, and XRD for evaluation of morphology, bond vibrations, and crystal structure, respectively. The LS-NF acted as a Fenton reagent in the presence of hydrogen peroxide (H2O2), then we investigated their peroxidase-like and antimicrobial activities through the Fenton reaction.
References
- 1.Ge J, Lei J, Zare RN. Protein-inorganic hybrid nanoflowers. Nature nanotechnology 2012; 7: 428-432, 2012.
- 2.Wang LB, Wang YC, He R. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. Journal of American Chemical Society 2013; 135(4): 1272-1275.
- 3. Ozaydin G, Mirioglu M, Dadi S. Investigation of the free-radical polymerization of vinyl monomers using horseradish peroxidase (HRP) nanoflowers. Polymer Bulletin 2025.
- 4. Ozaydin G, Mirioglu M, Kaplan N: Horseradish peroxidase (HRP) nanoflowers-mediated polymerization of vinyl monomers. Journal of Polymer Research 2024; 31: 363, 2024.
- 5. Gokturk E, Ocsoy İ, Turac E, Sahmetlioglu E: Horseradish peroxidase-based hybrid nanoflowers with enhanced catalytical activities for polymerization reactions of phenol derivatives. Polymers For Advanced Technologies 2020; 31:2371–2377.
- 6. Dadi S, Temur N, Gul OT, Yilmaz V, Ocsoy I. In Situ Synthesis of Horseradish Peroxidase Nanoflower@Carbon Nanotube Hybrid Nanobiocatalysts with Greatly Enhanced Catalytic Activity. Langmuir 2023b; 39(13): 4819-4828.
- 7. Dadi S, Ocsoy I. Role of pretty nanoflowers as novel versatile analytical tools for sensing in biomedical and bioanalytical applications. Smart Medicine 2024.
- 8. Tran TD, Kim MI. Organic-inorganic hybrid nanoflowers as potent materials for biosensing and biocatalytic applications. BioChip Journal 2018; 12(4):268–279.
- 9. Cheon HJ, Adhikari MD, Chung M, Tran TD, Kim J, Kim MI. Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing. Advanced Healthcare Materials 2019; 8(9): e1801507. doi:10.1002/adhm.201801507.
- 10. Wang Q, Li X, Ren Y. Rapid and precise treatment selection for antimicrobial-resistant infection enabled by a nano-dilution SlipChip. Biosensors and Bioelectronics 2025; 271: 117084. doi:10.1016/j.bios.2024.117084.
- 11. Yang L, Zhang X, Li M, Qu L, Liu Z. Acetylcholinesterase-Cu3(PO4)2 hybrid nanoflowers for electrochemical detection of dichlorvos using square-wave voltammetry. Analytical Methods 2022; 14(39): 3911-3920. doi:10.1039/d2ay01014c.
- 12. Gul OT, Ocsoy I: Co-Enzymes based nanoflowers incorporated-magnetic carbon nanotubes: A new generation nanocatalyst for superior removal of cationic and anionic dyes with great repeated use. Environmental Technology and Innovation 2021a; 24: 101992. doi: 10.1016/j.eti.2021.101992.
- 13. Gul OT, Ocsoy I. Preparation of magnetic horseradish peroxidase-laccase nanoflower for rapid and efficient dye degradation with dual mechanism and cyclic use. Materials Letters 2021b; 303: 130501. doi: 10.1016/j.matlet.2021.130501.
- 14. Zhu X, Huang J, Liu J, Zhang H, Jiang J, Yu R. A dual enzyme-inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose. Nanoscale 2017; 9 (17): 5658-5663. doi:10.1039/c7nr00958e.
- 15. Koca FD, Demirezen Yilmaz D, Ertas Onmaz N, Ocsoy I. Peroxidase-like activity and antimicrobial properties of curcumin-inorganic hybrid nanostructure. Saudi Journal of Biological Sciences 2020; 27(10): 2574-2579. doi:10.1016/j.sjbs.2020.05.025.
- 16. Yilmaz SG, Demirbas A, Karaagac Z, Dadi S, Celik C et al. Synthesis of taurine-Cu3(PO4)2 hybrid nanoflower and their peroxidase-mimic and antimicrobial properties. Journal of Biotechnology 2022; 343: 96-101. doi:10.1016/j.jbiotec.2021.11.009.
- 17. Dadi S, Celik C, Mandal AK, Ocsoy I. Dopamine and norepinephrine assistant-synthesized nanoflowers immobilized membrane with peroxidase mimic activity for efficient detection of model substrates. Applied Nanoscience 2021; 11: 117–125. doi:10.1007/s13204-020-01577-7.
- 18. Dadi S, Cardoso MH, Mandal AK, Franco OL, Ildız N, et al. Natural Molecule-Incorporated Magnetic Organic-Inorganic Nanoflower: Investigation of Its Dual Fenton Reaction-Dependent Enzyme-Like Catalytic Activities with Cyclic Use. ChemistrySelect 2023a; 8: e202300404. doi: 10.1002/slct.202300404.
- 19. Aslan T, Dadi Ş, Kafdag O, Temur N, Ildız N et al. Rational design of EDTA-incorporated nanoflowers as novel and effective endodontic disinfection against biofilms. Odontology 2024; 112(2): 444-452. doi:10.1007/s10266-023-00857-2.
- 20. Dadi S, Celik C, Ocsoy I: Gallic acid nanoflower immobilized membrane with peroxidase-like activity for m-cresol detection. Science Reports 2020; 10(1): 16765. doi:10.1038/s41598-020-73778-7.
- 21. Altınkaynak C, Ildız N, Baldemir A, Ozdemir N, Yılmaz V, et al. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their antimicrobial activity. Derim 2019; 36 (2): 159-167. doi:10.16882/derim.2019.549151.
- 22. Wu ZF, Wang Z, Zhang Y, Ma YL, He CY, et al. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Science Reports 2016; 6: 22412. doi: 10.1038/srep22412.
- 23. Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, et al. Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology 2017;102: 60-66. doi:10.1016/j.enzmictec.2017.04.003.
- 24. Baldemir A, Köse NB, Ildiz N, Ilgun S, Yusufbeyoglu S, et al. Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity RSC Advances 2017; 7: 44303-44308. doi: 10.1039/C7RA07618E.
- 25. Baldemir Kılıç A, Ildız N, Yusufbeyoğlu S, Ocsoy I. Nanoflower synthesis formed at different pH based on Crocus sativus L. (Croci stigma, saffron) extract and its major components: a new approach for enhancing antioxidant, antimicrobial and catalytic activities. Inorganic and Nano-Metal Chemistry 2023; 55(1): 18–28. doi: 10.1080/24701556.2023.2240757.
- 26. Kalaycı B, Kaplan N, Mirioğlu M, Dadı Ş, Öçsoy İ, et al. Investigation of Peroxidase-Like Activity of Flower-Shaped Nanobiocatalyst from Viburnum Opulus L. Extract on the Polymerization Reactions. Jotcsa 2024;11(3):1321-1328. doi: 10.18596/jotcsa.1451444.
- 27. Heidari N, Tarahhomi A, van der Lee A. Structural and Molecular Packing study of Three New Amidophosphoric Acid Esters and Assessment of Their Inhibiting Activity Against SARS-CoV-2 by Molecular Docking. ChemistrySelect 2022; 7 (29): e202201504. doi:10.1002/slct.202201504.
- 28. Demirbas A, Karsli B, Dadi S, Arabaci N, Koca FD, Halici MG, et al. Formation of Umbilicaria decussata (Antarctic and Turkey) Extracts Based Nanoflowers with Their Peroxidase Mimic, Dye Degradation and Antimicrobial Properties. Chemical Biodiversity 2023; 20(8): e202300090. doi:10.1002/cbdv.202300090.
- 29. Haycraft JB. On the action of a secretion obtained from the medicinal leech on the coagulation of the blood. Proc R Soc Lond.; 36: 478–87, 1883.
- 30. Baskova IP, Zavalova LL, Basanova AV, Moshkovskii SA, Zgoda VG. Protein profiling of the medicinal leech salivary gland secretion by proteomic analytical methods. Biochemistry 2004; 69(7):770-775. doi:10.1023/b:biry.0000040202.21965.2a.
Tıbbi sülük salyası içeren çiçek şekilli hibrit nanoyapıların sentezlenmesi ve biyolojik uygulamalarda değerlendirilmesi
Year 2025,
Volume: 6 Issue: 1, 35 - 40, 30.06.2025
Erdal Yılmaz
,
Fatih Doğan Koca
,
Ayşe Demirbaş
,
Izzet Burcin Saticioglu
,
Behzat Çimen
,
İsmail Öçsoy
Abstract
Bu çalışmada, tıbbi sülük salyası (H. verbana) kullanarak organik ve inorganik çiçek şekilli nanoyapıların (LS-NF) peroksidaz ve antimikrobiyal etkilere sahip olduğu bildirilmiştir. Çiçek şekilli nano yapıların sentesinde sülük salyası organik bileşen olarak kullanılırken, bakır iyonları (Cu2+) ise inorganik bileşen olarak rol almıştır. Birçok amino asit içeren tıbbi sülük salyası fosfat tampon içindeki Cu2+ iyonlarının amin grupları üzerinden çiçek şekilli nano yapılar oluşturmaktadır. Bu çiçek şekilli nano yapılar oldukça düzgün ve homojen bir dağılım sergiledi. Sentezlenen bu nano yapılar morfolojik, bağ titreşimleri ve kristal yapıları bakımından SEM, FTIR ve XDR analizleri ile sistematik bir şekilde karakterize edildi. Çiçek şekilli nano yapılar (LS-NF) hidrojen peroksit (H2O2) varlığında bir Fenton reaktifi olarak davranmış olup, bunlar peroksidaz benzeri ve antibiyotik aktiviteler bakımından incelendi.
References
- 1.Ge J, Lei J, Zare RN. Protein-inorganic hybrid nanoflowers. Nature nanotechnology 2012; 7: 428-432, 2012.
- 2.Wang LB, Wang YC, He R. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. Journal of American Chemical Society 2013; 135(4): 1272-1275.
- 3. Ozaydin G, Mirioglu M, Dadi S. Investigation of the free-radical polymerization of vinyl monomers using horseradish peroxidase (HRP) nanoflowers. Polymer Bulletin 2025.
- 4. Ozaydin G, Mirioglu M, Kaplan N: Horseradish peroxidase (HRP) nanoflowers-mediated polymerization of vinyl monomers. Journal of Polymer Research 2024; 31: 363, 2024.
- 5. Gokturk E, Ocsoy İ, Turac E, Sahmetlioglu E: Horseradish peroxidase-based hybrid nanoflowers with enhanced catalytical activities for polymerization reactions of phenol derivatives. Polymers For Advanced Technologies 2020; 31:2371–2377.
- 6. Dadi S, Temur N, Gul OT, Yilmaz V, Ocsoy I. In Situ Synthesis of Horseradish Peroxidase Nanoflower@Carbon Nanotube Hybrid Nanobiocatalysts with Greatly Enhanced Catalytic Activity. Langmuir 2023b; 39(13): 4819-4828.
- 7. Dadi S, Ocsoy I. Role of pretty nanoflowers as novel versatile analytical tools for sensing in biomedical and bioanalytical applications. Smart Medicine 2024.
- 8. Tran TD, Kim MI. Organic-inorganic hybrid nanoflowers as potent materials for biosensing and biocatalytic applications. BioChip Journal 2018; 12(4):268–279.
- 9. Cheon HJ, Adhikari MD, Chung M, Tran TD, Kim J, Kim MI. Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing. Advanced Healthcare Materials 2019; 8(9): e1801507. doi:10.1002/adhm.201801507.
- 10. Wang Q, Li X, Ren Y. Rapid and precise treatment selection for antimicrobial-resistant infection enabled by a nano-dilution SlipChip. Biosensors and Bioelectronics 2025; 271: 117084. doi:10.1016/j.bios.2024.117084.
- 11. Yang L, Zhang X, Li M, Qu L, Liu Z. Acetylcholinesterase-Cu3(PO4)2 hybrid nanoflowers for electrochemical detection of dichlorvos using square-wave voltammetry. Analytical Methods 2022; 14(39): 3911-3920. doi:10.1039/d2ay01014c.
- 12. Gul OT, Ocsoy I: Co-Enzymes based nanoflowers incorporated-magnetic carbon nanotubes: A new generation nanocatalyst for superior removal of cationic and anionic dyes with great repeated use. Environmental Technology and Innovation 2021a; 24: 101992. doi: 10.1016/j.eti.2021.101992.
- 13. Gul OT, Ocsoy I. Preparation of magnetic horseradish peroxidase-laccase nanoflower for rapid and efficient dye degradation with dual mechanism and cyclic use. Materials Letters 2021b; 303: 130501. doi: 10.1016/j.matlet.2021.130501.
- 14. Zhu X, Huang J, Liu J, Zhang H, Jiang J, Yu R. A dual enzyme-inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose. Nanoscale 2017; 9 (17): 5658-5663. doi:10.1039/c7nr00958e.
- 15. Koca FD, Demirezen Yilmaz D, Ertas Onmaz N, Ocsoy I. Peroxidase-like activity and antimicrobial properties of curcumin-inorganic hybrid nanostructure. Saudi Journal of Biological Sciences 2020; 27(10): 2574-2579. doi:10.1016/j.sjbs.2020.05.025.
- 16. Yilmaz SG, Demirbas A, Karaagac Z, Dadi S, Celik C et al. Synthesis of taurine-Cu3(PO4)2 hybrid nanoflower and their peroxidase-mimic and antimicrobial properties. Journal of Biotechnology 2022; 343: 96-101. doi:10.1016/j.jbiotec.2021.11.009.
- 17. Dadi S, Celik C, Mandal AK, Ocsoy I. Dopamine and norepinephrine assistant-synthesized nanoflowers immobilized membrane with peroxidase mimic activity for efficient detection of model substrates. Applied Nanoscience 2021; 11: 117–125. doi:10.1007/s13204-020-01577-7.
- 18. Dadi S, Cardoso MH, Mandal AK, Franco OL, Ildız N, et al. Natural Molecule-Incorporated Magnetic Organic-Inorganic Nanoflower: Investigation of Its Dual Fenton Reaction-Dependent Enzyme-Like Catalytic Activities with Cyclic Use. ChemistrySelect 2023a; 8: e202300404. doi: 10.1002/slct.202300404.
- 19. Aslan T, Dadi Ş, Kafdag O, Temur N, Ildız N et al. Rational design of EDTA-incorporated nanoflowers as novel and effective endodontic disinfection against biofilms. Odontology 2024; 112(2): 444-452. doi:10.1007/s10266-023-00857-2.
- 20. Dadi S, Celik C, Ocsoy I: Gallic acid nanoflower immobilized membrane with peroxidase-like activity for m-cresol detection. Science Reports 2020; 10(1): 16765. doi:10.1038/s41598-020-73778-7.
- 21. Altınkaynak C, Ildız N, Baldemir A, Ozdemir N, Yılmaz V, et al. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their antimicrobial activity. Derim 2019; 36 (2): 159-167. doi:10.16882/derim.2019.549151.
- 22. Wu ZF, Wang Z, Zhang Y, Ma YL, He CY, et al. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Science Reports 2016; 6: 22412. doi: 10.1038/srep22412.
- 23. Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, et al. Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology 2017;102: 60-66. doi:10.1016/j.enzmictec.2017.04.003.
- 24. Baldemir A, Köse NB, Ildiz N, Ilgun S, Yusufbeyoglu S, et al. Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity RSC Advances 2017; 7: 44303-44308. doi: 10.1039/C7RA07618E.
- 25. Baldemir Kılıç A, Ildız N, Yusufbeyoğlu S, Ocsoy I. Nanoflower synthesis formed at different pH based on Crocus sativus L. (Croci stigma, saffron) extract and its major components: a new approach for enhancing antioxidant, antimicrobial and catalytic activities. Inorganic and Nano-Metal Chemistry 2023; 55(1): 18–28. doi: 10.1080/24701556.2023.2240757.
- 26. Kalaycı B, Kaplan N, Mirioğlu M, Dadı Ş, Öçsoy İ, et al. Investigation of Peroxidase-Like Activity of Flower-Shaped Nanobiocatalyst from Viburnum Opulus L. Extract on the Polymerization Reactions. Jotcsa 2024;11(3):1321-1328. doi: 10.18596/jotcsa.1451444.
- 27. Heidari N, Tarahhomi A, van der Lee A. Structural and Molecular Packing study of Three New Amidophosphoric Acid Esters and Assessment of Their Inhibiting Activity Against SARS-CoV-2 by Molecular Docking. ChemistrySelect 2022; 7 (29): e202201504. doi:10.1002/slct.202201504.
- 28. Demirbas A, Karsli B, Dadi S, Arabaci N, Koca FD, Halici MG, et al. Formation of Umbilicaria decussata (Antarctic and Turkey) Extracts Based Nanoflowers with Their Peroxidase Mimic, Dye Degradation and Antimicrobial Properties. Chemical Biodiversity 2023; 20(8): e202300090. doi:10.1002/cbdv.202300090.
- 29. Haycraft JB. On the action of a secretion obtained from the medicinal leech on the coagulation of the blood. Proc R Soc Lond.; 36: 478–87, 1883.
- 30. Baskova IP, Zavalova LL, Basanova AV, Moshkovskii SA, Zgoda VG. Protein profiling of the medicinal leech salivary gland secretion by proteomic analytical methods. Biochemistry 2004; 69(7):770-775. doi:10.1023/b:biry.0000040202.21965.2a.