Research Article
BibTex RIS Cite

Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi

Year 2025, Volume: 8 Issue: 3, 793 - 798, 15.05.2025
https://doi.org/10.34248/bsengineering.1569246

Abstract

Polipropilen (PP), otomotiv, ambalaj, ev eşyaları ve tekstil endüstrisi gibi pek çok alanda kullanılan termoplastik bir polimer türüdür. Boru sektöründe de yaygın olarak kullanılmaya başlanmıştır. Bunun başlıca nedeni metallerde olduğu gibi korozyon oluşmaması ve buna karşı ek bir korumaya ihtiyaç duyulmamasıdır. Bu sayede çelik ve çimento sistemlerinin yerini almaktadır. Boru sistemlerinde kompozit malzemelerin kullanılması daha hafif ve ince yapılar sağlamakta ve maliyetleri azaltmaktadır. Ancak, özellikle boru çapları büyüdükçe, kompozit yapı gerekliliği artmaktadır. Bu amaçla termoset kompozitler kullanılsa da PP kompozitlerin bunlara göre birçok avantajı bulunmaktadır. Bunlar yüksek dayanım, hafiflik, yüksek kimyasal direnç, düşük su emilimi, düşük maliyetli ve geri dönüşüm kabiliyetidir. Ancak PP kompozit üretimindeki temel sorun fiber-matris arayüzey oluşumudur. Bu sorunun üstesinden gelmek için melez iplikler geliştirilmiştir. Çeşitli türleri olmakla birlikte genel olarak takviye elyaf ve polimer elyaf karışımlarından oluşmaktadırlar. Bu sayede, sıcaklık altında işlenmesi sırasında polimer elyaf ergiyip takviye elyafları içine daha iyi emdirilebilir. Bu çalışmada cam elyaf takviyeli PP borular elde etmek amacıyla elyaf sarma işlemi uygulanmıştır. PP'yi daha kolay takviyelendirmek için cam elyaf/PP melez iplikler kullanılmıştır. Geleneksel olarak termosetlerin işlenmesinde kullanılan elyaf sarma işlemi, ısı ve basınç sistemleri ilavesiyle melez iplikler için modifiye edilmiştir. Helisel ve çevresel sarım teknikleri, ayrıca bunların kombinasyonu uygulanmıştır. Üretilen borulardan çevresel ve eksenel yönlerde numuneler alınmıştır. Çekme, eğme ve darbe testleri yapılarak, sonuçlar takviyesiz borular ile karşılaştırılmıştır. Üretilen tüm melez iplikli borular takviyesiz boruya göre daha yüksek modül ve dayanım göstermiştir. Genel olarak kombinasyonlu sarım tekniğiyle üretilen kompozit borudan özellikle çevresel yönde en yüksek sonuçlar alınmıştır.

Supporting Institution

Yıldız Teknik Üniversitesi 2014-07-02-GEP-02; Bilim Sanayi ve Teknoloji Bakanlığı San-Tez Programı 01549.STZ.2012-2

Project Number

Yıldız Teknik Üniversitesi 2014-07-02-GEP-02; Bilim Sanayi ve Teknoloji Bakanlığı San-Tez Programı 01549.STZ.2012-2

Thanks

Bu çalışma, Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi 2014-07-02-GEP-02 kodlu proje kapsamında ve Bilim Sanayi ve Teknoloji Bakanlığı San-Tez Programı 01549.STZ.2012-2 kodlu proje kapsamında desteklenmiş.

References

  • Akhmetov RR, Krainov SA, Nazarova MN, Tsenev AN, 2018. Research of main gas pipeline (steels X65, X60, 17G1S) susceptibility to stress corrosion cracking, hydrogen uptake and ST 37-2 steel fatigue testing. Earth Environ Sci, 194: 042018.
  • Alabtah FG, Mahdi E, Eliyan FF, 2021. The use of fiber reinforced polymeric composites in pipelines: A review. Compos Struct, 276: 114595.
  • Alsabri A, Al-Ghamdi SG, 2020. Carbon footprint and embodied energy of PVC, PE, and PP piping: Perspective on environmental performance. Energy Rep, 6: 364–370.
  • Baali B, Benmounah A, Rokbi M, 2020. Mechanical characterization and optimum design of wound glass-fiber-reinforced polymer pipes based on the winding angle and the number of plies. Mech Compos Mater, 56: 673–684.
  • Bai Y, Yu B, Cheng P, Wang N, Ruan W, Tang J, Babapour A, 2015. Bending behavior of reinforced thermoplastic pipe. J Offshore Mech Arct Eng, 137(2): 021701.
  • Balkan O, Demirer H, Ezdeşir A, Yıldırım H, 2008. Effects of welding procedures on mechanical and morphological properties of hot gas butt welded PE, PP, and PVC sheets. Polym Eng Sci, 48(4): 732–746.
  • Barber P, Atkinson JR, 1974. The use of tensile tests to determine the optimum conditions for butt fusion welding certain grades of polyethylene, polybutene-1 and polypropylene pipes. J Mater Sci, 9(9): 1456–1466.
  • Boon YD, Joshi SC, Bhudolia SK, 2021. Filament winding and automated fiber placement with in situ consolidation for fiber reinforced thermoplastic polymer composites. Polymers, 13(12): 1951.
  • Boragno L, Braun H, Hartl AM, Lang RW, 2017. Polypropylene for pressure pipes—from polymer design to long-term performance. In: Grellmann W, Langer B, editors. Deformation and Fracture Behaviour of Polymer Materials. Springer, New York, USA, pp: 189–201.
  • Bush SF, 1999. Long glass fibre reinforcement of thermo plastics. Int Polym Process, 14(3): 282–290.
  • Cao Y, Yu X, Liu Z, Bai Y, Gong X, 2017. On critical design parameters of reinforced thermoplastic pipes associated with the pipe-lay installation. Ships Offshore Struct, 12(sup1): 134–143.
  • Connell M, Stenson A, Weinrich L, LeChevallier M, Boyd SL, Ghosal RR, Dey R, Whelton AJ, 2016. PEX and PP water pipes: Assimilable carbon, chemicals, and odors. J AWWA, 108(4): 192-204.
  • Delli E, Giliopoulos D, Bikiaris DN, Chrissafis K, 2021. Fibre length and loading impact on the properties of glass fibre reinforced polypropylene random composites. Compos Struct, 263: 113678.
  • Deng C, Jin B, Zhao Z, Shen K, Zhang J, 2019. The influence of hoop shear field on the structure and performances of glass fiber reinforced three‐layer polypropylene random copolymer pipe. J Appl Polym Sci, 136(3): 46985.
  • Domaneschi M, 2012. Experimental and numerical study of standard impact tests on polypropylene pipes with brittle behaviour. Proc Inst Mech Eng B, 226(12): 2035–2046.
  • Ford RA, 2004. Semi-finished thermoplastic composites-realising their potential. Mater Des, 25(7): 631–636.
  • Friedrich K, 1999. Commingled yarns and their use for composites. In: Karger-Kocsis J, editor. Polypropylene: An A-Z Reference. Springer, Dordrecht, Netherlands, pp: 148.
  • Gahleitner M, Tranninger C, Doshev P, 2019. Polypropylene Copolymers. In: Karger-Kocsis J, Bárány T, editors. Polypropylene handbook. Springer, Cham, London, UK, pp: 585–602.
  • Gebrehiwot SZ, Espinosa-Leal L, 2022. Characterising the linear viscoelastic behaviour of an injection moulding grade polypropylene polymer. Mech Time-Depend Mater, 26(4): 791–814.
  • Gibson AG, 2003. The cost effective use of fibre reinforced composites offshore. HSE, Bootle, London, UK, pp: 123.
  • Goodship V, 2016. Injection Molding of Thermoplastics. In: Goodship V, Middleton B, Cherrington R, editors. design and manufacture of plastic components for multifunctionality. William Andrew Publishing, New York, USA, pp: 103–170.
  • Hametner Ch, 1999. Polypropylene pipes for drinking water supply. J Macromol Sci A, 36(11): 1751–1758.
  • Hastie JC, Guz IA, Kashtalyan M, 2022. Numerical modelling of spoolable thermoplastic composite pipe (TCP) under combined bending and thermal load. Ships Offshore Struct, 17(9): 1975–1986.
  • Huang Y, Gentle CR, Lacey M, Prentice P, 2000. Analysis and improvement of die design for the processing of extruded plastic pipes. Mater Des, 21(5): 465–475.
  • Karbuz P, Dogu M, Ozbek B, 2024. Manufacturing of hexagonal cross-section thermoplastic matrix composite parts with automatic filament winding system. J Manuf Proc, 129: 62–76.
  • Kristoffersen M, Børvik T, Langseth M, Ilstad H, Levold E, 2017. Transverse deformation of pressurised pipes with different axial loads. J Offshore Mech Arct Eng, 3B: 1-10.
  • Litvinov VM, Soliman M, 2005. The effect of storage of poly(propylene) pipes under hydrostatic pressure and elevated temperatures on the morphology, molecular mobility and failure behaviour. Polymer, 46(9): 3077–3089.
  • Lou M, Wang Y, Tong B, Wang S, 2020. Effect of temperature on tensile properties of reinforced thermoplastic pipes. Compos Struct, 241: 112119.
  • Lynam C, Milani AS, Trudel-Boucher D, Borazghi H, 2014. Predicting dimensional distortions in roll forming of comingled polypropylene/glass fiber thermoplastic composites: On the effect of matrix viscoelasticity. J Compos Mater, 48(28): 3539–3552.
  • Malta ER, De Arruda Martins CA, 2014. Finite element analysis of flexible pipes under compression. J Offshore Mech Arct Eng, 6A.
  • Mattausch H, 2015. Development of halogen-free flame retardant polypropylene compounds for pipe application. PhD thesis, University of Leoben, Leoben, Austria, pp: 182.
  • Menon ES, 2011. Pipe strength and wall thickness. Pipeline Planning and Construction Field Manual. Gulf Prof Publ, 2011: 105–121.
  • Moussa HK, Challita G, Yared W, Rizk MA, 2022. Predictive analysis of the influence of a polypropylene-talc composite layer on the ring stiffness of a multilayer plastic pipe. Mech Compos Mater, 57(6): 749–758.
  • Ohaeri E, Eduok U, Szpunar J, 2018. Hydrogen related degradation in pipeline steel: A review. Int J Hydrogen Energy, 43(31): 14584–14617.
  • Özbay B, Bekem A, Ünal A, 2020. Manufacturing of hybrid yarn thermoplastic composites by the method of filament winding. Gazi Univ J Sci, 33(1): 214–227.
  • Pontes AJ, Pouzada AS, 2004. Ejection force in tubular injection moldings. Part I: Effect of processing conditions. J Polym Eng, 44(5): 891–897.
  • Poungthong P, Kolitawong C, Saengow C, Giacomin AJ, 2018. Plastic pipe solidification in extrusion. J Polym Eng, 38(6): 591–603.
  • Rachmawati P, Ma’arif S, 2022. Comparison of corrosion rate on mild steel welded joints using acid and alkaline solutions. AIP Conf Proc, 2499(1): 040004.
  • Rafiee R, Mazhari B, 2016. Evaluating long-term performance of Glass Fiber Reinforced Plastic pipes subjected to internal pressure. Constr Build Mater, 122: 694–701.
  • Selver E, Potluri P, 2017. Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites. Eur Mech Sci, 1(3): 93–103.
  • Singer R, Ollick AM, Elhadary M, 2021. Effect of cross-head speed and temperature on the mechanical properties of polypropylene and glass fiber reinforced polypropylene pipes. Alex Eng J, 60(6): 4947–4960.
  • Vaneker THJ, 2017. Material extrusion of continuous fiber reinforced plastics using commingled yarn. Procedia CIRP, 66: 317–322.
  • Walsh T, 2011. The plastic piping industry in north america. In: Kutz M, editor. Applied Plastics Engineering Handbook. William Andrew Publishing, New York, USA, pp: 585–602.
  • Wasim M, Shoaib S, Mubarak NM, Inamuddin, Asiri AM, 2018. Factors influencing corrosion of metal pipes in soils. Environ Chem Lett, 16: 861–879.
  • Yu K, Morozov EV, Ashraf MA, Shankar K, 2015a. Analysis of flexural behaviour of reinforced thermoplastic pipes considering material nonlinearity. Compos Struct, 119: 385–393.
  • Yu K, Morozov EV, Ashraf MA, Shankar K, 2015b. Numerical analysis of the mechanical behaviour of reinforced thermoplastic pipes under combined external pressure and bending. Compos Struct, 131: 453–461.
  • Yu K, Morozov EV, Ashraf MA, Shankar K, 2017. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications. J Reinf Plast Compos, 36(20): 1514–1530.
  • Yu L, Wu T, Chen T, Yang F, Xiang M, 2014. Polypropylene random copolymer in pipe application: Performance improvement with controlled molecular weight distribution. Thermochim Acta, 578: 43–52.
  • Zhu XK, Leis BN, 2005. Analytic prediction of plastic collapse failure pressure of line pipes. ASME Conf Proc, 3: 109–118.

Thermoplastic Composite Pipe Production from Glass Fiber/Polypropylene Hybrid Yarns using Filament Winding Method

Year 2025, Volume: 8 Issue: 3, 793 - 798, 15.05.2025
https://doi.org/10.34248/bsengineering.1569246

Abstract

Polypropylene (PP) is a type of thermoplastic polymer used in many areas such as automotive, packaging, household goods and textile industries. It has also begun to be widely used in the pipe industry. The main reason for this is that corrosion does not occur as in metals and there is no need for additional protection against it. Thus, it replaces steel and cement systems. The use of composite materials in piping systems provides lighter and thinner structures and reduces costs. However, the composite structure is necessary, especially when pipe diameters increase. Although thermoset composites are used for this purpose, PP composites have many advantages over them. These are high strength, lightness, high chemical resistance, low water absorption, low cost and recyclability. However, the main problem in PP composite production is fiber-matrix interface formation. Hybrid yarns have been developed to overcome this problem. Although there are various types, they generally consist of mixtures of reinforcement fibers and polymer fibers. Thus, polymer fibers can melt and be better absorbed into the reinforcement fibers during processing under temperature. In this study, the filament winding process was applied to obtain glass fiber reinforced PP pipes. Glass fiber/PP hybrid yarns were used to reinforce PP more easily. The filament winding process, traditionally used to process thermosets, has been modified for hybrid yarns with the addition of heat and pressure systems. Helical and circumferential winding techniques, as well as combinations of these, have been applied. Samples were taken from the produced pipes in circumferential and axial directions. Tensile, bending and impact tests were performed, and the results were compared with unreinforced pipes. All hybrid yarn pipes produced showed higher modulus and strength than unreinforced pipes. In general, the highest results were obtained from the composite pipe produced with the combination winding technique, especially in the environmental direction.

Project Number

Yıldız Teknik Üniversitesi 2014-07-02-GEP-02; Bilim Sanayi ve Teknoloji Bakanlığı San-Tez Programı 01549.STZ.2012-2

References

  • Akhmetov RR, Krainov SA, Nazarova MN, Tsenev AN, 2018. Research of main gas pipeline (steels X65, X60, 17G1S) susceptibility to stress corrosion cracking, hydrogen uptake and ST 37-2 steel fatigue testing. Earth Environ Sci, 194: 042018.
  • Alabtah FG, Mahdi E, Eliyan FF, 2021. The use of fiber reinforced polymeric composites in pipelines: A review. Compos Struct, 276: 114595.
  • Alsabri A, Al-Ghamdi SG, 2020. Carbon footprint and embodied energy of PVC, PE, and PP piping: Perspective on environmental performance. Energy Rep, 6: 364–370.
  • Baali B, Benmounah A, Rokbi M, 2020. Mechanical characterization and optimum design of wound glass-fiber-reinforced polymer pipes based on the winding angle and the number of plies. Mech Compos Mater, 56: 673–684.
  • Bai Y, Yu B, Cheng P, Wang N, Ruan W, Tang J, Babapour A, 2015. Bending behavior of reinforced thermoplastic pipe. J Offshore Mech Arct Eng, 137(2): 021701.
  • Balkan O, Demirer H, Ezdeşir A, Yıldırım H, 2008. Effects of welding procedures on mechanical and morphological properties of hot gas butt welded PE, PP, and PVC sheets. Polym Eng Sci, 48(4): 732–746.
  • Barber P, Atkinson JR, 1974. The use of tensile tests to determine the optimum conditions for butt fusion welding certain grades of polyethylene, polybutene-1 and polypropylene pipes. J Mater Sci, 9(9): 1456–1466.
  • Boon YD, Joshi SC, Bhudolia SK, 2021. Filament winding and automated fiber placement with in situ consolidation for fiber reinforced thermoplastic polymer composites. Polymers, 13(12): 1951.
  • Boragno L, Braun H, Hartl AM, Lang RW, 2017. Polypropylene for pressure pipes—from polymer design to long-term performance. In: Grellmann W, Langer B, editors. Deformation and Fracture Behaviour of Polymer Materials. Springer, New York, USA, pp: 189–201.
  • Bush SF, 1999. Long glass fibre reinforcement of thermo plastics. Int Polym Process, 14(3): 282–290.
  • Cao Y, Yu X, Liu Z, Bai Y, Gong X, 2017. On critical design parameters of reinforced thermoplastic pipes associated with the pipe-lay installation. Ships Offshore Struct, 12(sup1): 134–143.
  • Connell M, Stenson A, Weinrich L, LeChevallier M, Boyd SL, Ghosal RR, Dey R, Whelton AJ, 2016. PEX and PP water pipes: Assimilable carbon, chemicals, and odors. J AWWA, 108(4): 192-204.
  • Delli E, Giliopoulos D, Bikiaris DN, Chrissafis K, 2021. Fibre length and loading impact on the properties of glass fibre reinforced polypropylene random composites. Compos Struct, 263: 113678.
  • Deng C, Jin B, Zhao Z, Shen K, Zhang J, 2019. The influence of hoop shear field on the structure and performances of glass fiber reinforced three‐layer polypropylene random copolymer pipe. J Appl Polym Sci, 136(3): 46985.
  • Domaneschi M, 2012. Experimental and numerical study of standard impact tests on polypropylene pipes with brittle behaviour. Proc Inst Mech Eng B, 226(12): 2035–2046.
  • Ford RA, 2004. Semi-finished thermoplastic composites-realising their potential. Mater Des, 25(7): 631–636.
  • Friedrich K, 1999. Commingled yarns and their use for composites. In: Karger-Kocsis J, editor. Polypropylene: An A-Z Reference. Springer, Dordrecht, Netherlands, pp: 148.
  • Gahleitner M, Tranninger C, Doshev P, 2019. Polypropylene Copolymers. In: Karger-Kocsis J, Bárány T, editors. Polypropylene handbook. Springer, Cham, London, UK, pp: 585–602.
  • Gebrehiwot SZ, Espinosa-Leal L, 2022. Characterising the linear viscoelastic behaviour of an injection moulding grade polypropylene polymer. Mech Time-Depend Mater, 26(4): 791–814.
  • Gibson AG, 2003. The cost effective use of fibre reinforced composites offshore. HSE, Bootle, London, UK, pp: 123.
  • Goodship V, 2016. Injection Molding of Thermoplastics. In: Goodship V, Middleton B, Cherrington R, editors. design and manufacture of plastic components for multifunctionality. William Andrew Publishing, New York, USA, pp: 103–170.
  • Hametner Ch, 1999. Polypropylene pipes for drinking water supply. J Macromol Sci A, 36(11): 1751–1758.
  • Hastie JC, Guz IA, Kashtalyan M, 2022. Numerical modelling of spoolable thermoplastic composite pipe (TCP) under combined bending and thermal load. Ships Offshore Struct, 17(9): 1975–1986.
  • Huang Y, Gentle CR, Lacey M, Prentice P, 2000. Analysis and improvement of die design for the processing of extruded plastic pipes. Mater Des, 21(5): 465–475.
  • Karbuz P, Dogu M, Ozbek B, 2024. Manufacturing of hexagonal cross-section thermoplastic matrix composite parts with automatic filament winding system. J Manuf Proc, 129: 62–76.
  • Kristoffersen M, Børvik T, Langseth M, Ilstad H, Levold E, 2017. Transverse deformation of pressurised pipes with different axial loads. J Offshore Mech Arct Eng, 3B: 1-10.
  • Litvinov VM, Soliman M, 2005. The effect of storage of poly(propylene) pipes under hydrostatic pressure and elevated temperatures on the morphology, molecular mobility and failure behaviour. Polymer, 46(9): 3077–3089.
  • Lou M, Wang Y, Tong B, Wang S, 2020. Effect of temperature on tensile properties of reinforced thermoplastic pipes. Compos Struct, 241: 112119.
  • Lynam C, Milani AS, Trudel-Boucher D, Borazghi H, 2014. Predicting dimensional distortions in roll forming of comingled polypropylene/glass fiber thermoplastic composites: On the effect of matrix viscoelasticity. J Compos Mater, 48(28): 3539–3552.
  • Malta ER, De Arruda Martins CA, 2014. Finite element analysis of flexible pipes under compression. J Offshore Mech Arct Eng, 6A.
  • Mattausch H, 2015. Development of halogen-free flame retardant polypropylene compounds for pipe application. PhD thesis, University of Leoben, Leoben, Austria, pp: 182.
  • Menon ES, 2011. Pipe strength and wall thickness. Pipeline Planning and Construction Field Manual. Gulf Prof Publ, 2011: 105–121.
  • Moussa HK, Challita G, Yared W, Rizk MA, 2022. Predictive analysis of the influence of a polypropylene-talc composite layer on the ring stiffness of a multilayer plastic pipe. Mech Compos Mater, 57(6): 749–758.
  • Ohaeri E, Eduok U, Szpunar J, 2018. Hydrogen related degradation in pipeline steel: A review. Int J Hydrogen Energy, 43(31): 14584–14617.
  • Özbay B, Bekem A, Ünal A, 2020. Manufacturing of hybrid yarn thermoplastic composites by the method of filament winding. Gazi Univ J Sci, 33(1): 214–227.
  • Pontes AJ, Pouzada AS, 2004. Ejection force in tubular injection moldings. Part I: Effect of processing conditions. J Polym Eng, 44(5): 891–897.
  • Poungthong P, Kolitawong C, Saengow C, Giacomin AJ, 2018. Plastic pipe solidification in extrusion. J Polym Eng, 38(6): 591–603.
  • Rachmawati P, Ma’arif S, 2022. Comparison of corrosion rate on mild steel welded joints using acid and alkaline solutions. AIP Conf Proc, 2499(1): 040004.
  • Rafiee R, Mazhari B, 2016. Evaluating long-term performance of Glass Fiber Reinforced Plastic pipes subjected to internal pressure. Constr Build Mater, 122: 694–701.
  • Selver E, Potluri P, 2017. Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites. Eur Mech Sci, 1(3): 93–103.
  • Singer R, Ollick AM, Elhadary M, 2021. Effect of cross-head speed and temperature on the mechanical properties of polypropylene and glass fiber reinforced polypropylene pipes. Alex Eng J, 60(6): 4947–4960.
  • Vaneker THJ, 2017. Material extrusion of continuous fiber reinforced plastics using commingled yarn. Procedia CIRP, 66: 317–322.
  • Walsh T, 2011. The plastic piping industry in north america. In: Kutz M, editor. Applied Plastics Engineering Handbook. William Andrew Publishing, New York, USA, pp: 585–602.
  • Wasim M, Shoaib S, Mubarak NM, Inamuddin, Asiri AM, 2018. Factors influencing corrosion of metal pipes in soils. Environ Chem Lett, 16: 861–879.
  • Yu K, Morozov EV, Ashraf MA, Shankar K, 2015a. Analysis of flexural behaviour of reinforced thermoplastic pipes considering material nonlinearity. Compos Struct, 119: 385–393.
  • Yu K, Morozov EV, Ashraf MA, Shankar K, 2015b. Numerical analysis of the mechanical behaviour of reinforced thermoplastic pipes under combined external pressure and bending. Compos Struct, 131: 453–461.
  • Yu K, Morozov EV, Ashraf MA, Shankar K, 2017. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications. J Reinf Plast Compos, 36(20): 1514–1530.
  • Yu L, Wu T, Chen T, Yang F, Xiang M, 2014. Polypropylene random copolymer in pipe application: Performance improvement with controlled molecular weight distribution. Thermochim Acta, 578: 43–52.
  • Zhu XK, Leis BN, 2005. Analytic prediction of plastic collapse failure pressure of line pipes. ASME Conf Proc, 3: 109–118.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials, Material Characterization, Polymer Technologies
Journal Section Research Articles
Authors

Aylin Altınbay 0000-0003-2356-1452

Mustafa Dogu 0000-0003-1258-7702

Ahmet Ünal 0000-0002-0069-8061

Project Number Yıldız Teknik Üniversitesi 2014-07-02-GEP-02; Bilim Sanayi ve Teknoloji Bakanlığı San-Tez Programı 01549.STZ.2012-2
Publication Date May 15, 2025
Submission Date October 17, 2024
Acceptance Date March 28, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Altınbay, A., Dogu, M., & Ünal, A. (2025). Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi. Black Sea Journal of Engineering and Science, 8(3), 793-798. https://doi.org/10.34248/bsengineering.1569246
AMA Altınbay A, Dogu M, Ünal A. Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi. BSJ Eng. Sci. May 2025;8(3):793-798. doi:10.34248/bsengineering.1569246
Chicago Altınbay, Aylin, Mustafa Dogu, and Ahmet Ünal. “Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi”. Black Sea Journal of Engineering and Science 8, no. 3 (May 2025): 793-98. https://doi.org/10.34248/bsengineering.1569246.
EndNote Altınbay A, Dogu M, Ünal A (May 1, 2025) Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi. Black Sea Journal of Engineering and Science 8 3 793–798.
IEEE A. Altınbay, M. Dogu, and A. Ünal, “Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi”, BSJ Eng. Sci., vol. 8, no. 3, pp. 793–798, 2025, doi: 10.34248/bsengineering.1569246.
ISNAD Altınbay, Aylin et al. “Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi”. Black Sea Journal of Engineering and Science 8/3 (May 2025), 793-798. https://doi.org/10.34248/bsengineering.1569246.
JAMA Altınbay A, Dogu M, Ünal A. Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi. BSJ Eng. Sci. 2025;8:793–798.
MLA Altınbay, Aylin et al. “Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi”. Black Sea Journal of Engineering and Science, vol. 8, no. 3, 2025, pp. 793-8, doi:10.34248/bsengineering.1569246.
Vancouver Altınbay A, Dogu M, Ünal A. Cam Elyaf/Polipropilen Melez İpliklerinden Elyaf Sarma Yöntemiyle Termoplastik Kompozit Boru Üretimi. BSJ Eng. Sci. 2025;8(3):793-8.

                                                24890