Research Article
BibTex RIS Cite

Interface Shear Strength Behaviors of Geomembranes Aged with Leachates

Year 2025, Volume: 12 Issue: 1, 9 - 26, 30.05.2025
https://doi.org/10.35193/bseufbd.1375370

Abstract

Geomembranes (GM), used in various engineering functions, such as sealing, protection and separation, may be exposed to the effects of various liquids in the long term. In this process, while there is no significant change in their chemical structure, changes in their physical and mechanical properties can be observed. These changes can be ignored in the short term but not in the long term. In this study, the shear strength behaviors of the interfaces between GM and soil aged in different leachates was investigated. A sand-bentonite mixture was used as soil, while high density polyethylene (HDPE) and thermoplastic polyolefin (TPO) were used as GM. In the first stage of the study, the geotechnical index and shear strength parameters of the soil were determined. In the second stage, the shear strength behavior of the soil–GM interfaces was determined for both unaged and aged GMs. Different synthetic waste leachates (acidic mine drainage leachate (AMD), coal combustion product leachate (CCP) and municipal solid waste leachate (MSW)) were prepared under laboratory conditions to simulate field conditions. The GMs were aged in these leachates for 4 and 16 months and interface direct shear tests were performed. The interface friction angles were found to be significantly adversely affected by all aging liquids. AMD was found to have the most detrimental effect on the interface friction angles of GMs, while CCP caused the least damage. This study has shown that the interface coefficients used in the designs are not sufficient for GMs exposed to chemicals in the long term.

References

  • Grassie, N., & Scott, G. (1985). Polymer Degradation and Stabilization. Cambridge University Press, Cambridge.
  • Barroso, M., Touze-Foltz, N., Maubeuge, K., & Pierson, P. (2006). Laboratory investigation of flow rate through composite liners consisting of a geomembrane, a GCL and a soil liner. Geotextiles and Geomembranes, 24, 139-155.
  • Rowe, R. K., Quigley, R. M., Brachman, R. W. I., & Booker, J. R. (2004). Barrier systems for waste disposal facilities 2nd Ed. E&FN Spon, London, UK.
  • Rowe, R. K., Islam, M. Z., & Hsuan, Y. G. (2008). Leachate chemical composition effects on OIT depletion in an HDPE geomembrane. Geosynthetics International, 15(2), 136–51.
  • Mueller, W., & Jakob, I. (2003). Oxidative resistance of high-density polyethylene geomembranes. Polymer Degradation and Stability, 79, 161–172.
  • Gulec, S. B., Benson, C. H., & Edil, T. B. (2005). Effect of acidic mine drainage on the mechanical and hydraulic properties of three geosynthetics. Journal of Geotechnical and Geoenvironmental Engineering, 131(8), 937–950.
  • Rowe, R. K., Rimal, S., & Sangam, H. (2009). Ageing of HDPE geomembrane exposed to air, water and leachate at different temperatures. Geotextiles and Geomembranes, 27(2), 137–151.
  • Benson, C. H., Chen, J. N., Edil, T. B., & Likos, W. J. (2018). Hydraulic conductivity of compacted soil liners permeated with coal combustion product leachates. Journal of Geotechnical and Geoenvironmental Engineering, 144(4).
  • Sun, X., Xu, Y., Liu, Y., Nai, C., Dong, L., & Liu, J. (2019). Evolution of geomembrane degradation and defects in a landfill: Impacts on long-term leachate leakage and groundwater quality. Journal of Clean Productions, 224, 335–345.
  • Rowe, R. K., Islam, M. Z., & Hsuan, Y. G. (2010). Effects of thickness on the aging of HDPE geomembranes. Journal of Geotechnical and Geoenvironmental Engineering, 136(2), 299–309.
  • Li, W., Xu, Y., Huang, Q., Liu, Y., & Liu, J. (2021). Antioxidant depletion patterns of high-density polyethylene geomembranes in landfills under different exposure conditions. Waste Management, 121, 365-372.
  • Chai, J. C., & Saito, A. (2016). Interface shear strengths between geosynthetics and clayey soils. International Journal of Geosynthetics and Ground Engineering, 2, 1–9.
  • Stark, T. D., & Santoyo, R. F. (2017). Soil/geosynthetic interface strengths from torsional ring shear tests. Geotechnical Frontiers, GSP 280, 260 – 268.
  • Zhou, L., Zhu, Z., Yu, Z., & Zhang, C. (2020). Shear Testing of the Interfacial Friction Between an HDPE Geomembrane and Solid Waste. Materials, 13, 1-16.
  • Chen, W., Xu, T., & Zhou, W. (2021). Microanalysis of smooth Geomembrane–Sand interface using FDM–DEM coupling simulation. Geotextiles and Geomembranes, 49, 276-288
  • Develioglu I., & Pulat H. F. (2022). Effect of Grain Size, Angularity and Curing on Interfacial Shear Behavior Between Soil and Geomembrane. 4th International Göbeklitepe Scientific Research Congress, 7-8 Ekim, Şanlıurfa.
  • ASTMD2487-17 (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA, USA.
  • Hrapovic, L., & Rowe, R. K. (2002). Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil. Journal of Contamination Hydrology, 58, 221-242.
  • ASTMD3080-04 (2012). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International, West Conshohocken, PA, USA.
  • Dadkhah, R., Ghafoori, M., Ajalloeian, R., & Lashkaripour, G. R. (2010). The effect of scale direct shear test on the strength parameters of clayey sand in Isfahan City, Iran. Journal of Applied Science, 10(18), 2027-2033.
  • Sobol, E., Sas, W., & Szymanski, A. (2015). Scale effect in direct shear tests on recycled concrete aggregate. Studia Geotechnica et Mechanica, 37(2), 45-49.
  • Mohapatra, S. R., Mishra, S. R., Nithin, S., & Rajagobal, K. (2016). Effect of Box Size on Dilative Behaviour of Sand in Direct Shear Test. India Geotechnical Conference, Chennai, 16, 111-118.
  • Zahran, K., & El Naggar, H. (2020). Effect of Sample Size on TDA Shear Strength Parameters in Direct Shear Tests. Transportation Research Record, 2674(9), 1110-1119.
  • Yano, K., Usuki, A., & Okada, A. (1997). Synthesis and properties of polyimide-clay hybrid films. Journal of Polymer Science, Part A: Polymer Chemistry, 35, 2289-2294.
  • Shah, K., & Shah, D. L. (2015). Interface friction between soil and geosynthetics. 5th Indian Young Geotechnical Engineers Conference, Vadodara, 81-82.
  • Angelim, R. R., Cunha, R. P., & Sales, M. M. (2016). Determining the elastic deformation modulus from a compacted earth embankment via laboratory and Ménard pressuremeter tests. Soils and Rock, 9(3), 285-300.
  • ASTMD5321-12 (2021). Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear. ASTM International, West Conshohocken, PA, USA.
  • O’Rourke, T. D., Druschel, S. J., & Netravali, A. N. (1990). Shear strength characteristics of sand-polymer interfaces. Journal of Geotechnical Engineering, 116(3), 451-469.
  • Dove, J. E., & Frost, J. D. (1999). Peak friction behavior of smooth geomembrane-particle interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 125(7), 544-555.
  • Hsuan, Y. G., & Koerner, R. M. (1998). Antioxidant depletion lifetime in high density polyethylene geomembranes. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 532–541.
  • Kulshreshtha, A. K. (1992). Chemical degradation. Handbook of Polymer Degradation Marcel Dekker, New York, USA, 55–94.
  • Risseuw, P., & Schmidt, H. M. (1990). Geotextiles, Geomembranes and Related Products. Rotterdam, The Netherlands.
  • Jailloux, J. M., Anderson, P. L., & Thomas, R. W. (1992). Chemical-compatibility studies of polyester filaments and yarns to be used in geocomposites. Phase 1: Tests at 95° C. Geotextiles and Geomembranes., 11(3), 277–290.
  • Salman, A., Elias, V., Juran, I., Lu, S., & Pearce, E. (1997). Durability of geosynthetics based on accelerated laboratory testing.
  • Zainab, B., Wireko, C., Li, D., Tian, K., & Abichou, T. (2021). Hydraulic conductivity of bentonite-polymer geosynthetic clay liners to coal combustion product leachates. Geotextiles and Geomembranes, 49(5), 1129–1138.
  • Salihoglu, H., Chen, J. N., Likos, W. J., & Benson, C. H. (2016). Hydraulic conductivity of bentonite-polymer geosynthetic clay liners in coal combustion product leachates. Geo-Chicago, 438–447.
  • Benson, C., Chen, J., & Edil, T. (2014). Engineering properties of geosynthetic clay liners permeated with coal combustion product leachates. Report No: 3002003770, Electric Power Research Institute, Palo Alto, CA.
  • Viebke, J., Elble, E., Ifwarson, M., & Gedde, U. W. (1994). Degradation of unstabilized medium‐density polyethylene pipes in hot‐water applications. Polymer Engineering Science, 34(17), 1354-1361.
  • Coulomb, C. A. (1774). Sur une application des regles maximis et minimis a quelques problems de statique, relatives a l’architecture. Acad Sci Paris Mem Math Phys, 7, 343-382.
  • Mohr, O. (1900). Welche Umstande bedingen die Elastizitatsgrenze und den Bruch eines Materials? Zeit des Ver Deut Ing, 44, 1524-1530.[41] Welker, A. L., & Josten, N. (2005). Interface friction of a geomembrane with a fiber reinforced soil. Slopes and retaining structures under seismic and static conditions. Geo-Frontiers Congress, Austin, Texas, USA, 1-8.
  • Fleming, I. R., Sharma, J. S., & Jogi, M. B. (2006). Shear strength of geomembrane-soil interface under unsaturated conditions. Geotextiles and Geomembranes, 24, 274-284.
  • Sharma, J. S., Fleming, I. R., & Jogi, M. B. (2007) Measurement of unsaturated soil–geomembrane interface shear-strength parameters. Canadian Geotechnical Journal, 44(1), 78-88.
  • Effendi, R. (2011). Interface friction of smooth geomembranes and Ottawa sand. INFO-TEKNIK, 12(1), 61-72.
  • Frost, J D., Evans, T. M., Hebeler, G. L., & Giroud, J. P. (2012). Influence of wear mechanisms on geosynthetic interface strengths. Geosynthetics: state of the art-recent developments proceedings of the seventh international conference on geosynthetics, Nice, France.
  • Monteiro, C. B., Araújo, G. L. S., Palmeira, E. M., & Cordão Neto, M. P. (2013). Soil-geosynthetic interface strength on smooth and texturized geomembranes under different test conditions. Conference of Soil Mechanics and Geotechnical Engineering, Paris, France, 3053-3056.
  • Vangla, P., & Gali, M. L. (2016). Shear behavior of sand – smooth geomembrane interfaces through micro – topographical analysis. Geotextiles and Geomembranes, 44, 592-603.
  • Punetha, P., Mohanty, P., & Samanta, M. (2017). Microstructural investigation on mechanical behavior of soil-geosynthetic interface in direct shear test. Geotextiles and Geomembranes, 45(3), 197-210.
  • Cen, W. J., Wang, H., & Fe, Y. J. (2018). Laboratory investigation of shear behavior of high – density polyethylene geomembrane interfaces. Polymers, 10, 1-14.
  • Markou, I. N., & Evangelou, E. D. (2018). Shear Resistance Characteristics of Soil–Geomembrane Interfaces. International Journal of Geosynthetics and Ground Engineering, 4(4), 29-39.
  • Ari, A. (2020). Kum-geosentetik arayüzeyi kayma direncine fraktal boyutun etkisinin araştirilmasi. Yıldız Teknik University Natural and Applied Science, Istanbul, Turkey.

Sızıntı Sıvıları ile Yıllandırılmış Geomembranların Ara Yüzey Kayma Dayanımı Davranışları

Year 2025, Volume: 12 Issue: 1, 9 - 26, 30.05.2025
https://doi.org/10.35193/bseufbd.1375370

Abstract

Sızdırmazlık, koruma ve ayırma gibi çeşitli mühendislik fonksiyonlarıyla kullanılan geomembranlar (GM), uzun vadede farklı sıvıların etkilerine maruz kalabilirler. Bu süreçte kimyasal yapılarında önemli ölçüde bir değişiklik olmazken, fiziksel ve mekanik özelliklerinde farklılıklar gözlenebilir. Bu değişiklikler kısa vadede göz ardı edilebilir ancak uzun vadede göz ardı edilmemelidir. Bu çalışmada, farklı sızıntı sıvılarında yıllandırılan GM ve zemin arasında oluşan ara yüzeylerin kayma dayanımı davranışları incelemiştir. Zemin olarak kum-bentonit (KB) karışımı kullanılırken, GM olarak yüksek yoğunluklu polietilen (HDPE) ve termoplastik poliolefin (TPO) kullanılmıştır. Çalışmanın ilk aşamasında, zeminin geoteknik indeks ve kayma mukavemeti parametreleri belirlenmiştir. İkinci aşamada ise, zemin – GM ara yüzeylerinin kayma mukavemeti davranışları hem yıllandırılmış hem de yıllandırılmamış GM’ler için belirlenmiştir. Saha koşullarını yansıtabilmek için laboratuvar koşullarında farklı sentetik atık sızıntı sıvıları (asidik maden drenaj sızıntı suyu (AMD), kömür yanma ürünü sızıntı suyu (CCP) ve kentsel katı atık sızıntı suyu (MSW)) hazırlanmıştır. GM'ler bu sızıntı sıvılarında 4 ve 16 ay boyunca yıllandırılmış ve ardından ara yüzey kesme kutusu deneyleri gerçekleştirilmiştir. Ara yüzey sürtünme açılarının tüm yıllandırma sıvılarından önemli ölçüde olumsuz etkilendiği tespit edilmiştir. AMD’nin GM'lerin arayüzey sürtünme açıları üzerinde en olumsuz etkiye sahip olduğu, CCP’nin ise en az hasara neden olduğu görülmüştür. Bu çalışma, tasarımlarda kullanılan ara yüzey sürtünme katsayılarının uzun vadede kimyasallara maruz kalan GM'ler için yeterli olmadığını göstermiştir.

Thanks

Katkıları ve desteklerinden ötürü BTM Yalıtım’a ve GEOPLAS Geosynthetics’e teşekkürlerimizi sunarız.

References

  • Grassie, N., & Scott, G. (1985). Polymer Degradation and Stabilization. Cambridge University Press, Cambridge.
  • Barroso, M., Touze-Foltz, N., Maubeuge, K., & Pierson, P. (2006). Laboratory investigation of flow rate through composite liners consisting of a geomembrane, a GCL and a soil liner. Geotextiles and Geomembranes, 24, 139-155.
  • Rowe, R. K., Quigley, R. M., Brachman, R. W. I., & Booker, J. R. (2004). Barrier systems for waste disposal facilities 2nd Ed. E&FN Spon, London, UK.
  • Rowe, R. K., Islam, M. Z., & Hsuan, Y. G. (2008). Leachate chemical composition effects on OIT depletion in an HDPE geomembrane. Geosynthetics International, 15(2), 136–51.
  • Mueller, W., & Jakob, I. (2003). Oxidative resistance of high-density polyethylene geomembranes. Polymer Degradation and Stability, 79, 161–172.
  • Gulec, S. B., Benson, C. H., & Edil, T. B. (2005). Effect of acidic mine drainage on the mechanical and hydraulic properties of three geosynthetics. Journal of Geotechnical and Geoenvironmental Engineering, 131(8), 937–950.
  • Rowe, R. K., Rimal, S., & Sangam, H. (2009). Ageing of HDPE geomembrane exposed to air, water and leachate at different temperatures. Geotextiles and Geomembranes, 27(2), 137–151.
  • Benson, C. H., Chen, J. N., Edil, T. B., & Likos, W. J. (2018). Hydraulic conductivity of compacted soil liners permeated with coal combustion product leachates. Journal of Geotechnical and Geoenvironmental Engineering, 144(4).
  • Sun, X., Xu, Y., Liu, Y., Nai, C., Dong, L., & Liu, J. (2019). Evolution of geomembrane degradation and defects in a landfill: Impacts on long-term leachate leakage and groundwater quality. Journal of Clean Productions, 224, 335–345.
  • Rowe, R. K., Islam, M. Z., & Hsuan, Y. G. (2010). Effects of thickness on the aging of HDPE geomembranes. Journal of Geotechnical and Geoenvironmental Engineering, 136(2), 299–309.
  • Li, W., Xu, Y., Huang, Q., Liu, Y., & Liu, J. (2021). Antioxidant depletion patterns of high-density polyethylene geomembranes in landfills under different exposure conditions. Waste Management, 121, 365-372.
  • Chai, J. C., & Saito, A. (2016). Interface shear strengths between geosynthetics and clayey soils. International Journal of Geosynthetics and Ground Engineering, 2, 1–9.
  • Stark, T. D., & Santoyo, R. F. (2017). Soil/geosynthetic interface strengths from torsional ring shear tests. Geotechnical Frontiers, GSP 280, 260 – 268.
  • Zhou, L., Zhu, Z., Yu, Z., & Zhang, C. (2020). Shear Testing of the Interfacial Friction Between an HDPE Geomembrane and Solid Waste. Materials, 13, 1-16.
  • Chen, W., Xu, T., & Zhou, W. (2021). Microanalysis of smooth Geomembrane–Sand interface using FDM–DEM coupling simulation. Geotextiles and Geomembranes, 49, 276-288
  • Develioglu I., & Pulat H. F. (2022). Effect of Grain Size, Angularity and Curing on Interfacial Shear Behavior Between Soil and Geomembrane. 4th International Göbeklitepe Scientific Research Congress, 7-8 Ekim, Şanlıurfa.
  • ASTMD2487-17 (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA, USA.
  • Hrapovic, L., & Rowe, R. K. (2002). Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil. Journal of Contamination Hydrology, 58, 221-242.
  • ASTMD3080-04 (2012). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International, West Conshohocken, PA, USA.
  • Dadkhah, R., Ghafoori, M., Ajalloeian, R., & Lashkaripour, G. R. (2010). The effect of scale direct shear test on the strength parameters of clayey sand in Isfahan City, Iran. Journal of Applied Science, 10(18), 2027-2033.
  • Sobol, E., Sas, W., & Szymanski, A. (2015). Scale effect in direct shear tests on recycled concrete aggregate. Studia Geotechnica et Mechanica, 37(2), 45-49.
  • Mohapatra, S. R., Mishra, S. R., Nithin, S., & Rajagobal, K. (2016). Effect of Box Size on Dilative Behaviour of Sand in Direct Shear Test. India Geotechnical Conference, Chennai, 16, 111-118.
  • Zahran, K., & El Naggar, H. (2020). Effect of Sample Size on TDA Shear Strength Parameters in Direct Shear Tests. Transportation Research Record, 2674(9), 1110-1119.
  • Yano, K., Usuki, A., & Okada, A. (1997). Synthesis and properties of polyimide-clay hybrid films. Journal of Polymer Science, Part A: Polymer Chemistry, 35, 2289-2294.
  • Shah, K., & Shah, D. L. (2015). Interface friction between soil and geosynthetics. 5th Indian Young Geotechnical Engineers Conference, Vadodara, 81-82.
  • Angelim, R. R., Cunha, R. P., & Sales, M. M. (2016). Determining the elastic deformation modulus from a compacted earth embankment via laboratory and Ménard pressuremeter tests. Soils and Rock, 9(3), 285-300.
  • ASTMD5321-12 (2021). Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear. ASTM International, West Conshohocken, PA, USA.
  • O’Rourke, T. D., Druschel, S. J., & Netravali, A. N. (1990). Shear strength characteristics of sand-polymer interfaces. Journal of Geotechnical Engineering, 116(3), 451-469.
  • Dove, J. E., & Frost, J. D. (1999). Peak friction behavior of smooth geomembrane-particle interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 125(7), 544-555.
  • Hsuan, Y. G., & Koerner, R. M. (1998). Antioxidant depletion lifetime in high density polyethylene geomembranes. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 532–541.
  • Kulshreshtha, A. K. (1992). Chemical degradation. Handbook of Polymer Degradation Marcel Dekker, New York, USA, 55–94.
  • Risseuw, P., & Schmidt, H. M. (1990). Geotextiles, Geomembranes and Related Products. Rotterdam, The Netherlands.
  • Jailloux, J. M., Anderson, P. L., & Thomas, R. W. (1992). Chemical-compatibility studies of polyester filaments and yarns to be used in geocomposites. Phase 1: Tests at 95° C. Geotextiles and Geomembranes., 11(3), 277–290.
  • Salman, A., Elias, V., Juran, I., Lu, S., & Pearce, E. (1997). Durability of geosynthetics based on accelerated laboratory testing.
  • Zainab, B., Wireko, C., Li, D., Tian, K., & Abichou, T. (2021). Hydraulic conductivity of bentonite-polymer geosynthetic clay liners to coal combustion product leachates. Geotextiles and Geomembranes, 49(5), 1129–1138.
  • Salihoglu, H., Chen, J. N., Likos, W. J., & Benson, C. H. (2016). Hydraulic conductivity of bentonite-polymer geosynthetic clay liners in coal combustion product leachates. Geo-Chicago, 438–447.
  • Benson, C., Chen, J., & Edil, T. (2014). Engineering properties of geosynthetic clay liners permeated with coal combustion product leachates. Report No: 3002003770, Electric Power Research Institute, Palo Alto, CA.
  • Viebke, J., Elble, E., Ifwarson, M., & Gedde, U. W. (1994). Degradation of unstabilized medium‐density polyethylene pipes in hot‐water applications. Polymer Engineering Science, 34(17), 1354-1361.
  • Coulomb, C. A. (1774). Sur une application des regles maximis et minimis a quelques problems de statique, relatives a l’architecture. Acad Sci Paris Mem Math Phys, 7, 343-382.
  • Mohr, O. (1900). Welche Umstande bedingen die Elastizitatsgrenze und den Bruch eines Materials? Zeit des Ver Deut Ing, 44, 1524-1530.[41] Welker, A. L., & Josten, N. (2005). Interface friction of a geomembrane with a fiber reinforced soil. Slopes and retaining structures under seismic and static conditions. Geo-Frontiers Congress, Austin, Texas, USA, 1-8.
  • Fleming, I. R., Sharma, J. S., & Jogi, M. B. (2006). Shear strength of geomembrane-soil interface under unsaturated conditions. Geotextiles and Geomembranes, 24, 274-284.
  • Sharma, J. S., Fleming, I. R., & Jogi, M. B. (2007) Measurement of unsaturated soil–geomembrane interface shear-strength parameters. Canadian Geotechnical Journal, 44(1), 78-88.
  • Effendi, R. (2011). Interface friction of smooth geomembranes and Ottawa sand. INFO-TEKNIK, 12(1), 61-72.
  • Frost, J D., Evans, T. M., Hebeler, G. L., & Giroud, J. P. (2012). Influence of wear mechanisms on geosynthetic interface strengths. Geosynthetics: state of the art-recent developments proceedings of the seventh international conference on geosynthetics, Nice, France.
  • Monteiro, C. B., Araújo, G. L. S., Palmeira, E. M., & Cordão Neto, M. P. (2013). Soil-geosynthetic interface strength on smooth and texturized geomembranes under different test conditions. Conference of Soil Mechanics and Geotechnical Engineering, Paris, France, 3053-3056.
  • Vangla, P., & Gali, M. L. (2016). Shear behavior of sand – smooth geomembrane interfaces through micro – topographical analysis. Geotextiles and Geomembranes, 44, 592-603.
  • Punetha, P., Mohanty, P., & Samanta, M. (2017). Microstructural investigation on mechanical behavior of soil-geosynthetic interface in direct shear test. Geotextiles and Geomembranes, 45(3), 197-210.
  • Cen, W. J., Wang, H., & Fe, Y. J. (2018). Laboratory investigation of shear behavior of high – density polyethylene geomembrane interfaces. Polymers, 10, 1-14.
  • Markou, I. N., & Evangelou, E. D. (2018). Shear Resistance Characteristics of Soil–Geomembrane Interfaces. International Journal of Geosynthetics and Ground Engineering, 4(4), 29-39.
  • Ari, A. (2020). Kum-geosentetik arayüzeyi kayma direncine fraktal boyutun etkisinin araştirilmasi. Yıldız Teknik University Natural and Applied Science, Istanbul, Turkey.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering
Journal Section Articles
Authors

Inci Develioglu 0000-0001-6594-8095

Hasan Fırat Pulat 0000-0002-8298-7106

Publication Date May 30, 2025
Submission Date October 13, 2023
Acceptance Date April 30, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Develioglu, I., & Pulat, H. F. (2025). Sızıntı Sıvıları ile Yıllandırılmış Geomembranların Ara Yüzey Kayma Dayanımı Davranışları. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(1), 9-26. https://doi.org/10.35193/bseufbd.1375370