Research Article
BibTex RIS Cite

2-Asetoksibenzoik Asidin Hirshfeld Yüzeyleri ile Ara Moleküler Etkileşimlerinin İncelenmesi

Year 2025, Volume: 12 Issue: 1, 167 - 174, 30.05.2025
https://doi.org/10.35193/bseufbd.1481180

Abstract

Bu çalışmada, asetoksibenzoik asidin kristal yapısı ve moleküller arası etkileşimleri analiz edilmiştir. Kristal yapı analizi sonucunda, karbon (C), oksijen (O) ve hidrojen (H) atomlarının düzenlenmesi ve kimyasal bağları belirlenmiştir. Oksijen atomlarının moleküle polar karakter kazandırdığı ve hidrojen bağları gibi moleküller arası etkileşimlerde önemli bir rol üstlendiği tespit edilmiştir. CrystalExplorer yazılımı kullanılarak yapılan Hirshfeld yüzey analizi, molekülün çözücü moleküllerle olan etkileşimlerine odaklanmıştır. Bu analiz sayesinde moleküler etkileşimler ve yapı hakkında daha kapsamlı bir anlayış elde edilmiştir. Ayrıca, molekülün elektron yoğunluğu, eğrilik ve yüzey şekil indeksleri gibi özellikler haritalandırılmıştır. Asetoksibenzoik asidin yapısal ve elektronik özellikleri görselleştirilmiş, bu sayede kimyasal ve fiziksel özelliklerine dair daha derin bir anlayış kazanılmıştır. XRD analizi, molekülün kristalliğini ve tepe noktalarının konumlarıyla kristal yapının detaylarını ortaya koymuştur. Bu çalışma, asetoksibenzoik asidin moleküler yapısını ve etkileşim özelliklerini aydınlatarak moleküler düzeyde tepkime tahminlerine katkı sağlamıştır.

References

  • Klemperer, W. (1992). Intermolecular interactions. Science, 257(5072), 887-888.
  • Kaplan, I. G. (2006). Intermolecular interactions: physical picture, computational methods and model potentials. John Wiley & Sons.
  • Spackman, M. A., & McKinnon, J. J. (2002). Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66), 378-392.
  • Hunter, C. A. (2004). Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angewandte Chemie International Edition, 43(40), 5310-5324.
  • Dunitz, J. D. (1995). Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chemistry & biology, 2(11), 709-712.
  • Fox, J. M., Zhao, M., Fink, M. J., Kang, K., & Whitesides, G. M. (2018). The molecular origin of enthalpy/entropy compensation in biomolecular recognition. Annual Review of Biophysics, 47(1), 223-250.
  • Muz, I., & Kurban, M. (2022). Zinc oxide nanoclusters and their potential application as CH4 and CO2 gas sensors: insight from DFT and TD‐DFT. Journal of Computational Chemistry, 43(27), 1839-1847.
  • Ullah, Z., Sattar, F., Kim, H. J., Jang, S., Mary, Y. S., Zhan, X., & Kwon, H. W. (2022). Computational study of Pd–Cd bimetallic crystals: spectroscopic properties, hirshfeld surface analysis, non-covalent interaction, and sensor activity. Journal of Molecular Liquids, 365, 120111.
  • Zhang, Y., Luo, Y., Tang, L., & Hu, J. (2024). Unveiling regularities of B12N12-X nanocages as a drug delivery vehicle for the nitrosourea: the influence of periods and groups. Journal of Molecular Liquids, 393, 123607.
  • Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19-32.
  • Seth, S. K. (2014). Structural elucidation and contribution of intermolecular interactions in O-hydroxy acyl aromatics: Insights from X-ray and Hirshfeld surface analysis. Journal of molecular structure, 1064, 70-75.
  • Suda, S., Tateno, A., Nakane, D., & Akitsu, T. (2023). Hirshfeld surface analysis for investigation of intermolecular interaction of molecular crystals. International Journal of Organic Chemistry, 13(2), 57-85.
  • Clausen, H. F., Chevallier, M. S., Spackman, M. A., & Iversen, B. B. (2010). Three new co-crystals of hydroquinone: crystal structures and Hirshfeld surface analysis of intermolecular interactions. New Journal of Chemistry, 34(2), 193-199.
  • Kebiroglu, H., & Ak, F. (2023). Molecular structure, geometry properties, HOMO-LUMO, and MEP analysis of acrylic acid based on DFT calculations. Journal of Physical Chemistry and Functional Materials, 6(2), 92-100.

Investigation of Intermolecular Interactions of 2-Acetoxybenzoic Acid with Hirshfeld Surfaces

Year 2025, Volume: 12 Issue: 1, 167 - 174, 30.05.2025
https://doi.org/10.35193/bseufbd.1481180

Abstract

In this study, the crystal structure and intermolecular interactions of acetoxybenzoic acid were analyzed. Through crystal structure analysis, the arrangement of carbon (C), oxygen (O), and hydrogen (H) atoms, along with their chemical bonds, was determined. It was identified that oxygen atoms impart polar character to the molecule and play a significant role in intermolecular interactions, such as hydrogen bonding. Hirshfeld surface analysis, performed using CrystalExplorer software, focused on the interactions of the molecule with solvent molecules. This analysis provided a more comprehensive understanding of molecular interactions and structure. Additionally, properties such as electron density, curvature, and surface shape indices were mapped. The structural and electronic properties of acetoxybenzoic acid were visualized, offering a deeper understanding of its chemical and physical properties. XRD analysis revealed the crystallinity of the molecule and provided detailed insights into the crystal structure through the position of the peaks. This study illuminated the molecular structure and interaction properties of acetoxybenzoic acid, contributing to predictions of reactivity at the molecular level.

References

  • Klemperer, W. (1992). Intermolecular interactions. Science, 257(5072), 887-888.
  • Kaplan, I. G. (2006). Intermolecular interactions: physical picture, computational methods and model potentials. John Wiley & Sons.
  • Spackman, M. A., & McKinnon, J. J. (2002). Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66), 378-392.
  • Hunter, C. A. (2004). Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angewandte Chemie International Edition, 43(40), 5310-5324.
  • Dunitz, J. D. (1995). Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chemistry & biology, 2(11), 709-712.
  • Fox, J. M., Zhao, M., Fink, M. J., Kang, K., & Whitesides, G. M. (2018). The molecular origin of enthalpy/entropy compensation in biomolecular recognition. Annual Review of Biophysics, 47(1), 223-250.
  • Muz, I., & Kurban, M. (2022). Zinc oxide nanoclusters and their potential application as CH4 and CO2 gas sensors: insight from DFT and TD‐DFT. Journal of Computational Chemistry, 43(27), 1839-1847.
  • Ullah, Z., Sattar, F., Kim, H. J., Jang, S., Mary, Y. S., Zhan, X., & Kwon, H. W. (2022). Computational study of Pd–Cd bimetallic crystals: spectroscopic properties, hirshfeld surface analysis, non-covalent interaction, and sensor activity. Journal of Molecular Liquids, 365, 120111.
  • Zhang, Y., Luo, Y., Tang, L., & Hu, J. (2024). Unveiling regularities of B12N12-X nanocages as a drug delivery vehicle for the nitrosourea: the influence of periods and groups. Journal of Molecular Liquids, 393, 123607.
  • Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19-32.
  • Seth, S. K. (2014). Structural elucidation and contribution of intermolecular interactions in O-hydroxy acyl aromatics: Insights from X-ray and Hirshfeld surface analysis. Journal of molecular structure, 1064, 70-75.
  • Suda, S., Tateno, A., Nakane, D., & Akitsu, T. (2023). Hirshfeld surface analysis for investigation of intermolecular interaction of molecular crystals. International Journal of Organic Chemistry, 13(2), 57-85.
  • Clausen, H. F., Chevallier, M. S., Spackman, M. A., & Iversen, B. B. (2010). Three new co-crystals of hydroquinone: crystal structures and Hirshfeld surface analysis of intermolecular interactions. New Journal of Chemistry, 34(2), 193-199.
  • Kebiroglu, H., & Ak, F. (2023). Molecular structure, geometry properties, HOMO-LUMO, and MEP analysis of acrylic acid based on DFT calculations. Journal of Physical Chemistry and Functional Materials, 6(2), 92-100.
There are 14 citations in total.

Details

Primary Language English
Subjects Atomic, Molecular and Optical Physics (Other)
Journal Section Articles
Authors

Mehmet Hanifi Kebiroglu 0000-0002-6764-3364

Mücahit Yılmaz 0000-0003-0048-2233

Publication Date May 30, 2025
Submission Date May 9, 2024
Acceptance Date October 15, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Kebiroglu, M. H., & Yılmaz, M. (2025). Investigation of Intermolecular Interactions of 2-Acetoxybenzoic Acid with Hirshfeld Surfaces. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(1), 167-174. https://doi.org/10.35193/bseufbd.1481180