Research Article
BibTex RIS Cite

İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması

Year 2025, , 327 - 339, 27.01.2025
https://doi.org/10.21324/dacd.1588804

Abstract

Şebekelerde oluşan sızıntıların önemli bir kısmını yüzeye çıkmayan sızıntılar oluşturmaktadır. Sızıntılar basınç ile doğrudan ilişkili olup birçok araştırmacı basınç parametresi ile ilgili basınç yönetimi çalışmaları yürütmektedir. Basınç yönetimi metotları klasik ve ileri basınç yönetimi olarak sınıflandırılmaktadır. Dünya genelinde yapılan birçok çalışma ile işletme basıncının en aza indirilmesi sağlanmıştır. Bu çalışmada ise basınç yönetimi çalışması sırasında minimize edilecek parametre olarak saatlik basınç farkı seçilmiş ve şebekenin gün içerisindeki basınç dalgalanmasının en aza indirilmesi amaçlanmıştır. EPANET programında hidrolik modeli oluşturulan pilot şebekelere ait veriler EPANET-MATLAB Toolkit ile MATLAB ortamına aktarılmıştır. İlk olarak klasik basınç yönetimi ile şebekenin analizi yapılmıştır. Sonraki aşamada ise debiye duyarlı ileri basınç yönetimi için işletme senaryosu oluşturulmaya başlanmıştır. En uygun senaryonun oluşturulması amacıyla MATLAB ortamında genetik algoritma kullanılmıştır. Optimizasyon değişkeni olarak giriş basıncı seçilmiştir. Amaç fonksiyonu olarak şebekenin gün içerisindeki saatlik basınç değişim farklarının toplamı seçilmiştir. Yapılan optimizasyon sonucunda çalışma alanında basınç dalgalanmalarına ait ortalama 18.56 m’den 8.41 m’ye %55 oranında düşürülmüştür. Ayrıca şebekenin ortalama basıncı 48.2 m’den 37.3 m’ye düşürülmüştür.

References

  • Abebe, A. J., & Solomatine, D. P. (1998, August 24–26). Application of global optimization to the design of pipe networks [Conference presentation]. 3rd International Conference on Hydroinformatics, Copenhagen, Denmark.
  • Alperovits, E., & Shamir, U. (1977). Design of optimal water distribution systems. Water Resources Research, 13(6), 885–900. https://doi.org/10.1029/WR013i006p00885
  • Botella Langa, A., Choi, Y.-G., Kim, K.-S., & Jang, D.-W. (2022). Application of the Harmony Search Algorithm for Optimization of WDN and Assessment of Pipe Deterioration. Applied Sciences, 12(7), Article 3550. https://doi.org/10.3390/app12073550
  • Chandramouli, S. (2015). Reliability-based optimal design of a municipal water supply pipe network. Urban Water Journal, 12(5), 353–361. https://doi.org/10.1080/1573062X.2014.993997
  • Cunha, M. da C., & Sousa, J. (1999). Water distribution network design optimization: Simulated annealing approach. Journal of Water Resources Planning and Management, 125(4), 215–221. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:4(215)
  • Dundović, I., & Tadić, L. (2022). A field experiment verification of theoretical exponent N1 for FAVAD method in defining the relationship of pressure and water losses. Water, 14(13), Article 13. https://doi.org/10.3390/w14132067
  • Durmuşçelebi, F. M. (2018). Su kayıplarının azaltılması için içme suyu dağıtım sistemlerinin rehabilitasyonu ve fayda-maliyet analizi [Yüksek lisans tezi, İnönü Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Eusuff, M. M., & Lansey, K. E. (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 129(3), 210–225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
  • Fanner, P., Thornton, J., & Liemberger, L. (2007). Evaluating water loss and planning loss reduction strategies. Awwa Research Foundation.
  • Folkman, S., & Parvez, J. (2020). PVC pipe cyclic design method. Pipelines, 2020, 304–315. https://doi.org/10.1061/9780784483213.034
  • Fujiwara, O., Jenchaimahakoon, B., & Edirishinghe, N. C. P. (1987). A modified linear programming gradient method for optimal design of looped water distribution networks. Water Resources Research, 23(6), 977–982.
  • Goulter, I. C., & Coals, A. V. (1986). Quantitative approaches to reliability assessment in pipe networks. Journal of Transportation Engineering, 112(3), 287–301. https://doi.org/10.1061/(ASCE)0733-947X(1986)112:3(287)
  • Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. The MIT Press.
  • İçme Suyu Temin ve Dağıtım Sistemlerindeki Su Kayıplarının Kontrolü Yönetmeliği. (2014, 8 Mayıs). Resmi Gazete (Sayı: 28994). https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=19651&MevzuatTur=7&MevzuatTertip=5
  • Kabaasha, A. M., van Zyl, J. E., & Piller, O. (2016, November 7–9). Modelling pressure: Leakage response in water distribution systems considering leak area variation [Conference presentation]. 14th CCWI International Conference, Computing and Control in Water Industry, Amsterdam, Netherlands.
  • Kahraman, A. M., & Özdağlar, D. (2004). Su dağıtım sistemlerinin genetik algoritma ile optimizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6(3), 1–18.
  • Keedwell, E., & Khu, S.-T. (2005). A hybrid genetic algorithm for the design of water distribution networks. Engineering Applications of Artificial Intelligence, 18(4), 461–472. https://doi.org/10.1016/j.engappai.2004.10.001
  • Kessler, A., & Shamir, U. (1989). Analysis of the linear programming gradient method for optimal design of water supply networks. Water Resources Research, 25(7), 1469–1480. https://doi.org/10.1029/WR025i007p01469
  • Lambert, A., Fantozzi, M., & Shepherd, M. (2017, September 5–7). Pressure: Leak flow rates using FAVAD: An improved fast-track practitioner’s approach [Conference presentation]. CCWI 2017 – 15th International Computing & Control for the Water Industry Conference, University of Sheffield.
  • Letting, L. K., Hamam, Y., & Abu-Mahfouz, A. M. (2017). Estimation of water demand in water distribution systems using particle swarm optimization. Water, 9(8), Article 8. https://doi.org/10.3390/w9080593
  • Liong, S., & Atiquzzaman, M. (2004). Optimal design of water distribution networks using shuffled complex evolution. Journal of The Institution of Engineers, 44(1), 93–107.
  • Marzola, I., Alvisi, S., & Franchini, M. (2021). Analysis of MNF and FAVAD model for leakage characterization by exploiting smart-metered data: The case of the Gorino Ferrarese (FE-Italy) district. Water, 13(5), Article 5. https://doi.org/10.3390/w13050643
  • May, J. (1994). Pressure-dependent leakage. World Water & Environmental Engineering. http://www.leakssuite.com/wpcontent/ uploads/2016/10/JOHN-MAYSEMINAL-1994 ARTICLE-4.pdf.
  • Mckenzie, R., & Wegelin, W. (2009, February 21). Implementation of pressure management in municipal water supply systems. https://www.miya-water.com/fotos/artigos/03_implementation_of_pressure_management_in_municipal_water_supply_systems _3323280065a328bc009ead_9613006875f18100f66a3f.pdf
  • Negm, A., Ma, X., & Aggidis, G. (2023). Review of leakage detection in water distribution networks. IOP Conference Series: Earth and Environmental Science, 1136(1), Article 012052. https://doi.org/10.1088/1755-1315/1136/1/012052
  • Özdemir, Ö., Fırat, M., Yılmaz, S., & Usluer, M. (2021). Analysis of the effect of pressure control on leakages in distribution systems by FAVAD equation and field applications. Water Practice and Technology, 16(2), 320–332. https://doi.org/10.2166/wpt.2021.024
  • Pearson, D. (2019). Standard definitions for water losses. IWA Publishing. https://doi.org/10.2166/9781789060881 Sangroula, U., Han, K.-H., Koo, K.-M., Gnawali, K., & Yum, K.-T. (2022). Optimization of water distribution networks using genetic algorithm-based SOP–WDN program. Water, 14(6), Article 851. https://doi.org/10.3390/w14060851
  • Samani, H. M. V., & Mottaghi, A. (2006). Optimization of water distribution networks using integer linear programming. Journal of Hydraulic Engineering, 132(5), 501–509. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:5(501)
  • Savic, D. A., & Walters, G. A. (1997). Genetic algorithms for least-cost design of water distribution networks. Journal of Water Resources Planning and Management, 123(2), 67–77. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
  • Schwaller, J., van Zyl, J. E., & Kabaasha, A. M. (2015). Characterizing the pressure-leakage response of pipe networks using the FAVAD equation. Water Supply, 15(6), 1373–1382. https://doi.org/10.2166/ws.2015.101
  • Sınmaz, D. (2019). İçme suyu dağıtım şebekelerinin hidrolik analizi ve su kayıplarının modellenmesi üzerine örnek bir çalışma [Yüksek lisans tezi, Sakarya Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Suribabu, C. R., & Neelakantan, T. R. (2006). Design of water distribution networks using particle swarm optimization. Urban Water Journal, 3(2), 111–120. https://doi.org/10.1080/15730620600855928
  • Suribabu, C. R. (2012). Heuristic-based pipe dimensioning model for water distribution networks. Journal of Pipeline Systems Engineering and Practice, 3(4), 115–124. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000104
  • Thornton, J., & Lambert, A. (2005, September 12–14). Progress in practical prediction of pressure: Leakage, pressure: Burst frequency, and pressure: Consumption relationships [Conference presentation]. IWA Special Conference 'Leakage 2005', Halifax, Nova Scotia, Canada.
  • Türkeş, M., Sümer, U. M., & Çetiner, G. (2000, 13 Nisan). Küresel iklim değişikliği ve olası etkileri. https://www.mgm.gov.tr/FILES/iklim/yayinlar/iklimetkileri.pdf.
  • Van Dijk, M., van Vuuren, S., & Van Zyl, J. (2008). Optimizing water distribution systems using a weighted penalty in a genetic algorithm. Water SA, 35(5), 537–538. https://doi.org/10.4314/wsa.v34i5.180651
  • van Zyl, J. E., & Cassa, A. M. (2014). Modeling elastically deforming leaks in water distribution pipes. Journal of Hydraulic Engineering, 140(2), 182–189. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000813

Defining the Optimal Level of Pressure Fluctuations at Pressure Control Management Strategy for Reducing Water Losses in Water Networks

Year 2025, , 327 - 339, 27.01.2025
https://doi.org/10.21324/dacd.1588804

Abstract

A significant rate of the physical losses in networks are caused by unreported leaks. Leaks are directly related to pressure, and many public institutions and researchers are conducting management studies on pressure parameters. Pressure management methods are classified as classical and advanced pressure management. Many studies conducted worldwide have enabled the minimization of operating pressure. In this study, the hourly pressure difference was selected as the parameter to be minimized during the pressure management study, and it was aimed to minimize the pressure fluctuations of the network during the day. The data of the working networks, the hydraulic model of which was created in the EPANET program, was transferred to the MATLAB environment with the EPANET-MATLAB Toolkit. First, the network was analyzed with classical pressure management. In the next stage, the operating scenario for the flow-sensitive advanced pressure management was started to be created. Genetic algorithm was used in the MATLAB environment to create the most suitable scenario. Inlet pressure was selected as the optimization variable. The sum of the hourly pressure change differences of the network during the day was selected as the objective function. As a result of the optimization, the average pressure fluctuations in the working area were reduced by 55% from 18.56 m to 8.41 m. In addition, the average pressure of the network was reduced from 48.2 m to 37.3 m.

References

  • Abebe, A. J., & Solomatine, D. P. (1998, August 24–26). Application of global optimization to the design of pipe networks [Conference presentation]. 3rd International Conference on Hydroinformatics, Copenhagen, Denmark.
  • Alperovits, E., & Shamir, U. (1977). Design of optimal water distribution systems. Water Resources Research, 13(6), 885–900. https://doi.org/10.1029/WR013i006p00885
  • Botella Langa, A., Choi, Y.-G., Kim, K.-S., & Jang, D.-W. (2022). Application of the Harmony Search Algorithm for Optimization of WDN and Assessment of Pipe Deterioration. Applied Sciences, 12(7), Article 3550. https://doi.org/10.3390/app12073550
  • Chandramouli, S. (2015). Reliability-based optimal design of a municipal water supply pipe network. Urban Water Journal, 12(5), 353–361. https://doi.org/10.1080/1573062X.2014.993997
  • Cunha, M. da C., & Sousa, J. (1999). Water distribution network design optimization: Simulated annealing approach. Journal of Water Resources Planning and Management, 125(4), 215–221. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:4(215)
  • Dundović, I., & Tadić, L. (2022). A field experiment verification of theoretical exponent N1 for FAVAD method in defining the relationship of pressure and water losses. Water, 14(13), Article 13. https://doi.org/10.3390/w14132067
  • Durmuşçelebi, F. M. (2018). Su kayıplarının azaltılması için içme suyu dağıtım sistemlerinin rehabilitasyonu ve fayda-maliyet analizi [Yüksek lisans tezi, İnönü Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Eusuff, M. M., & Lansey, K. E. (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 129(3), 210–225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
  • Fanner, P., Thornton, J., & Liemberger, L. (2007). Evaluating water loss and planning loss reduction strategies. Awwa Research Foundation.
  • Folkman, S., & Parvez, J. (2020). PVC pipe cyclic design method. Pipelines, 2020, 304–315. https://doi.org/10.1061/9780784483213.034
  • Fujiwara, O., Jenchaimahakoon, B., & Edirishinghe, N. C. P. (1987). A modified linear programming gradient method for optimal design of looped water distribution networks. Water Resources Research, 23(6), 977–982.
  • Goulter, I. C., & Coals, A. V. (1986). Quantitative approaches to reliability assessment in pipe networks. Journal of Transportation Engineering, 112(3), 287–301. https://doi.org/10.1061/(ASCE)0733-947X(1986)112:3(287)
  • Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. The MIT Press.
  • İçme Suyu Temin ve Dağıtım Sistemlerindeki Su Kayıplarının Kontrolü Yönetmeliği. (2014, 8 Mayıs). Resmi Gazete (Sayı: 28994). https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=19651&MevzuatTur=7&MevzuatTertip=5
  • Kabaasha, A. M., van Zyl, J. E., & Piller, O. (2016, November 7–9). Modelling pressure: Leakage response in water distribution systems considering leak area variation [Conference presentation]. 14th CCWI International Conference, Computing and Control in Water Industry, Amsterdam, Netherlands.
  • Kahraman, A. M., & Özdağlar, D. (2004). Su dağıtım sistemlerinin genetik algoritma ile optimizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6(3), 1–18.
  • Keedwell, E., & Khu, S.-T. (2005). A hybrid genetic algorithm for the design of water distribution networks. Engineering Applications of Artificial Intelligence, 18(4), 461–472. https://doi.org/10.1016/j.engappai.2004.10.001
  • Kessler, A., & Shamir, U. (1989). Analysis of the linear programming gradient method for optimal design of water supply networks. Water Resources Research, 25(7), 1469–1480. https://doi.org/10.1029/WR025i007p01469
  • Lambert, A., Fantozzi, M., & Shepherd, M. (2017, September 5–7). Pressure: Leak flow rates using FAVAD: An improved fast-track practitioner’s approach [Conference presentation]. CCWI 2017 – 15th International Computing & Control for the Water Industry Conference, University of Sheffield.
  • Letting, L. K., Hamam, Y., & Abu-Mahfouz, A. M. (2017). Estimation of water demand in water distribution systems using particle swarm optimization. Water, 9(8), Article 8. https://doi.org/10.3390/w9080593
  • Liong, S., & Atiquzzaman, M. (2004). Optimal design of water distribution networks using shuffled complex evolution. Journal of The Institution of Engineers, 44(1), 93–107.
  • Marzola, I., Alvisi, S., & Franchini, M. (2021). Analysis of MNF and FAVAD model for leakage characterization by exploiting smart-metered data: The case of the Gorino Ferrarese (FE-Italy) district. Water, 13(5), Article 5. https://doi.org/10.3390/w13050643
  • May, J. (1994). Pressure-dependent leakage. World Water & Environmental Engineering. http://www.leakssuite.com/wpcontent/ uploads/2016/10/JOHN-MAYSEMINAL-1994 ARTICLE-4.pdf.
  • Mckenzie, R., & Wegelin, W. (2009, February 21). Implementation of pressure management in municipal water supply systems. https://www.miya-water.com/fotos/artigos/03_implementation_of_pressure_management_in_municipal_water_supply_systems _3323280065a328bc009ead_9613006875f18100f66a3f.pdf
  • Negm, A., Ma, X., & Aggidis, G. (2023). Review of leakage detection in water distribution networks. IOP Conference Series: Earth and Environmental Science, 1136(1), Article 012052. https://doi.org/10.1088/1755-1315/1136/1/012052
  • Özdemir, Ö., Fırat, M., Yılmaz, S., & Usluer, M. (2021). Analysis of the effect of pressure control on leakages in distribution systems by FAVAD equation and field applications. Water Practice and Technology, 16(2), 320–332. https://doi.org/10.2166/wpt.2021.024
  • Pearson, D. (2019). Standard definitions for water losses. IWA Publishing. https://doi.org/10.2166/9781789060881 Sangroula, U., Han, K.-H., Koo, K.-M., Gnawali, K., & Yum, K.-T. (2022). Optimization of water distribution networks using genetic algorithm-based SOP–WDN program. Water, 14(6), Article 851. https://doi.org/10.3390/w14060851
  • Samani, H. M. V., & Mottaghi, A. (2006). Optimization of water distribution networks using integer linear programming. Journal of Hydraulic Engineering, 132(5), 501–509. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:5(501)
  • Savic, D. A., & Walters, G. A. (1997). Genetic algorithms for least-cost design of water distribution networks. Journal of Water Resources Planning and Management, 123(2), 67–77. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
  • Schwaller, J., van Zyl, J. E., & Kabaasha, A. M. (2015). Characterizing the pressure-leakage response of pipe networks using the FAVAD equation. Water Supply, 15(6), 1373–1382. https://doi.org/10.2166/ws.2015.101
  • Sınmaz, D. (2019). İçme suyu dağıtım şebekelerinin hidrolik analizi ve su kayıplarının modellenmesi üzerine örnek bir çalışma [Yüksek lisans tezi, Sakarya Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Suribabu, C. R., & Neelakantan, T. R. (2006). Design of water distribution networks using particle swarm optimization. Urban Water Journal, 3(2), 111–120. https://doi.org/10.1080/15730620600855928
  • Suribabu, C. R. (2012). Heuristic-based pipe dimensioning model for water distribution networks. Journal of Pipeline Systems Engineering and Practice, 3(4), 115–124. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000104
  • Thornton, J., & Lambert, A. (2005, September 12–14). Progress in practical prediction of pressure: Leakage, pressure: Burst frequency, and pressure: Consumption relationships [Conference presentation]. IWA Special Conference 'Leakage 2005', Halifax, Nova Scotia, Canada.
  • Türkeş, M., Sümer, U. M., & Çetiner, G. (2000, 13 Nisan). Küresel iklim değişikliği ve olası etkileri. https://www.mgm.gov.tr/FILES/iklim/yayinlar/iklimetkileri.pdf.
  • Van Dijk, M., van Vuuren, S., & Van Zyl, J. (2008). Optimizing water distribution systems using a weighted penalty in a genetic algorithm. Water SA, 35(5), 537–538. https://doi.org/10.4314/wsa.v34i5.180651
  • van Zyl, J. E., & Cassa, A. M. (2014). Modeling elastically deforming leaks in water distribution pipes. Journal of Hydraulic Engineering, 140(2), 182–189. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000813
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Research Articles
Authors

Talha İbrahim Arduçoğlu 0009-0002-3704-5539

Furkan Boztaş 0009-0005-8692-1701

Mahmut Fırat 0000-0002-8010-9289

Early Pub Date January 25, 2025
Publication Date January 27, 2025
Submission Date November 20, 2024
Acceptance Date January 12, 2025
Published in Issue Year 2025

Cite

APA Arduçoğlu, T. İ., Boztaş, F., & Fırat, M. (2025). İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması. Doğal Afetler Ve Çevre Dergisi, 11(1), 327-339. https://doi.org/10.21324/dacd.1588804
AMA Arduçoğlu Tİ, Boztaş F, Fırat M. İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması. J Nat Haz Environ. January 2025;11(1):327-339. doi:10.21324/dacd.1588804
Chicago Arduçoğlu, Talha İbrahim, Furkan Boztaş, and Mahmut Fırat. “İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması”. Doğal Afetler Ve Çevre Dergisi 11, no. 1 (January 2025): 327-39. https://doi.org/10.21324/dacd.1588804.
EndNote Arduçoğlu Tİ, Boztaş F, Fırat M (January 1, 2025) İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması. Doğal Afetler ve Çevre Dergisi 11 1 327–339.
IEEE T. İ. Arduçoğlu, F. Boztaş, and M. Fırat, “İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması”, J Nat Haz Environ, vol. 11, no. 1, pp. 327–339, 2025, doi: 10.21324/dacd.1588804.
ISNAD Arduçoğlu, Talha İbrahim et al. “İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması”. Doğal Afetler ve Çevre Dergisi 11/1 (January 2025), 327-339. https://doi.org/10.21324/dacd.1588804.
JAMA Arduçoğlu Tİ, Boztaş F, Fırat M. İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması. J Nat Haz Environ. 2025;11:327–339.
MLA Arduçoğlu, Talha İbrahim et al. “İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması”. Doğal Afetler Ve Çevre Dergisi, vol. 11, no. 1, 2025, pp. 327-39, doi:10.21324/dacd.1588804.
Vancouver Arduçoğlu Tİ, Boztaş F, Fırat M. İçmesuyu Şebekelerinde Su Kayıplarının Azaltılması İçin Basınç Kontrol Yönetimi Stratejisinde Basınç Dalgalanmalarının En Uygun Seviyesinin Tanımlanması. J Nat Haz Environ. 2025;11(1):327-39.