Research Article
BibTex RIS Cite

Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği

Year 2024, Volume: 10 Issue: 1, 49 - 67, 28.01.2024
https://doi.org/10.21324/dacd.1327805

Abstract

Barajlar ihtiyacımız olan içme ve kullanma sularının düzenli olarak karşılanmasında, enerji ihtiyacının sağlanmasında, yerleşim alanlarının sel baskınlarına karşı korunmasında, rekreasyon alanlarının oluşturulmasında büyük öneme sahip mühendislik yapılarıdır. Sağladığı birçok fayda olmasına rağmen bu yapılarda oluşan hasarların, mansabında yer alan yerleşim alanları için ciddi afet riski oluşturduğu bilinmektedir. Ayrıca, eskimekte olan mevcut barajlarımız ve bunlara ek olarak her geçen gün artan barajlarımız, özellikle mansabında yerleşim alanları artan bölgelerde afet riskini daha da artırmaktadır. Bu çalışma kapsamında çalışma alanı olarak, İstanbul’da yer alan ve mansabında yoğun yerleşim alanı bulunan Darlık Barajı seçilmiştir. Darlık Barajı mansabında baraj yıkılma simülasyonu yapılmış ve taşkın dalgasının etkiyeceği alanlar belirlenmiştir. Bu kapsamda, yetkili kurumlar tarafından önlem alınması gereken alanların tespit edilmesine, baraj yıkılması sonucu oluşacak felaketlerin önlenmesine veya azaltılmasına katkı sağlanması amaçlanmıştır. Darlık Barajına ait yıkılma analizleri HEC-RAS programı kullanılarak oluşturulmuştur. Baraj gediklenme senaryosuna uygun olarak gediklenme parametreleri HEC-RAS programına tanımlanmış ve baraj yıkılması taşkın analizi 2 boyutlu olarak modellenmiştir. Çalışma kapsamında olası baraj yıkılması durumunda meydana gelecek taşkın debisi, su hızı ve su derinliği hesaplanmıştır. Taşkın yayılım, derinlik ve hız haritaları elde edilmiştir. Taşkın yayılım alanları incelenerek taşkın tehlike haritaları çıkarılmış ve oluşması muhtemel taşkın dalgasının tehlike boyutu belirlenmiştir. Son olarak ise taşkın yayılım alanında kalan binalarda zarar hesabı yapılmış, zarar yüzdesi ve risk haritaları elde edilmiştir. Zarar hesabı sonuçlarına göre yaklaşık 3043 binanın hasar gördüğü gözlenmiştir. Zarar yüzdeleri taşkın yayılım alanı üzerinde gösterilmiştir. Taşkından etkilenen tüm binaların %80.05’inin çok yüksek riskli sınıfta olduğu sonucuna ulaşılmıştır. Daha sonraki aşamada taşkın yayılım alanında kalan her bir bina risk sınıfına göre işaretlenmiş, risk haritalarında gösterilmiş ve çalışma kapsamında sunulmuştur.

References

  • Alho, P., & Aaltonen, J. (2008). Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst floods. Hydrological Processes, 22(10), 1537-1547. https://doi.org/10.1002/hyp.6692
  • Apel, H., Aronica, G. T., Kreibich, H., & Thieken, A. H. (2009). Flood risk analyses-how detailed do we need to be? Natural Hazards, 49(1), 79-98. https://doi.org/10.1007/s11069-008-9277-8
  • Alppay, H. (2019). Baraj yıkılması taşkın risk değerlendirmesi [Yüksek lisans tezi, Sakarya Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Aribawa, T. M., Mardjono, A., Soegiarto, S., Moe, I. R., Sihombing, Y. I., Rizaldi, A., & Farid, M. (2021). Assessment of flood propagation due to several dams break in Banten Province. International Journal of GEOMATE, 20(81), 185-190. https://doi.org/10.21660/2021.81.j2082
  • Azeez, O., Elfeki, A., Kamis, A. S., & Chaabani, A. (2020). Dam break analysis and flood disaster simulation in arid urban environment: the Um Al-Khair dam case study, Jeddah, Saudi Arabia. Natural Hazards, 100, 995-1011. https://doi.org/10.1007/s11069-019-03836-5
  • Brunner, G. W. (2014). Using HEC-RAS for dam break studies. 4 Ağustos 2021’de https://www.hec.usace.army.mil/publications adresinden alındı
  • Cüceloğlu, G. (2013). Darlık havzasının model destekli hidrolojik analizi [Yüksek lisans tezi, İstanbul Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Cai, W., Zhu, X., Peng, A., Wang, X., & Fan, Z. (2019). Flood risk analysis for Cascade dam systems: A case study in the Dadu River Basin in China. Water, 11(7), Article 1365. https://doi.org/10.3390/w11071365
  • Chen, S. S., Zhong, Q., & Shen, G. Z. (2019). Numerical modeling of earthen dam breach due to piping failure. Water Science and Engineering, 12(3), 169-178. https://doi.org/10.1016/j.wse.2019.08.001
  • Cosgun, T., Peker, İ. B., Sayin, B., Gülbaz, S., & Durgut, R. (2022). Assessment of flood event based on numerical models and legal statute: A case of Eşkinoz Stream in Istanbul, Turkey. Arabian Journal of Geosciences, 15, Article 585. https://doi.org/10.1007/s12517-022-09882-x
  • Centre for Research on the Epidemiology of Disasters. (2018). Flash Floods - Sharing of Field Experience – Kerala (CRED Crunch 53). https://cred.be/sites/default/files/CREDCrunch53N.pdf
  • Dinçergök, T. (2007, May 23-25). The role of dam safety in dam-break induced flood management [Conference presentation]. International Conference on River Basin Management, Kos, Greece.
  • Dinh, Q., Balica, S., & Popescu, I. (2012). Climate change ımpact on flood hazard, vulnerability and risk of the Long Xuyen Quadrangle in the Mekong Delta. International Journal of River Basin Management, 10(1), 103-120. https://doi.org/10.1080/15715124.2012.663383
  • Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D., & Efstratiadis, A. (2016). Comparative evaluation of 1D and Quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. Journal of Hydrology, 534, 478-492. https://doi.org/10.1016/j.jhydrol.2016.01.020
  • Dasallas, L., Kim, Y., & An, H. (2019). Case study of HEC-RAS 1D-2D coupling simulation: 2002 baeksan flood event in Korea. Water, 11(10), Article 2048. https://doi.org/10.3390/w11102048
  • Dikici, M., Kazezyılmaz Alhan, C. M., & Gülbaz, S. (2022). Flood hazard assessment for Alibeykoy watershed in Istanbul with Mike Nam and Mike 21. Environmental Engineering and Management Journal, 21(3), 399-411.
  • Devlet Su İşleri Genel Müdürlüğü. (2016). Devlet su işleri genel müdürlüğü 2016 yılı faaliyet raporu. T.C. Tarım ve Orman Bakanlığı, Devlet Su İşleri Genel Müdürlüğü. https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/KonuIcerik/759/1107/DosyaGaleri/dsi-2016-faaliyet-raporu.pdf
  • Froehlich, D. C. (1995). Embankment Dam Breach Parameters Revisited. In W. H. Espey & P. G. Combs (Eds.), Water Resources (pp. 887-891). American Society of Civil Engineers.
  • Froehlich, D. C. (2008). Embankment dam breach parameters and their uncertainties. Journal of Hydraulic Engineering, 134(12), 1708-1721.
  • Galoie, M., Zenz, G., Eslamian, S., & Motamedi, A. (2012). Numerical simulation of flood due to dam-break flow using an implicit method. International Journal of Hydrology Science and Technology, 2(2), 113-117.
  • George, A. C., & Nair, B. T. (2015). Dam Break Analysis Using BOSS DAMBRK. Aquatic Procedia, 4, 853-860. https://doi.org/10.1016/j.aqpro.2015.02.107
  • Gülbaz, S. (2019). Sayısal modeller ile taşkın yayılım haritasının oluşturulması ve risk altında olan alanların belirlenmesi: Türkköse Deresi örneği. Doğal Afetler ve Çevre Dergisi, 5(2), 335-349. https://doi.org/10.21324/dacd.491529
  • Gülbaz, S., & Kazezyılmaz Alhan, C. M. (2013). Calibrated Hydrodynamic Model for Sazlıdere Watershed in Istanbul and Investigation of Urbanization Effects. Journal of Hydrologic Engineering, 18(1), 75-84. https://doi.org/10.1061/(ASCE)HE.1943-5584.000060
  • Gülbaz, S., & Kazezyılmaz Alhan, C. M. (2012, October 17-19). Impact of Land Use/Cover Changes on Water Quality and Quantity in a Calibrated Hydrodynamic Model [Conference presentation]. 10th International Congress on Advances in Civil Engineering (ACE 2012), Middle East Technical University, Ankara, Turkey.
  • Haltaş, İ., Tayfur, G., & Elçi, Ş. (2016). Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey. Natural Hazards, 81(3), 2103-2119. https://doi.org/10.1007/s11069-016-2175-6
  • Hariri-Ardebili, M. A. (2018). Risk, Reliability, Resilience (R3) and beyond in dam engineering: A state-of-the-art review. International Journal of Disaster Risk Reduction, 31, 806-831. https://doi.org/10.1016/j.ijdrr.2018.07.024
  • Hu, P., Zhang, Q., Shi, P., Chen, B., & Fang, J. (2018). Flood-ınduced mortality across the globe: spatiotemporal pattern and influencing factors. Science of The Total Environment, 643, 171-182. https://doi.org/10.1016/j.scitotenv.2018.06.197
  • Huntington, S. M., & Thompson, D. M. (1976, May 2-5). Forces on a large vertical cylinder in multi-directional random waves [Conference presentation]. Offshore Technology Conference, Houston, Texas.
  • Horritt, M. S., & Batesi, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 268(1-4), 87-99. https://doi.org/10.1016/S0022-1694(02)00121-X
  • Hurdowar-Castro, D., Tsanis, I., & Simanovskis, I. (2007). Application of three-dimensional wind driven circulation model to assess the locations of new drinking water in takes in Lake Ontario. Journal of Great Lakes Research, 33(1), 232-52.
  • Kocaman, S. (2002). Baraj yıkılma analizi ve uygulaması [Yüksek lisans tezi, Çukurova Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Kocaman, S. (2007). Baraj yıkılması probleminin deneysel ve teorik olarak incelenmesi [Doktora tezi, Çukurova Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Kadir, M. A. A. (2019). 2D Flood inundation simulation based on a large scale physical model using course numerical grid method. International Journal of GEOMATE, 17(59), 230-236.
  • Kelesoglu, M. K., Temur, R., Gülbaz, S., Memisoglu Apaydin, N., Kazezyılmaz-Alhan, C. M., & Bozbey, İ. (2023). Site assessment and evaluation of the structural damages after the flood disaster in the Western Black Sea Basin on August 11, 2021. Natural Hazards, 116(1), 587-618. https://doi.org/10.1007/s11069-022-05690-4
  • Leandro, J., Chen, A. S., Djordjevi´c, S., & Savi´c, D. A. (2009). Comparison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. Journal of Hydraulic Engineering, 135(6), 495-504.
  • Lima, O. C., Neto, A. R., Alves, F. H. B., & Cirilo, J. A. (2020). Sub-daily hydrological-hydrodynamic simulation in flash flood basins: Una river (Pernambuco/Brazil). Environment and Water Journal, 15(5). https://doi.org/10.4136/ambi-agua.2556
  • Li, C., Cheng, X., Li, N., Du, X., Yu, Q., & Kan, G. (2016). A framework for flood risk analysis and benefit assessment of flood control measures in urban areas. International Journal of Environmental Research and Public Health, 13(8), Article 787. https://doi.org/10.3390/ijerph13080787
  • Liviu-Marian, A., Enea, A., Losub, M., & Breban, L.G. (2018). Dam breach size comparison for flood simulations. A HEC-RAS based, GIS approach for Drăcșani Lake, Sitna River, Romania. Water, 12(4), Article 1090. https://doi.org/10.3390/w12041090
  • Mahnamfar, F., Abdollahzadeh Moradi, Y., & Ağıralioğlu, N. (2020). Flood risk analysis of residential areas at downstream of the Elmali Dam. Academic Platform Journal of Natural Hazards and Disaster Management, 1(1), 49-58.
  • Manfreda, S., Samela, C., Gioia, A., Consoli, G. G., Iacobellis, V., Giuzio, L., Cantisani, A., & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, 79, 735-754. https://doi.org/10.1007/s11069-015-1869-5
  • Mihu-Pintilie, A., Cîmpianu, C. I., Stoleriu, C. C., Pérez, M. N., & Paveluc, L. E. (2019). Using high-density LiDAR data and 2D stream flow hydraulic modeling to improve urban flood hazard maps: A HEC-RAS multi-scenario approach. Water, 11(9), Article 1832. https://doi.org/10.3390/w11091832
  • Nayak, P. C., Sudheer, K. P., & Saheb, S. M. (2000). Dam break analysis of Ghodahoda project, Orissa (CS/AR-15/1999-2000). National Instıtute of Hydrology.
  • Terzioğlu, Z. Ö. (2018). Taşkın zararlarının tahmini, zarar derecelendirmesi ve risk sınıflandırması: Doğu Karadeniz için bir uygulama [Doktora tezi, Karadeniz Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Pistrika, A. K. & Jonkman, S. N. (2010). Damage to residential buildings due to flooding of New Orleans after hurricane Katrina. Natural Hazards, 54, 413-434. https://doi.org/10.1007/s11069-009-9476-y
  • Palamut, N. (2014). Baraj yıkılma analizi ve uygulaması [Yüksek lisans tezi, Gazi Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Papaioannou, G., Efstratiadis, A., Vasiliades, L., Loukas, A., Papalexiou, S., Koukouvinos, A., Tsoukalas, I., & Kossieris, P. (2018). An operational method for flood directive ımplementation in Ungauged urban areas. Hydrology, 5(2), Article 24. https://doi.org/10.3390/hydrology5020024
  • Pasa, Y., Peker, İ. B., Haci, A., & Gülbaz, S. (2023). Dam failure analysis and flood disaster simulation under various scenarios. Water Science and Technology, 87(5), 1214-1231. https://doi.org/10.2166/wst.2023.052
  • Quiroga, V. M., Kure, S., & Udo, K., Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC- RAS version 5. RIBAGUA-Revista Iberoamericana Del Agua, 3, 25-33. https://doi.org/10.1016/j.riba.2015.12.001
  • Razad, A. Z. A., Muda, R. S., Sidek, L. M., Azia, I. S. A., Mansor, F. H., & Yalit, R. (2013). Simulation of breach outflow for earthfill dam. IOP Conference Series: Earth and Environmental Science, 16(1), Article 012030. https://doi.org/10.1088/1755-1315/16/1/012030
  • Resmi Gazete. (2021, Mart 24). Mimarlık ve mühendislik hizmet bedellerinin hesabında kullanılacak 2021 yılı yapı yaklaşık birim maliyetleri hakkında tebliğ. 28 Ekim 2021’de https://www.resmigazete.gov.tr/eskiler/2021/03/20210324-3.htm adresinden alındı
  • Serencam, U. (2013). Taşkın zararları ve zarar görebilirlik analizi: Trabzon Değirmendere Sanayi Mahallesi örneği [Doktora tezi, Karadeniz Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Singh, V. P. (1996). Dam breach modeling technology (Vol. 17). Water Science and Technology Library. Takeuchi, K., Chavoshian, A., Simonovic, S.P. (2018). Floods: From risk to opportunity. Journal of Flood Risk Management, 11(4), Article e12046. doi.10.111/jfr3.12046
  • Tuncer, İ. (2011). Açık kanallarda su yüzü profilinin belirlenmesi, Nakkaş Dere örneğinde bir HEC-RAS uygulaması [Yüksek lisans tezi, Gazi Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • U.S. Army Corps of Engineers. (1997). Hydrologic engineering requirements for reservoirs (EM 1110-2-1420). https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1420.pdf
  • U.S. Army Corps of Engineers. (2016). HEC-RAS river analysis systems user’s manuel. https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Users%20Manual.pdf
  • Urzica, A., Pintilie, A. M., Stoleriu, C. C., Cîmpianu, C. I., Hutanu, E., Pricop, C.I. & Grozavu, A. (2020). Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multi-reservoir system (NE Romania). Water, 13(1), Article 57. https://doi.org/10.3390/w13010057
  • van der Sande, C. (2001). River flood damage assessment using IKONOS imagery. European Commission, Joint Research Centre, Space Applications Institute.
  • van Eck, N. V., & Kok, M. (2001). Standaardmethode2002 schade en slachtoffers als gevolg van overstromingen. Dienst Wegen Waterbouwkunde, Ministerievan Rijkswaterstaat, Netherlands.
  • Wang, L. Y., Chen, S. F., Zhu, W. B., Ren, H., Zhang, L. J., & Zhu, L. Q. (2021). Spatiotemporal variations of extreme precipitation and its potential driving factors in China's North-South Transition Zone during 1960-2017.
  • Atmospheric Research, 252, Article 105429. https://doi.org/10.1016/j.atmosres.2020.105429
  • Xiong, Y. (2011). A dam break analysis using HEC-RAS. Journal of Water Resource and Protection, 3(6), 370-379. Xu, Y., & Zhang, L.M. (2009). Breaching parameters for earth and rockfill dams. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1957-1970.
  • You, L., Li, C., Min, X., & Xiaolei, T. (2012). Review of dambreak research of earth-rock dam combining with dam safety management. Procedia Engineering, 28, 382-388. https://doi.org/10.1016/j.proeng.2012.01.737
  • Yıldız, C. (2021). Baraj yıkılması taşkın risk analizi Yeşildere Barajı örneği [Yüksek lisans tezi, Fırat Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Zhang, L. M., Xu, Y., & Jia, J. S. (2009). Analysis of earth dam failures: A data base approach. Georisk, 3(3), 184-189. Zhang, L., Peng, M., Chang, D., & Xu, Y. (2016). Dam failure mechanisms and risk assessment. Wiley.

Investigation of Flooding due to Dam Failure: A Case Study of Darlık Dam

Year 2024, Volume: 10 Issue: 1, 49 - 67, 28.01.2024
https://doi.org/10.21324/dacd.1327805

Abstract

Dams are engineering structures that are of great importance in regularly meeting the drinking and utility water that we need, providing electrical energy needs, protecting residential areas against floods, and creating recreation areas. Although dams have many benefits, it is known that the damages in these structures poses serious disaster risk for the settlement areas located downstream. In addition, our existing dams, which are aging, and in addition to these, our dams that are increasing day by day, increase the disaster risk even more, especially in areas with increasing residential areas downstream. In this study, Darlık Dam, which is located in Istanbul and has a dense residential area on its downstream, was selected as the study area. Dam failure simulation was developed at the downstream of Darlık Dam and the areas that would be affected by the flood wave were observed. In this context, it is aimed to contribute to the determination of the areas where measures should be taken by the authorized institutions and to the prevention or reduction of the disasters that will occur due to dam failure. Failure analyzes of Darlık dam were generated by using HEC-RAS program. In accordance with the dam breach scenario, the breach parameters were defined into the HEC-RAS program and the dam failure flood analysis was modelled in two dimensions. Within the scope of the study, flood flow, water velocity and water depth were calculated in case of possible dam failure. Flood inundation, depth and velocity maps were obtained. Flood hazard areas was created and possible flood wave’s hazard ratio was determined by observing flood inundation areas. Finally, damage of buildings in flood wave areas was calculated and damage ratio and risk maps were obtained. According to the result of damage calculation, it was observed that approximately 3043 buildings were damaged. The damage ratio was shown on the flood inundation areas. It was concluded that %80.05 of all buildings affected by the flood are in the very high risk class. In the next stage, each building in the flood inundation areas was marked according to its risk class, shown in risk maps and presented within the scope of the study.

References

  • Alho, P., & Aaltonen, J. (2008). Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst floods. Hydrological Processes, 22(10), 1537-1547. https://doi.org/10.1002/hyp.6692
  • Apel, H., Aronica, G. T., Kreibich, H., & Thieken, A. H. (2009). Flood risk analyses-how detailed do we need to be? Natural Hazards, 49(1), 79-98. https://doi.org/10.1007/s11069-008-9277-8
  • Alppay, H. (2019). Baraj yıkılması taşkın risk değerlendirmesi [Yüksek lisans tezi, Sakarya Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Aribawa, T. M., Mardjono, A., Soegiarto, S., Moe, I. R., Sihombing, Y. I., Rizaldi, A., & Farid, M. (2021). Assessment of flood propagation due to several dams break in Banten Province. International Journal of GEOMATE, 20(81), 185-190. https://doi.org/10.21660/2021.81.j2082
  • Azeez, O., Elfeki, A., Kamis, A. S., & Chaabani, A. (2020). Dam break analysis and flood disaster simulation in arid urban environment: the Um Al-Khair dam case study, Jeddah, Saudi Arabia. Natural Hazards, 100, 995-1011. https://doi.org/10.1007/s11069-019-03836-5
  • Brunner, G. W. (2014). Using HEC-RAS for dam break studies. 4 Ağustos 2021’de https://www.hec.usace.army.mil/publications adresinden alındı
  • Cüceloğlu, G. (2013). Darlık havzasının model destekli hidrolojik analizi [Yüksek lisans tezi, İstanbul Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Cai, W., Zhu, X., Peng, A., Wang, X., & Fan, Z. (2019). Flood risk analysis for Cascade dam systems: A case study in the Dadu River Basin in China. Water, 11(7), Article 1365. https://doi.org/10.3390/w11071365
  • Chen, S. S., Zhong, Q., & Shen, G. Z. (2019). Numerical modeling of earthen dam breach due to piping failure. Water Science and Engineering, 12(3), 169-178. https://doi.org/10.1016/j.wse.2019.08.001
  • Cosgun, T., Peker, İ. B., Sayin, B., Gülbaz, S., & Durgut, R. (2022). Assessment of flood event based on numerical models and legal statute: A case of Eşkinoz Stream in Istanbul, Turkey. Arabian Journal of Geosciences, 15, Article 585. https://doi.org/10.1007/s12517-022-09882-x
  • Centre for Research on the Epidemiology of Disasters. (2018). Flash Floods - Sharing of Field Experience – Kerala (CRED Crunch 53). https://cred.be/sites/default/files/CREDCrunch53N.pdf
  • Dinçergök, T. (2007, May 23-25). The role of dam safety in dam-break induced flood management [Conference presentation]. International Conference on River Basin Management, Kos, Greece.
  • Dinh, Q., Balica, S., & Popescu, I. (2012). Climate change ımpact on flood hazard, vulnerability and risk of the Long Xuyen Quadrangle in the Mekong Delta. International Journal of River Basin Management, 10(1), 103-120. https://doi.org/10.1080/15715124.2012.663383
  • Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D., & Efstratiadis, A. (2016). Comparative evaluation of 1D and Quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. Journal of Hydrology, 534, 478-492. https://doi.org/10.1016/j.jhydrol.2016.01.020
  • Dasallas, L., Kim, Y., & An, H. (2019). Case study of HEC-RAS 1D-2D coupling simulation: 2002 baeksan flood event in Korea. Water, 11(10), Article 2048. https://doi.org/10.3390/w11102048
  • Dikici, M., Kazezyılmaz Alhan, C. M., & Gülbaz, S. (2022). Flood hazard assessment for Alibeykoy watershed in Istanbul with Mike Nam and Mike 21. Environmental Engineering and Management Journal, 21(3), 399-411.
  • Devlet Su İşleri Genel Müdürlüğü. (2016). Devlet su işleri genel müdürlüğü 2016 yılı faaliyet raporu. T.C. Tarım ve Orman Bakanlığı, Devlet Su İşleri Genel Müdürlüğü. https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/KonuIcerik/759/1107/DosyaGaleri/dsi-2016-faaliyet-raporu.pdf
  • Froehlich, D. C. (1995). Embankment Dam Breach Parameters Revisited. In W. H. Espey & P. G. Combs (Eds.), Water Resources (pp. 887-891). American Society of Civil Engineers.
  • Froehlich, D. C. (2008). Embankment dam breach parameters and their uncertainties. Journal of Hydraulic Engineering, 134(12), 1708-1721.
  • Galoie, M., Zenz, G., Eslamian, S., & Motamedi, A. (2012). Numerical simulation of flood due to dam-break flow using an implicit method. International Journal of Hydrology Science and Technology, 2(2), 113-117.
  • George, A. C., & Nair, B. T. (2015). Dam Break Analysis Using BOSS DAMBRK. Aquatic Procedia, 4, 853-860. https://doi.org/10.1016/j.aqpro.2015.02.107
  • Gülbaz, S. (2019). Sayısal modeller ile taşkın yayılım haritasının oluşturulması ve risk altında olan alanların belirlenmesi: Türkköse Deresi örneği. Doğal Afetler ve Çevre Dergisi, 5(2), 335-349. https://doi.org/10.21324/dacd.491529
  • Gülbaz, S., & Kazezyılmaz Alhan, C. M. (2013). Calibrated Hydrodynamic Model for Sazlıdere Watershed in Istanbul and Investigation of Urbanization Effects. Journal of Hydrologic Engineering, 18(1), 75-84. https://doi.org/10.1061/(ASCE)HE.1943-5584.000060
  • Gülbaz, S., & Kazezyılmaz Alhan, C. M. (2012, October 17-19). Impact of Land Use/Cover Changes on Water Quality and Quantity in a Calibrated Hydrodynamic Model [Conference presentation]. 10th International Congress on Advances in Civil Engineering (ACE 2012), Middle East Technical University, Ankara, Turkey.
  • Haltaş, İ., Tayfur, G., & Elçi, Ş. (2016). Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey. Natural Hazards, 81(3), 2103-2119. https://doi.org/10.1007/s11069-016-2175-6
  • Hariri-Ardebili, M. A. (2018). Risk, Reliability, Resilience (R3) and beyond in dam engineering: A state-of-the-art review. International Journal of Disaster Risk Reduction, 31, 806-831. https://doi.org/10.1016/j.ijdrr.2018.07.024
  • Hu, P., Zhang, Q., Shi, P., Chen, B., & Fang, J. (2018). Flood-ınduced mortality across the globe: spatiotemporal pattern and influencing factors. Science of The Total Environment, 643, 171-182. https://doi.org/10.1016/j.scitotenv.2018.06.197
  • Huntington, S. M., & Thompson, D. M. (1976, May 2-5). Forces on a large vertical cylinder in multi-directional random waves [Conference presentation]. Offshore Technology Conference, Houston, Texas.
  • Horritt, M. S., & Batesi, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 268(1-4), 87-99. https://doi.org/10.1016/S0022-1694(02)00121-X
  • Hurdowar-Castro, D., Tsanis, I., & Simanovskis, I. (2007). Application of three-dimensional wind driven circulation model to assess the locations of new drinking water in takes in Lake Ontario. Journal of Great Lakes Research, 33(1), 232-52.
  • Kocaman, S. (2002). Baraj yıkılma analizi ve uygulaması [Yüksek lisans tezi, Çukurova Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Kocaman, S. (2007). Baraj yıkılması probleminin deneysel ve teorik olarak incelenmesi [Doktora tezi, Çukurova Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Kadir, M. A. A. (2019). 2D Flood inundation simulation based on a large scale physical model using course numerical grid method. International Journal of GEOMATE, 17(59), 230-236.
  • Kelesoglu, M. K., Temur, R., Gülbaz, S., Memisoglu Apaydin, N., Kazezyılmaz-Alhan, C. M., & Bozbey, İ. (2023). Site assessment and evaluation of the structural damages after the flood disaster in the Western Black Sea Basin on August 11, 2021. Natural Hazards, 116(1), 587-618. https://doi.org/10.1007/s11069-022-05690-4
  • Leandro, J., Chen, A. S., Djordjevi´c, S., & Savi´c, D. A. (2009). Comparison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. Journal of Hydraulic Engineering, 135(6), 495-504.
  • Lima, O. C., Neto, A. R., Alves, F. H. B., & Cirilo, J. A. (2020). Sub-daily hydrological-hydrodynamic simulation in flash flood basins: Una river (Pernambuco/Brazil). Environment and Water Journal, 15(5). https://doi.org/10.4136/ambi-agua.2556
  • Li, C., Cheng, X., Li, N., Du, X., Yu, Q., & Kan, G. (2016). A framework for flood risk analysis and benefit assessment of flood control measures in urban areas. International Journal of Environmental Research and Public Health, 13(8), Article 787. https://doi.org/10.3390/ijerph13080787
  • Liviu-Marian, A., Enea, A., Losub, M., & Breban, L.G. (2018). Dam breach size comparison for flood simulations. A HEC-RAS based, GIS approach for Drăcșani Lake, Sitna River, Romania. Water, 12(4), Article 1090. https://doi.org/10.3390/w12041090
  • Mahnamfar, F., Abdollahzadeh Moradi, Y., & Ağıralioğlu, N. (2020). Flood risk analysis of residential areas at downstream of the Elmali Dam. Academic Platform Journal of Natural Hazards and Disaster Management, 1(1), 49-58.
  • Manfreda, S., Samela, C., Gioia, A., Consoli, G. G., Iacobellis, V., Giuzio, L., Cantisani, A., & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, 79, 735-754. https://doi.org/10.1007/s11069-015-1869-5
  • Mihu-Pintilie, A., Cîmpianu, C. I., Stoleriu, C. C., Pérez, M. N., & Paveluc, L. E. (2019). Using high-density LiDAR data and 2D stream flow hydraulic modeling to improve urban flood hazard maps: A HEC-RAS multi-scenario approach. Water, 11(9), Article 1832. https://doi.org/10.3390/w11091832
  • Nayak, P. C., Sudheer, K. P., & Saheb, S. M. (2000). Dam break analysis of Ghodahoda project, Orissa (CS/AR-15/1999-2000). National Instıtute of Hydrology.
  • Terzioğlu, Z. Ö. (2018). Taşkın zararlarının tahmini, zarar derecelendirmesi ve risk sınıflandırması: Doğu Karadeniz için bir uygulama [Doktora tezi, Karadeniz Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Pistrika, A. K. & Jonkman, S. N. (2010). Damage to residential buildings due to flooding of New Orleans after hurricane Katrina. Natural Hazards, 54, 413-434. https://doi.org/10.1007/s11069-009-9476-y
  • Palamut, N. (2014). Baraj yıkılma analizi ve uygulaması [Yüksek lisans tezi, Gazi Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Papaioannou, G., Efstratiadis, A., Vasiliades, L., Loukas, A., Papalexiou, S., Koukouvinos, A., Tsoukalas, I., & Kossieris, P. (2018). An operational method for flood directive ımplementation in Ungauged urban areas. Hydrology, 5(2), Article 24. https://doi.org/10.3390/hydrology5020024
  • Pasa, Y., Peker, İ. B., Haci, A., & Gülbaz, S. (2023). Dam failure analysis and flood disaster simulation under various scenarios. Water Science and Technology, 87(5), 1214-1231. https://doi.org/10.2166/wst.2023.052
  • Quiroga, V. M., Kure, S., & Udo, K., Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC- RAS version 5. RIBAGUA-Revista Iberoamericana Del Agua, 3, 25-33. https://doi.org/10.1016/j.riba.2015.12.001
  • Razad, A. Z. A., Muda, R. S., Sidek, L. M., Azia, I. S. A., Mansor, F. H., & Yalit, R. (2013). Simulation of breach outflow for earthfill dam. IOP Conference Series: Earth and Environmental Science, 16(1), Article 012030. https://doi.org/10.1088/1755-1315/16/1/012030
  • Resmi Gazete. (2021, Mart 24). Mimarlık ve mühendislik hizmet bedellerinin hesabında kullanılacak 2021 yılı yapı yaklaşık birim maliyetleri hakkında tebliğ. 28 Ekim 2021’de https://www.resmigazete.gov.tr/eskiler/2021/03/20210324-3.htm adresinden alındı
  • Serencam, U. (2013). Taşkın zararları ve zarar görebilirlik analizi: Trabzon Değirmendere Sanayi Mahallesi örneği [Doktora tezi, Karadeniz Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Singh, V. P. (1996). Dam breach modeling technology (Vol. 17). Water Science and Technology Library. Takeuchi, K., Chavoshian, A., Simonovic, S.P. (2018). Floods: From risk to opportunity. Journal of Flood Risk Management, 11(4), Article e12046. doi.10.111/jfr3.12046
  • Tuncer, İ. (2011). Açık kanallarda su yüzü profilinin belirlenmesi, Nakkaş Dere örneğinde bir HEC-RAS uygulaması [Yüksek lisans tezi, Gazi Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • U.S. Army Corps of Engineers. (1997). Hydrologic engineering requirements for reservoirs (EM 1110-2-1420). https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1420.pdf
  • U.S. Army Corps of Engineers. (2016). HEC-RAS river analysis systems user’s manuel. https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Users%20Manual.pdf
  • Urzica, A., Pintilie, A. M., Stoleriu, C. C., Cîmpianu, C. I., Hutanu, E., Pricop, C.I. & Grozavu, A. (2020). Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multi-reservoir system (NE Romania). Water, 13(1), Article 57. https://doi.org/10.3390/w13010057
  • van der Sande, C. (2001). River flood damage assessment using IKONOS imagery. European Commission, Joint Research Centre, Space Applications Institute.
  • van Eck, N. V., & Kok, M. (2001). Standaardmethode2002 schade en slachtoffers als gevolg van overstromingen. Dienst Wegen Waterbouwkunde, Ministerievan Rijkswaterstaat, Netherlands.
  • Wang, L. Y., Chen, S. F., Zhu, W. B., Ren, H., Zhang, L. J., & Zhu, L. Q. (2021). Spatiotemporal variations of extreme precipitation and its potential driving factors in China's North-South Transition Zone during 1960-2017.
  • Atmospheric Research, 252, Article 105429. https://doi.org/10.1016/j.atmosres.2020.105429
  • Xiong, Y. (2011). A dam break analysis using HEC-RAS. Journal of Water Resource and Protection, 3(6), 370-379. Xu, Y., & Zhang, L.M. (2009). Breaching parameters for earth and rockfill dams. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1957-1970.
  • You, L., Li, C., Min, X., & Xiaolei, T. (2012). Review of dambreak research of earth-rock dam combining with dam safety management. Procedia Engineering, 28, 382-388. https://doi.org/10.1016/j.proeng.2012.01.737
  • Yıldız, C. (2021). Baraj yıkılması taşkın risk analizi Yeşildere Barajı örneği [Yüksek lisans tezi, Fırat Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Zhang, L. M., Xu, Y., & Jia, J. S. (2009). Analysis of earth dam failures: A data base approach. Georisk, 3(3), 184-189. Zhang, L., Peng, M., Chang, D., & Xu, Y. (2016). Dam failure mechanisms and risk assessment. Wiley.
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other), Hydrology (Other)
Journal Section Research Articles
Authors

Ezgi Selen Tilav 0000-0002-5739-3867

Sezar Gülbaz 0000-0002-2274-6896

Publication Date January 28, 2024
Submission Date July 15, 2023
Acceptance Date October 7, 2023
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Tilav, E. S., & Gülbaz, S. (2024). Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği. Doğal Afetler Ve Çevre Dergisi, 10(1), 49-67. https://doi.org/10.21324/dacd.1327805
AMA Tilav ES, Gülbaz S. Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği. J Nat Haz Environ. January 2024;10(1):49-67. doi:10.21324/dacd.1327805
Chicago Tilav, Ezgi Selen, and Sezar Gülbaz. “Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği”. Doğal Afetler Ve Çevre Dergisi 10, no. 1 (January 2024): 49-67. https://doi.org/10.21324/dacd.1327805.
EndNote Tilav ES, Gülbaz S (January 1, 2024) Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği. Doğal Afetler ve Çevre Dergisi 10 1 49–67.
IEEE E. S. Tilav and S. Gülbaz, “Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği”, J Nat Haz Environ, vol. 10, no. 1, pp. 49–67, 2024, doi: 10.21324/dacd.1327805.
ISNAD Tilav, Ezgi Selen - Gülbaz, Sezar. “Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği”. Doğal Afetler ve Çevre Dergisi 10/1 (January 2024), 49-67. https://doi.org/10.21324/dacd.1327805.
JAMA Tilav ES, Gülbaz S. Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği. J Nat Haz Environ. 2024;10:49–67.
MLA Tilav, Ezgi Selen and Sezar Gülbaz. “Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği”. Doğal Afetler Ve Çevre Dergisi, vol. 10, no. 1, 2024, pp. 49-67, doi:10.21324/dacd.1327805.
Vancouver Tilav ES, Gülbaz S. Baraj Yıkılması Sonucu Oluşan Taşkının İncelenmesi: Darlık Barajı Örneği. J Nat Haz Environ. 2024;10(1):49-67.