Research Article
BibTex RIS Cite

The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River

Year 2025, Volume: 11 Issue: 1, 157 - 169, 27.01.2025
https://doi.org/10.21324/dacd.1495772

Abstract

Flooding is a natural disaster that causes loss of life and property worldwide. Floods can be predicted and their damages can be reduced. Various natural and man-made factors can cause floods. Sediment movement can be counted as one of the causes of floods, albeit rarely. The Sakarya River bed and river mouth is one of the risky areas for flooding due to sediment deposition. Due to the activities of quarries on the Sakarya River, the amount of sediment carried by the river increases, and the damage to the river bed morphology. In rare cases, the mouth of the river is completely closed due to sedimentation, which has caused many disasters such as coastal flooding and capsizing of marine vessels, leading to loss of life and property. Therefore, the occurrence of floods due to sediment deposition at the mouth of Sakarya River was investigated. The 5, 10, 25, 50, 100, and 500-year return period flows in the downstream part of the Sakarya River and Karasu district were analyzed with the 2D flood model in case of insufficient discharge from the river mouth. Water depth, velocity, and flood hazard maps for these return periods were prepared. The impact of flooding on Karasu district was analyzed in terms of affected buildings and affected area (ha). Thus, the effects of the floods occurring in the downstream region as a result of the interventions to the river bed in the upstream region were analyzed.

References

  • Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., Roo, A. de, Salamon, P., Wyser, K., & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth’s Future, 5(2), 171–182. https://doi.org/10.1002/2016EF000485
  • Alphen, J. V., Martini, F., Loat, R., Slomp, R., & Passchier, R. (2009). Flood risk mapping in Europe, experiences and best practices. Journal of Flood Risk Management, 2(4), 285–292. https://doi.org/10.1111/j.1753-318X.2009.01045.x
  • Barredo, J. I. (2009). Normalised flood losses in Europe: 1970–2006. Natural Hazards and Earth System Sciences, 9(1), 97–104.
  • Barredo, J. I., Saurí, D., & Llasat, M. C. (2012). Assessing trends in insured losses from floods in Spain (1971–2008). Natural Hazards and Earth System Sciences, 12(5), 1723–1729. https://doi.org/10.5194/nhess-12-1723-2012
  • Betsholtz, A., & Nordlöf, B. (2017). Potentials and limitations of 1D, 2D and coupled 1D-2D flood modelling in HEC-RAS: A case study on Höje River [Master thesis, Lund University]. https://www.lunduniversity.lu.se/lup/publication/8904721
  • Birkholz, S., Muro, M., Jeffrey, P., & Smith, H. M. (2014). Rethinking the relationship between flood risk perception and flood management. Science of The Total Environment, 478, 12–20. https://doi.org/10.1016/j.scitotenv.2014.01.061
  • Bouwer, L. M., Bubeck, P., & Aerts, J. C. J. H. (2010). Changes in future flood risk due to climate and development in a Dutch polder area. Global Environmental Change, 20(3), 463–471.
  • Bubeck, P., Otto, A., & Weichselgartner, J. (2017). Societal impacts of flood hazards. Oxford Research Encyclopedia of Natural Hazard Science. https://doi.org/10.1093/acrefore/9780199389407.013.281
  • Copernicus Land Monitoring Service. (2018). CORINE Land Cover 2018 (vector/raster 100 m), Europe, 6-yearly. Retrieved from https://land.copernicus.eu/en/products/corine-land-cover/clc2018
  • Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., & Petaccia, G. (2020). Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the-art model. Water, 12(9), Article 2326. https://doi.org/10.3390/w12092326
  • Çıtakoğlu, H., Demir, V., & Haktanır, T. (2017). L-momentler yöntemiyle Karadeniz’e dökülen akarsulara ait yıllık anlık maksimum değerlerin bölgesel frekans analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 571–580.
  • Dogan, E., Sönmez, O., Yapan, E., & Othan, K. (2013). Aşağı Sakarya Nehrinde taşkın yayılım haritalarının elde edilmesi. Sakarya University Journal of Science, 17(3), 363–369. https://doi.org/10.16984/saufbed.44256
  • Dottori, F., Salamon, P., Bianchi, A., Alfieri, L., Hirpa, F. A., & Feyen, L. (2016). Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources, 94, 87–102. https://doi.org/10.1016/j.advwatres.2016.05.002
  • HEC-RAS. (2021, June 14). Hydrologic Engineering Center's (CEIWR-HEC) River Analysis System (HEC-RAS). Retrieved from https://www.hec.usace.army.mil/software/hec-ras/
  • Işık, S., Şaşal, M., & Doğan, E. (2006). Sakarya Nehrinde barajların mansap etkisinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 21(3), 401–408.
  • Jongman, B. (2018). Effective adaptation to rising flood risk. Nature Communications, 9, Article 1986. https://doi.org/10.1038/s41467-018-04396-1
  • Koca, Y. C. (2014). Rize İyidere alt havzası İkizdere kesiti için birim hidrografın belirlenmesi [Uzmanlık tezi, T.C. Orman ve Su İşleri Bakanlığı]. https://kutuphane.tarimorman.gov.tr/vufind/Record/1181327
  • Kopar, İ., Polat, S., Hadimli, H., & Özdemir, M. (2011). 4-6 Mart 2004 Pulur Çayı (Ilıca-Erzurum) sel-taşkın afeti. Doğu Coğrafya Dergisi, 10(13), 187–218.
  • Kreft, M. (2011). Quantifying the impacts of climate-related natural disasters in Australia and New Zealand. Munich Re, Wellington.
  • Lim, N. J., & Brandt, S. A. (2019). Flood map boundary sensitivity due to combined effects of DEM resolution and roughness in relation to model performance. Geomatics, Natural Hazards and Risk, 10(1), 1613–1647.
  • Merwade, V., Olivera, F., Arabi, M., & Edleman, S. (2008). Uncertainty in flood inundation mapping: Current issues and future directions. Journal of Hydrologic Engineering, 13(7), 608–620.
  • Pinos, J., & Timbe, L. (2019). Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Science and Engineering, 12(1), 11–18.
  • Prinos, P. (2008). Review of flood hazard mapping. Global NEST Journal, 13(3), 193–214.
  • Quiroga, V. M., Kure, S., Udo, K., & Mano, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25–33.
  • Rupal, K. W., & Agnihotri, P. G. (2019). Flood risk assessment and resilience strategies for flood risk management: A case study of Surat City. International Journal of Disaster Risk Reduction, 40, Article 101155. https://doi.org/10.1016/j.ijdrr.2019.101155
  • Sonmez, O., & Doğan, E. (2017, September 29 – October 1). Asi Nehri yatağının taşkın taşıma kapasitenin belirlenmesi [Conference presentation]. 5th International Symposium on Innovative Technologies in Engineering and Science, Baku, Azerbaijan.
  • United Nations Office for Disaster Risk Reduction. (2011). Global Assessment Report on Disaster Risk Reduction – Revealing Risk, Redefining Development. United Nations, Geneva.
  • Urzică, A., Mihu-Pintilie, A., Stoleriu, C. C., Cîmpianu, C. I., Huţanu, E., Pricop, C. I., & Grozavu, A. (2021). Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multi-reservoir system (NE Romania). Water, 13(1), Article 57. https://doi.org/10.3390/w13010057
  • Uzuntaş, Ö., & Öztürk, S. (2019). An assessment on the flood and flash flood regulations in Turkey: A comparison with different countries and legal deficiency analysis. Journal of International Scientific Research, 4(2), 146–159. https://doi.org/10.23834/isrjournal.520732
  • Yanmaz, A. M. (2007, May 28–29). Akarsu geçişlerinde taşkın kaynaklı problemlerin değerlendirilmesi [Bildiri Sunumu]. Sel-Heyelan-Çığ Sempozyumu, Samsun, Türkiye.
  • Zeiger, S. J., & Hubbart, J. A. (2021). Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid simulations. Journal of Environmental Management, 285, Article 112125. https://doi.org/10.1016/j.jenvman.2021.112125
  • Zelenakova, M., et al. (2018). Flood risk modelling of the Slatvinec stream in Krušlov village, Slovakia. Journal of Cleaner Production, 212, 109–118. https://doi.org/10.1016/j.jclepro.2018.12.008

Nehir Ağzı Sediment Birikiminin Taşkın Riskine Etkisi: Sakarya Nehri Örneği

Year 2025, Volume: 11 Issue: 1, 157 - 169, 27.01.2025
https://doi.org/10.21324/dacd.1495772

Abstract

Taşkın, dünya çapında can ve mal kaybına neden olan doğal bir afettir. Taşkınlar tahmin edilebilir ve zararları azaltılabilir. Çeşitli doğal ve insan kaynaklı faktörler taşkınlara neden olabilir. Sediment hareketi nadiren de olsa taşkınların nedenlerinden biri olarak sayılabilir. Sakarya Nehri yatağı ve nehir ağzı, sediment birikimi nedeniyle taşkınlar için riskli alanlardan biridir. Sakarya Nehri üzerindeki taş ocaklarının faaliyetleri nedeniyle nehrin taşıdığı sediment miktarı artmakta ve nehir yatağı morfolojisi zarar görmektedir. Nadiren de olsa sedimantasyon nedeniyle nehir ağzı tamamen kapanmakta, bu durum kıyı taşkınları ve deniz araçlarının alabora olması gibi can ve mal kaybına yol açan birçok felakete neden olmaktadır. Bu nedenle, Sakarya Nehri ağzında sediment birikimine bağlı taşkınların oluşumu araştırılmıştır. Sakarya Nehri'nin mansap kısmında ve Karasu ilçesinde 5, 10, 25, 50, 100 ve 500 yıllık dönüş periyodu akışları, nehir ağzının sediment birikimi sebebiyle yetersiz deşarj olması durumunda 2D taşkın modeli ile analiz edilmiştir. Bu dönüş periyotları için su derinliği, hız ve taşkın tehlike haritaları hazırlanmıştır. Taşkının Karasu ilçesi üzerindeki etkisi, etkilenen binalar ve etkilenen alan (ha) açısından analiz edilmiştir. Böylece memba bölgesinde nehir yatağına yapılan müdahaleler sonucunda mansap bölgesinde meydana gelen taşkınların etkileri analiz edilmiştir.

References

  • Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., Roo, A. de, Salamon, P., Wyser, K., & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth’s Future, 5(2), 171–182. https://doi.org/10.1002/2016EF000485
  • Alphen, J. V., Martini, F., Loat, R., Slomp, R., & Passchier, R. (2009). Flood risk mapping in Europe, experiences and best practices. Journal of Flood Risk Management, 2(4), 285–292. https://doi.org/10.1111/j.1753-318X.2009.01045.x
  • Barredo, J. I. (2009). Normalised flood losses in Europe: 1970–2006. Natural Hazards and Earth System Sciences, 9(1), 97–104.
  • Barredo, J. I., Saurí, D., & Llasat, M. C. (2012). Assessing trends in insured losses from floods in Spain (1971–2008). Natural Hazards and Earth System Sciences, 12(5), 1723–1729. https://doi.org/10.5194/nhess-12-1723-2012
  • Betsholtz, A., & Nordlöf, B. (2017). Potentials and limitations of 1D, 2D and coupled 1D-2D flood modelling in HEC-RAS: A case study on Höje River [Master thesis, Lund University]. https://www.lunduniversity.lu.se/lup/publication/8904721
  • Birkholz, S., Muro, M., Jeffrey, P., & Smith, H. M. (2014). Rethinking the relationship between flood risk perception and flood management. Science of The Total Environment, 478, 12–20. https://doi.org/10.1016/j.scitotenv.2014.01.061
  • Bouwer, L. M., Bubeck, P., & Aerts, J. C. J. H. (2010). Changes in future flood risk due to climate and development in a Dutch polder area. Global Environmental Change, 20(3), 463–471.
  • Bubeck, P., Otto, A., & Weichselgartner, J. (2017). Societal impacts of flood hazards. Oxford Research Encyclopedia of Natural Hazard Science. https://doi.org/10.1093/acrefore/9780199389407.013.281
  • Copernicus Land Monitoring Service. (2018). CORINE Land Cover 2018 (vector/raster 100 m), Europe, 6-yearly. Retrieved from https://land.copernicus.eu/en/products/corine-land-cover/clc2018
  • Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., & Petaccia, G. (2020). Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the-art model. Water, 12(9), Article 2326. https://doi.org/10.3390/w12092326
  • Çıtakoğlu, H., Demir, V., & Haktanır, T. (2017). L-momentler yöntemiyle Karadeniz’e dökülen akarsulara ait yıllık anlık maksimum değerlerin bölgesel frekans analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 571–580.
  • Dogan, E., Sönmez, O., Yapan, E., & Othan, K. (2013). Aşağı Sakarya Nehrinde taşkın yayılım haritalarının elde edilmesi. Sakarya University Journal of Science, 17(3), 363–369. https://doi.org/10.16984/saufbed.44256
  • Dottori, F., Salamon, P., Bianchi, A., Alfieri, L., Hirpa, F. A., & Feyen, L. (2016). Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources, 94, 87–102. https://doi.org/10.1016/j.advwatres.2016.05.002
  • HEC-RAS. (2021, June 14). Hydrologic Engineering Center's (CEIWR-HEC) River Analysis System (HEC-RAS). Retrieved from https://www.hec.usace.army.mil/software/hec-ras/
  • Işık, S., Şaşal, M., & Doğan, E. (2006). Sakarya Nehrinde barajların mansap etkisinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 21(3), 401–408.
  • Jongman, B. (2018). Effective adaptation to rising flood risk. Nature Communications, 9, Article 1986. https://doi.org/10.1038/s41467-018-04396-1
  • Koca, Y. C. (2014). Rize İyidere alt havzası İkizdere kesiti için birim hidrografın belirlenmesi [Uzmanlık tezi, T.C. Orman ve Su İşleri Bakanlığı]. https://kutuphane.tarimorman.gov.tr/vufind/Record/1181327
  • Kopar, İ., Polat, S., Hadimli, H., & Özdemir, M. (2011). 4-6 Mart 2004 Pulur Çayı (Ilıca-Erzurum) sel-taşkın afeti. Doğu Coğrafya Dergisi, 10(13), 187–218.
  • Kreft, M. (2011). Quantifying the impacts of climate-related natural disasters in Australia and New Zealand. Munich Re, Wellington.
  • Lim, N. J., & Brandt, S. A. (2019). Flood map boundary sensitivity due to combined effects of DEM resolution and roughness in relation to model performance. Geomatics, Natural Hazards and Risk, 10(1), 1613–1647.
  • Merwade, V., Olivera, F., Arabi, M., & Edleman, S. (2008). Uncertainty in flood inundation mapping: Current issues and future directions. Journal of Hydrologic Engineering, 13(7), 608–620.
  • Pinos, J., & Timbe, L. (2019). Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Science and Engineering, 12(1), 11–18.
  • Prinos, P. (2008). Review of flood hazard mapping. Global NEST Journal, 13(3), 193–214.
  • Quiroga, V. M., Kure, S., Udo, K., & Mano, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25–33.
  • Rupal, K. W., & Agnihotri, P. G. (2019). Flood risk assessment and resilience strategies for flood risk management: A case study of Surat City. International Journal of Disaster Risk Reduction, 40, Article 101155. https://doi.org/10.1016/j.ijdrr.2019.101155
  • Sonmez, O., & Doğan, E. (2017, September 29 – October 1). Asi Nehri yatağının taşkın taşıma kapasitenin belirlenmesi [Conference presentation]. 5th International Symposium on Innovative Technologies in Engineering and Science, Baku, Azerbaijan.
  • United Nations Office for Disaster Risk Reduction. (2011). Global Assessment Report on Disaster Risk Reduction – Revealing Risk, Redefining Development. United Nations, Geneva.
  • Urzică, A., Mihu-Pintilie, A., Stoleriu, C. C., Cîmpianu, C. I., Huţanu, E., Pricop, C. I., & Grozavu, A. (2021). Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multi-reservoir system (NE Romania). Water, 13(1), Article 57. https://doi.org/10.3390/w13010057
  • Uzuntaş, Ö., & Öztürk, S. (2019). An assessment on the flood and flash flood regulations in Turkey: A comparison with different countries and legal deficiency analysis. Journal of International Scientific Research, 4(2), 146–159. https://doi.org/10.23834/isrjournal.520732
  • Yanmaz, A. M. (2007, May 28–29). Akarsu geçişlerinde taşkın kaynaklı problemlerin değerlendirilmesi [Bildiri Sunumu]. Sel-Heyelan-Çığ Sempozyumu, Samsun, Türkiye.
  • Zeiger, S. J., & Hubbart, J. A. (2021). Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid simulations. Journal of Environmental Management, 285, Article 112125. https://doi.org/10.1016/j.jenvman.2021.112125
  • Zelenakova, M., et al. (2018). Flood risk modelling of the Slatvinec stream in Krušlov village, Slovakia. Journal of Cleaner Production, 212, 109–118. https://doi.org/10.1016/j.jclepro.2018.12.008
There are 32 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Research Articles
Authors

Osman Sönmez 0000-0001-5642-6391

Temel Temiz 0000-0002-4013-7218

Beytullah Demirci 0000-0003-3718-8505

Early Pub Date January 25, 2025
Publication Date January 27, 2025
Submission Date June 4, 2024
Acceptance Date October 20, 2024
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Sönmez, O., Temiz, T., & Demirci, B. (2025). The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River. Doğal Afetler Ve Çevre Dergisi, 11(1), 157-169. https://doi.org/10.21324/dacd.1495772
AMA Sönmez O, Temiz T, Demirci B. The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River. J Nat Haz Environ. January 2025;11(1):157-169. doi:10.21324/dacd.1495772
Chicago Sönmez, Osman, Temel Temiz, and Beytullah Demirci. “The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River”. Doğal Afetler Ve Çevre Dergisi 11, no. 1 (January 2025): 157-69. https://doi.org/10.21324/dacd.1495772.
EndNote Sönmez O, Temiz T, Demirci B (January 1, 2025) The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River. Doğal Afetler ve Çevre Dergisi 11 1 157–169.
IEEE O. Sönmez, T. Temiz, and B. Demirci, “The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River”, J Nat Haz Environ, vol. 11, no. 1, pp. 157–169, 2025, doi: 10.21324/dacd.1495772.
ISNAD Sönmez, Osman et al. “The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River”. Doğal Afetler ve Çevre Dergisi 11/1 (January 2025), 157-169. https://doi.org/10.21324/dacd.1495772.
JAMA Sönmez O, Temiz T, Demirci B. The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River. J Nat Haz Environ. 2025;11:157–169.
MLA Sönmez, Osman et al. “The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River”. Doğal Afetler Ve Çevre Dergisi, vol. 11, no. 1, 2025, pp. 157-69, doi:10.21324/dacd.1495772.
Vancouver Sönmez O, Temiz T, Demirci B. The Impact of River Mouth Sediment Deposition on Flood Risk: The Case Study of The Sakarya River. J Nat Haz Environ. 2025;11(1):157-69.