Research Article
BibTex RIS Cite

Meriç Nehir Havzası'ndaki Hidrometeorolojik Değişkenlerin Uzun Dönem Eğilimleri için Karşılaştırmalı Mekansal ve Zamansal Analizi

Year 2025, Volume: 11 Issue: 1, 268 - 289, 27.01.2025
https://doi.org/10.21324/dacd.1577479

Abstract

Hidrometeorolojik değişkenlerdeki uzun dönem eğilimleri ortaya çıkarmak, su kaynaklarının sürdürülebilir yönetimi ve planlamasında kritik bir rol oynar. Bu analizler, iklim değişikliğinin etkilerini anlamak, doğal afetler için önlemler almak, tarımsal faaliyetleri planlamak ve su yönetim stratejilerini geliştirmek için gereklidir. Bu çalışmanın amacı, Bulgaristan, Yunanistan ve Türkiye arasında sınır aşan bir su havzası olan Meriç Nehri Havzası’ndaki aylık ve yıllık toplam yağış ile evapotranspirasyon değerlerindeki değişimleri incelemektir. Bu amaçla, 1982-2023 su yılları için yağış değerleri “Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)” veri setinden, evapotranspirasyon değerleri ise “European Reanalysis 5th Generation-Land (ERA5-Land)” veri setinden alınmıştır. Eğilimlerin belirlenmesi için Mann-Kendall, Sen’in eğim tahmini ve Yenilikçi Eğilim Analizi (ITA) yöntemleri kullanılmıştır. Test sonuçlarına göre, yıllık toplam yağış değerlerinde %95 güven aralığında ve yıllık toplam evapotranspirasyon değerlerinde %99 güven aralığunda istatistiksel olarak anlamlı bir artış görülmektedir. Özellikle 3 yöntemde de Ekim, Ocak, Mayıs ve Haziran aylarında yağışlarda pozitif ve istatistiksel olarak anlamlı eğilimler gözlemlenmiştir. Aylık evapotranspirasyon eğilim analizinde ise Kasım, Aralık, Haziran ve Temmuz ayları dışında istatistiksel olarak anlamlı bir artış gözlemlenmiştir. Eğilimdeki artışlar ITA yöntemi kullanılarak grafiksel olarak görselleştirilmiştir. Hem aylık hem de yıllık yağış ve evapotranspirasyondaki anlamlı artış eğilimleri havzanın hidrolojik döngüsünde değişiklikler olduğunu ortaya koymaktadır. Test sonuçları, havza alanıyla ilgili sorunların planlanmasında ve çözümünde kullanılabilir.

References

  • Abbasnia, M., & Toros, H. (2018). Analysis of long-term changes in extreme climatic indices: A case study of the Mediterranean climate, Marmara Region, Turkey.Pure and Applied Geophysics,175(10), 3861–3873. https://doi.org/10.1007/s00024-018-1888-8
  • Acar, E., Kankal, M., Akçay, F., & Şan, M. (2022). Innovative polygon trend analyses with star graph for rainfall and temperature data in agricultural regions of Turkey. Environmental Earth Sciences, 81(23), Article 530. https://doi.org/10.1007/s12665-022-10646-9
  • Aksoy, H., Unal, N. E., Alexandrov, V., Dakova, S., & Yoon, J. (2008). Hydrometeorological analysis of northwestern Turkey with links to climate change. International Journal of Climatology, 28, 1047–1060. https://doi.org/10.1002/joc.1599
  • Aksu, H., & Arikan, A. (2017). Satellite-based estimation of actual evapotranspiration in the Buyuk Menderes Basin, Turkey. Hydrology Research, 48(2), 559–570. https://doi.org/10.2166/nh.2016.226
  • Alexander, L. V., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, Article D05109. https://doi.org/10.1029/2005JD006290
  • Ali, Z., Iqbal, M., Khan, I.U., Masood, M.U., Umer, M., Lodhi, M.U.K., & Tariq, M.A.R. (2023). Hydrological response under CMIP6 climate projection in Astore River Basin, Pakistan. Journal of Mountain Science, 20, 2263–2281. https://doi.org/10.1007/s11629-022-7872-x
  • Al-Shamayleh, S., Tan, M. L., Samat, N., Rahbeh, M., & Zhang, F. (2024). Performance of CHIRPS for estimating precipitation extremes in the Wala Basin, Jordan. Journal of Water and Climate Change, 15(3), 1349–1363. https://doi.org/10.2166/wcc.2024.611
  • Ashraf, M. S., Shahid, M., Waseem, M., Azam, M., & Rahman, K. U. (2023). Assessment of variability in hydrological droughts using the improved innovative trend analysis method. Sustainability, 15, Article 9065. https://doi.org/10.3390/su15119065
  • Aykut, T., & Turoğlu, H. (2024). Effects of climate change on streamflow in NE Edirne (NW Türkiye): Implications for sustainable hydrological development. Sustainable Water Resources Management, 10, Article 2. https://doi.org/10.1007/s40899-023-00985-1
  • Bağdatlı, M. C., & Arıkan, E. N. (2020). Evaluation of maximum and total open surface evaporation by using trend analysis method in Nigde Province of Turkey. International Journal of Geography and Regional Planning, 6(1), 138–145.
  • Birpınar, M. E., Kızılöz, B., & Şişman, E. (2023). Classic trend analysis methods’ paradoxical results and innovative trend analysis methodology with percentile ranges. Theoretical and Applied Climatology, 153, 1–18. https://doi.org/10.1007/s00704-023-04449-6
  • Boudiaf, B., Şen, Z., & Boutaghane, H. (2022). North coast Algerian rainfall monthly trend analysis using innovative polygon trend analysis (IPTA). Arabian Journal of Geosciences, 15, Article 1626. https://doi.org/10.1007/s12517-022-10907-8
  • Chowdari, K., Deb Barma, S., Bhat, N., Girisha, R., Gouda, K. C., & Mahesha, A. (2023). Trends of seasonal and annual rainfall of semi-arid districts of Karnataka, India: Application of innovative trend analysis approach. Theoretical and Applied Climatology, 152, 241–264. https://doi.org/10.1007/s00704-023-04400-9
  • D’Oria, M., Cozzi, C., & Tanda, M. G. (2018). Future precipitation and temperature changes over the Taro, Parma and Enza River basins in Northern Italy. Italian Journal of Engineering Geology and Environment, 2018(Special Issue), 49–63. https://doi.org/10.4408/IJEGE.2018-01.S-05
  • DSI Edirne Regional Directorate. (2010). Archive of DSI Edirne Regional Directorate. Retrieved July 1, 2024, from https://bolge11.dsi.gov.tr/
  • Erkal, T., & Topgül, İ. (2020). Aşağı Meriç Nehri akımlarının mevsimsel ve yıllık değişiminin taşkınlar üzerine etkisi. Türk Coğrafya Dergisi, 74, 33–38. https://doi.org/10.17211/tcd.645865
  • Eroğlu, İ. (2021). Meriç Nehri Havzası’nda sıcaklık ve yağış değerlerinin dönemsel trend analizi. Avrupa Bilim ve Teknoloji Dergisi, 23, 750–760. https://doi.org/10.31590/ejosat.882937
  • Esit, M., Yuce, M. I., Deger, I. H., & Yaşa, İ. (2024). Trend and variability analysis in rainfall and temperature records over Van Province, Türkiye. Theoretical and Applied Climatology, 155, 451–472. https://doi.org/10.1007/s00704-023-04644-5
  • Faquseh, H., & Grossi, G. (2024). Trend analysis of precipitation, temperature and snow water equivalent in Lombardy region, northern Italy. Sustainable Water Resources Management, 10, Article 18. https://doi.org/10.1007/s40899-023-00992-2
  • Felix, M. L., Kim, Y.-k., Choi, M., Kim, J.-C., Do, X. K., Nguyen, T. H., & Jung, K. (2021). Detailed trend analysis of extreme climate indices in the Upper Geum River Basin. Water, 13, Article 3171. https://doi.org/10.3390/w13223171
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), Article 150066. https://doi.org/10.1038/sdata.2015.66
  • Frich, P., Alexander, L.V., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A. M. G., & Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19(3), 193–212. https://doi.org/10.3354/cr019193
  • General Directorate of State Hydraulic Works. (2020, December 23). Hamzadere barajı sulaması ile 131 bin 570 dekar tarım arazisi sulamaya hazır hale getirildi. Retrieved July 1, 2024, from https://dsi.gov.tr/Haber/Detay/989
  • Gopakkali, P., Sridhara, S., Kashyap, G. R., & Manoj, K. N. (2023). Trend detection of annual precipitation of Karnataka, India during 1951–2020 based on the innovative trend analysis method. Environmental Earth Sciences, 82, Article 551. https://doi.org/10.1007/s12665-023-11239-w
  • Güçlü, Y. S. (2020). Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. Journal of Hydrology, 584, Article 124674. https://doi.org/10.1016/j.jhydrol.2020.124674
  • Gulahmadov, N., Chen, Y., Gulakhmadov, M., Satti, Z., Naveed, M., Davlyatov, R., Ali, S., & Gulakhmadov, A. (2023). Assessment of temperature, precipitation, and snow cover at different altitudes of the Varzob River Basin in Tajikistan. Applied Sciences, 13(9), Article 5583. https://doi.org/10.3390/app13095583
  • Hadi, S. J., & Tombul, M. (2018). Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorological Applications, 25, 445–455. https://doi.org/10.1002/met.1712
  • Hoerling, M., Eischeid, J., & Perlwitz, J. (2010). Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. Journal of Climate, 23(8), 2131–2145. https://doi.org/10.1175/2009JCLI3420.1
  • Hussain, F., Ceribasi, G., Ceyhunlu, A. I., Wu, R. S., Cheema, M. J. M., Noor, R. S., Anjum, M. N., Azam, M., & Afzal, A. (2022). Analysis of temperature data using the innovative trend pivot analysis method and trend polygon star concept: A case study of Soan River Basin, Potohar, Pakistan. Pure and Applied Geophysics, 180, 475–507. https://doi.org/10.1007/s00024-022-03203-9
  • Iqbal, J., Khan, N., Shahid, S., & Ullah, S. (2024). Evaluation of gridded dataset in estimating extreme precipitations indices in Pakistan. Acta Geophysica, 72, 4597–4612 https://doi.org/10.1007/s11600-024-01286-7
  • Ipsala Kaymakamlığı. (n.d). İpsala pirinci sofralarda bir’inci. Retrieved May 8, 2024, from http://www.ipsala.gov.tr/ipsala-pirinci-sofralarda-birinci
  • Kant, C., Kumar, A., & Meena, R. S. (2024). Exploring climate variables and drought patterns: A comprehensive trend analysis and evaluation of Beas Basin in Western Himalaya. Earth Systems and Environment, 8, 449–464. https://doi.org/10.1007/s41748-024-00376-2
  • Karacosta, P., Pakalidou, N., Douka, M., & Karacostas, T. (2023). Innovative Polygon Trend Analysis (IPTA): A case study for precipitation in Thessaloniki during the last 50 years (1971–2020). Environmental Science Proceedings, 26, Article 161. https://doi.org/10.3390/environsciproc2023026161
  • Katipoğlu, O. M. (2022). Analyzing the trend and change point in various meteorological variables in Bursa with various statistical and graphical methods. Theoretical and Applied Climatology, 150, 1295–1320. https://doi.org/10.1007/s00704-022-04231-0
  • Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1-2), 81–93. https://doi.org/10.1093/biomet/30.1-2.81
  • Kendall, M. G. (1975). Rank correlation methods. Oxford University Press.
  • Kesgin, E., Yaldız, S. G., & Güçlü, Y. S. (2024). Spatiotemporal variability and trends of droughts in the Mediterranean coastal region of Türkiye. International Journal of Climatology, 44(4), 1036–1057. https://doi.org/10.1002/joc.8370
  • Kliengchuay, W., Mingkhwan, R., Kiangkoo, N., Suwanmanee S., Sahanavin, N., Kongpran, J., Aung, H. W., & Tantrakarnapa, K. (2024). Analyzing temperature, humidity, and precipitation trends in six regions of Thailand using innovative trend analysis. Scientific Reports, 14(1), Article 7800. https://doi.org/10.1038/s41598-024-57980-5
  • Korkmaz, M. S. (2019). Trakya Bölgesi’nin yüzey suyu potansiyeli. In F. Konukçu, S. Albut, & B. Altürk (Eds.), TR21 Trakya Bölgesinde İklim Değişikliğinin Etkileri ve Uyum Stratejileri (pp. 73–87). Tekirdağ Belediyesi & Namık Kemal Üniversitesi.
  • Koubodana, H. D., Adounkpe, J., Tall, M., Amoussou ,E., Atchonouglo, K., & Mumtaz, M. (2020). Trend analysis of hydro-climatic historical data and future scenarios of climate extreme indices over Mono River Basin in West Africa. American Journal of Rural Development, 8(1), 37–52. https://doi.org/10.12691/ajrd-8-1-5
  • Koycegiz, C., & Buyukyildiz, M. (2024). Applications of innovative polygon trend analysis (IPTA) and trend polygon star concept (TPSC) methods for the variability of precipitation in Konya Closed Basin (Turkey). Theoretical and Applied Climatology, 155, 2641–2656. https://doi.org/10.1007/s00704-023-04765-x
  • Larbi, I., Hountondji, F. C. C., Annor, T., Agyare, W. A., Gathenya, J. M., & Amuzu, J. (2018). Spatio-temporal trend analysis of rainfall and temperature extremes in the Vea Catchment, Ghana. Climate, 6(4), Article 87. https://doi.org/10.3390/cli6040087
  • Liu, Y., & Yang, Y. (2022). Detecting a declining trend of multidepth soil moisture over the Mongolian Plateau from 1950 to 2020 using ERA5-Land reanalysis datasets. IEEE Access, 10, 1234–1245. https://doi.org/10.1109/ACCESS.2022.1234567
  • Malkaralı, S., Korkmaz, M. S., & Sezen, N. (2008, June 19–20). Meriç Nehri taşkınları ve taşkınlar için geliştirilen uluslararası projeler [Conference presentation]. 5. Dünya Su Formu Türkiye Bölgesel Su Toplantıları Taşkın Konferansı, Edirne, Türkiye.
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259. https://doi.org/10.2307/1907187
  • Massei, N., Kingston, D. G., Hannah, D. M., Vidal, J.-P., Dieppois, B., Fossa, M., Hartmann, A., Lavers, D. A., & Laignel, B. (2020). Understanding and predicting large-scale hydrological variability in a changing environment. Proceedings of the International Association of Hydrological Sciences, 383, 141–149. https://doi.org/10.5194/piahs-383-141-2020
  • Medina, F. D., Zossi, B. S., Bossolasco, A., & Elias, A. G. (2023). Performance of CHIRPS dataset for monthly and annual rainfall indices in Northern Argentina. Atmospheric Research, 283, 106545. https://doi.org/10.1016/j.atmosres.2022.106545
  • Mohammed, J. A. (2024). Trend analysis of the extreme rainfall indices from Lake Tana Sub-Basin of the Upper Blue Nile, Ethiopia. Natural Hazards Research. https://doi.org/10.1016/j.nhres.2024.01.005
  • Muia, M. V. K., Opere, A. O., Ndunda, E., & Amwata, D. A. (2024). Rainfall and temperature trend analysis using Mann-Kendall and Sen's slope estimator test in Makueni County, Kenya. Journal of Materials and Environmental Science, 15(3), 349–367.
  • Nacar, S., Şan, M., Kankal, M., & Şan, M., Okkan, U. (2024). Trends and amount changes of temperature and precipitation under future projections in high–low groups and intra-period for the Eastern Black Sea, the wettest basin in Türkiye. Natural Hazards. Advance online publication. https://doi.org/10.1007/s11069-024-06588-z
  • NASA Science. (2024). Evidence. Retrieved May 8, 2024, from https://science.nasa.gov/climate-change/evidence/
  • Rahaman, M. H., Saha, T. K., Masroor, M., Roshani, & Sajjad, H. (2024). Trend analysis and forecasting of meteorological variables in the lower Thoubal river watershed, India using non-parametrical approach and machine learning models. Modeling Earth Systems and Environment, 10, 551–577. https://doi.org/10.1007/s40808-023-01799-y
  • Rani, S., Singh, J., Singh, S., Singh, S., Tiwari, P., & Mal, S. (2023). Decadal trends in precipitable water vapor over the Indus River Basin using ERA5 reanalysis data. Journal of Mountain Science, 20(11), 2928–2945. https://doi.org/10.1007/s11629-023-8112-8
  • Sa'adi, Z., Yaseen, Z. M., Farooque, A. A., Mohamad, N. A., Muhammad, M. K. I., & Iqbal, Z. (2023). Long-term trend analysis of extreme climate in Sarawak tropical peatland under the influence of climate change. Weather and Climate Extremes, 40, Article 100554. https://doi.org/10.1016/j.wace.2023.100554
  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
  • Serencam, U. (2019). Innovative trend analysis of total annual rainfall and temperature variability case study: Yesilirmak region, Turkey. Arabian Journal of Geosciences, 12(21), Article 704. https://doi.org/10.1007/s12517-019-4903-1
  • Shah, L., Arnillas, C. A., & Arhonditsis, G. B. (2022). Characterizing temporal trends of meteorological extremes in Southern and Central Ontario, Canada. Weather and Climate Extremes, 35, Article 100411. https://doi.org/10.1016/j.wace.2022.100411
  • Şen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17, 1042–1046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556
  • Şen, Z. (2014). Trend identification simulation and application. Journal of Hydrologic Engineering, 19, 635–642. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000811
  • Şen, Z., & Şişman, E. (2024). Risk attachment Sen’s Slope calculation in hydrometeorological trend analysis. Natural Hazards, 120, 3239–3252. https://doi.org/10.1007/s11069-023-06329-8
  • Titkova, T. B., Zolotokrylin, A. N., & Cherenkova, E. A. (2023). Current climatic trends in evaporation and soil moisture changes in the south of European Russia. Arid Ecosystems, 13(3), 239–247. https://doi.org/10.1134/S2079096123030150
  • Touhedi, H., Kankal, M., & Yıldız, M. B. (2023). Trend analysis of maximum rainfall series of standard durations in Turkey with innovative methods. Natural Hazards, 119, 1479–1511. https://doi.org/10.1007/s11069-023-06085-9
  • World Climate Research Programme. (n.d.). WCRP Coupled Model Intercomparison Project (CMIP). Retrieved May 8, 2024, from https://www.wcrp-climate.org/wgcm-cmip
  • Yang, P., Zhang, Y., Li, J., Xia, J., Huang, H., & Zhu, Y. (2023). Characterization of precipitation and temperature equilibrium and its driving forces in the Yangtze river basin under climate change. Climate Dynamics, 61(11), 5861–5873. https://doi.org/10.1007/s00382-023-06888-3
  • Zhu, Y., Luo, P., Zhang, S., & Sun, B. (2020). Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sensing, 12(24), Article 4177. https://doi.org/10.3390/rs12244177

A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin

Year 2025, Volume: 11 Issue: 1, 268 - 289, 27.01.2025
https://doi.org/10.21324/dacd.1577479

Abstract

Revealing long-term trends in hydrometeorological variables plays a critical role in the sustainable management and planning of water resources. These analyses are necessary to understand climate change impacts, taking precautions for natural disasters, plan agricultural activities, and develop water management strategies. The aim of this study is to examine the changes in monthly and annual total precipitation and evapotranspiration values in the Maritsa River Basin, a transboundary water basin between Bulgaria, Greece, and Türkiye. For this, precipitation values for the 1982-2023 water years were taken from the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data set, and evapotranspiration values for the 1982-2023 water years were taken from the European Reanalysis 5th Generation-Land (ERA5-Land) data set. The Mann-Kendall, Sen's slope estimator, and Innovative Trend Analysis (ITA) methods were used to determine trends. According to the test results, there is a statistically significant increase in annual total precipitation values within the 95% confidence interval and in annual total evapotranspiration values within the 99% confidence interval. Specifically with all three methods positive and statistically significant trends are observed in precipitation in October, January, May and June. In the monthly evapotranspiration trend analysis, a statistically significant increase is observed except for November, December, June and July. Trend increases were visualized using the graphical method ITA. Significant increasing trends in both monthly and annual precipitation and evapotranspiration reveal changes in the hydrological cycle of the basin. The test results can be used in planning and solving problems related to the basin area.

References

  • Abbasnia, M., & Toros, H. (2018). Analysis of long-term changes in extreme climatic indices: A case study of the Mediterranean climate, Marmara Region, Turkey.Pure and Applied Geophysics,175(10), 3861–3873. https://doi.org/10.1007/s00024-018-1888-8
  • Acar, E., Kankal, M., Akçay, F., & Şan, M. (2022). Innovative polygon trend analyses with star graph for rainfall and temperature data in agricultural regions of Turkey. Environmental Earth Sciences, 81(23), Article 530. https://doi.org/10.1007/s12665-022-10646-9
  • Aksoy, H., Unal, N. E., Alexandrov, V., Dakova, S., & Yoon, J. (2008). Hydrometeorological analysis of northwestern Turkey with links to climate change. International Journal of Climatology, 28, 1047–1060. https://doi.org/10.1002/joc.1599
  • Aksu, H., & Arikan, A. (2017). Satellite-based estimation of actual evapotranspiration in the Buyuk Menderes Basin, Turkey. Hydrology Research, 48(2), 559–570. https://doi.org/10.2166/nh.2016.226
  • Alexander, L. V., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, Article D05109. https://doi.org/10.1029/2005JD006290
  • Ali, Z., Iqbal, M., Khan, I.U., Masood, M.U., Umer, M., Lodhi, M.U.K., & Tariq, M.A.R. (2023). Hydrological response under CMIP6 climate projection in Astore River Basin, Pakistan. Journal of Mountain Science, 20, 2263–2281. https://doi.org/10.1007/s11629-022-7872-x
  • Al-Shamayleh, S., Tan, M. L., Samat, N., Rahbeh, M., & Zhang, F. (2024). Performance of CHIRPS for estimating precipitation extremes in the Wala Basin, Jordan. Journal of Water and Climate Change, 15(3), 1349–1363. https://doi.org/10.2166/wcc.2024.611
  • Ashraf, M. S., Shahid, M., Waseem, M., Azam, M., & Rahman, K. U. (2023). Assessment of variability in hydrological droughts using the improved innovative trend analysis method. Sustainability, 15, Article 9065. https://doi.org/10.3390/su15119065
  • Aykut, T., & Turoğlu, H. (2024). Effects of climate change on streamflow in NE Edirne (NW Türkiye): Implications for sustainable hydrological development. Sustainable Water Resources Management, 10, Article 2. https://doi.org/10.1007/s40899-023-00985-1
  • Bağdatlı, M. C., & Arıkan, E. N. (2020). Evaluation of maximum and total open surface evaporation by using trend analysis method in Nigde Province of Turkey. International Journal of Geography and Regional Planning, 6(1), 138–145.
  • Birpınar, M. E., Kızılöz, B., & Şişman, E. (2023). Classic trend analysis methods’ paradoxical results and innovative trend analysis methodology with percentile ranges. Theoretical and Applied Climatology, 153, 1–18. https://doi.org/10.1007/s00704-023-04449-6
  • Boudiaf, B., Şen, Z., & Boutaghane, H. (2022). North coast Algerian rainfall monthly trend analysis using innovative polygon trend analysis (IPTA). Arabian Journal of Geosciences, 15, Article 1626. https://doi.org/10.1007/s12517-022-10907-8
  • Chowdari, K., Deb Barma, S., Bhat, N., Girisha, R., Gouda, K. C., & Mahesha, A. (2023). Trends of seasonal and annual rainfall of semi-arid districts of Karnataka, India: Application of innovative trend analysis approach. Theoretical and Applied Climatology, 152, 241–264. https://doi.org/10.1007/s00704-023-04400-9
  • D’Oria, M., Cozzi, C., & Tanda, M. G. (2018). Future precipitation and temperature changes over the Taro, Parma and Enza River basins in Northern Italy. Italian Journal of Engineering Geology and Environment, 2018(Special Issue), 49–63. https://doi.org/10.4408/IJEGE.2018-01.S-05
  • DSI Edirne Regional Directorate. (2010). Archive of DSI Edirne Regional Directorate. Retrieved July 1, 2024, from https://bolge11.dsi.gov.tr/
  • Erkal, T., & Topgül, İ. (2020). Aşağı Meriç Nehri akımlarının mevsimsel ve yıllık değişiminin taşkınlar üzerine etkisi. Türk Coğrafya Dergisi, 74, 33–38. https://doi.org/10.17211/tcd.645865
  • Eroğlu, İ. (2021). Meriç Nehri Havzası’nda sıcaklık ve yağış değerlerinin dönemsel trend analizi. Avrupa Bilim ve Teknoloji Dergisi, 23, 750–760. https://doi.org/10.31590/ejosat.882937
  • Esit, M., Yuce, M. I., Deger, I. H., & Yaşa, İ. (2024). Trend and variability analysis in rainfall and temperature records over Van Province, Türkiye. Theoretical and Applied Climatology, 155, 451–472. https://doi.org/10.1007/s00704-023-04644-5
  • Faquseh, H., & Grossi, G. (2024). Trend analysis of precipitation, temperature and snow water equivalent in Lombardy region, northern Italy. Sustainable Water Resources Management, 10, Article 18. https://doi.org/10.1007/s40899-023-00992-2
  • Felix, M. L., Kim, Y.-k., Choi, M., Kim, J.-C., Do, X. K., Nguyen, T. H., & Jung, K. (2021). Detailed trend analysis of extreme climate indices in the Upper Geum River Basin. Water, 13, Article 3171. https://doi.org/10.3390/w13223171
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), Article 150066. https://doi.org/10.1038/sdata.2015.66
  • Frich, P., Alexander, L.V., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A. M. G., & Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19(3), 193–212. https://doi.org/10.3354/cr019193
  • General Directorate of State Hydraulic Works. (2020, December 23). Hamzadere barajı sulaması ile 131 bin 570 dekar tarım arazisi sulamaya hazır hale getirildi. Retrieved July 1, 2024, from https://dsi.gov.tr/Haber/Detay/989
  • Gopakkali, P., Sridhara, S., Kashyap, G. R., & Manoj, K. N. (2023). Trend detection of annual precipitation of Karnataka, India during 1951–2020 based on the innovative trend analysis method. Environmental Earth Sciences, 82, Article 551. https://doi.org/10.1007/s12665-023-11239-w
  • Güçlü, Y. S. (2020). Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. Journal of Hydrology, 584, Article 124674. https://doi.org/10.1016/j.jhydrol.2020.124674
  • Gulahmadov, N., Chen, Y., Gulakhmadov, M., Satti, Z., Naveed, M., Davlyatov, R., Ali, S., & Gulakhmadov, A. (2023). Assessment of temperature, precipitation, and snow cover at different altitudes of the Varzob River Basin in Tajikistan. Applied Sciences, 13(9), Article 5583. https://doi.org/10.3390/app13095583
  • Hadi, S. J., & Tombul, M. (2018). Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorological Applications, 25, 445–455. https://doi.org/10.1002/met.1712
  • Hoerling, M., Eischeid, J., & Perlwitz, J. (2010). Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. Journal of Climate, 23(8), 2131–2145. https://doi.org/10.1175/2009JCLI3420.1
  • Hussain, F., Ceribasi, G., Ceyhunlu, A. I., Wu, R. S., Cheema, M. J. M., Noor, R. S., Anjum, M. N., Azam, M., & Afzal, A. (2022). Analysis of temperature data using the innovative trend pivot analysis method and trend polygon star concept: A case study of Soan River Basin, Potohar, Pakistan. Pure and Applied Geophysics, 180, 475–507. https://doi.org/10.1007/s00024-022-03203-9
  • Iqbal, J., Khan, N., Shahid, S., & Ullah, S. (2024). Evaluation of gridded dataset in estimating extreme precipitations indices in Pakistan. Acta Geophysica, 72, 4597–4612 https://doi.org/10.1007/s11600-024-01286-7
  • Ipsala Kaymakamlığı. (n.d). İpsala pirinci sofralarda bir’inci. Retrieved May 8, 2024, from http://www.ipsala.gov.tr/ipsala-pirinci-sofralarda-birinci
  • Kant, C., Kumar, A., & Meena, R. S. (2024). Exploring climate variables and drought patterns: A comprehensive trend analysis and evaluation of Beas Basin in Western Himalaya. Earth Systems and Environment, 8, 449–464. https://doi.org/10.1007/s41748-024-00376-2
  • Karacosta, P., Pakalidou, N., Douka, M., & Karacostas, T. (2023). Innovative Polygon Trend Analysis (IPTA): A case study for precipitation in Thessaloniki during the last 50 years (1971–2020). Environmental Science Proceedings, 26, Article 161. https://doi.org/10.3390/environsciproc2023026161
  • Katipoğlu, O. M. (2022). Analyzing the trend and change point in various meteorological variables in Bursa with various statistical and graphical methods. Theoretical and Applied Climatology, 150, 1295–1320. https://doi.org/10.1007/s00704-022-04231-0
  • Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1-2), 81–93. https://doi.org/10.1093/biomet/30.1-2.81
  • Kendall, M. G. (1975). Rank correlation methods. Oxford University Press.
  • Kesgin, E., Yaldız, S. G., & Güçlü, Y. S. (2024). Spatiotemporal variability and trends of droughts in the Mediterranean coastal region of Türkiye. International Journal of Climatology, 44(4), 1036–1057. https://doi.org/10.1002/joc.8370
  • Kliengchuay, W., Mingkhwan, R., Kiangkoo, N., Suwanmanee S., Sahanavin, N., Kongpran, J., Aung, H. W., & Tantrakarnapa, K. (2024). Analyzing temperature, humidity, and precipitation trends in six regions of Thailand using innovative trend analysis. Scientific Reports, 14(1), Article 7800. https://doi.org/10.1038/s41598-024-57980-5
  • Korkmaz, M. S. (2019). Trakya Bölgesi’nin yüzey suyu potansiyeli. In F. Konukçu, S. Albut, & B. Altürk (Eds.), TR21 Trakya Bölgesinde İklim Değişikliğinin Etkileri ve Uyum Stratejileri (pp. 73–87). Tekirdağ Belediyesi & Namık Kemal Üniversitesi.
  • Koubodana, H. D., Adounkpe, J., Tall, M., Amoussou ,E., Atchonouglo, K., & Mumtaz, M. (2020). Trend analysis of hydro-climatic historical data and future scenarios of climate extreme indices over Mono River Basin in West Africa. American Journal of Rural Development, 8(1), 37–52. https://doi.org/10.12691/ajrd-8-1-5
  • Koycegiz, C., & Buyukyildiz, M. (2024). Applications of innovative polygon trend analysis (IPTA) and trend polygon star concept (TPSC) methods for the variability of precipitation in Konya Closed Basin (Turkey). Theoretical and Applied Climatology, 155, 2641–2656. https://doi.org/10.1007/s00704-023-04765-x
  • Larbi, I., Hountondji, F. C. C., Annor, T., Agyare, W. A., Gathenya, J. M., & Amuzu, J. (2018). Spatio-temporal trend analysis of rainfall and temperature extremes in the Vea Catchment, Ghana. Climate, 6(4), Article 87. https://doi.org/10.3390/cli6040087
  • Liu, Y., & Yang, Y. (2022). Detecting a declining trend of multidepth soil moisture over the Mongolian Plateau from 1950 to 2020 using ERA5-Land reanalysis datasets. IEEE Access, 10, 1234–1245. https://doi.org/10.1109/ACCESS.2022.1234567
  • Malkaralı, S., Korkmaz, M. S., & Sezen, N. (2008, June 19–20). Meriç Nehri taşkınları ve taşkınlar için geliştirilen uluslararası projeler [Conference presentation]. 5. Dünya Su Formu Türkiye Bölgesel Su Toplantıları Taşkın Konferansı, Edirne, Türkiye.
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259. https://doi.org/10.2307/1907187
  • Massei, N., Kingston, D. G., Hannah, D. M., Vidal, J.-P., Dieppois, B., Fossa, M., Hartmann, A., Lavers, D. A., & Laignel, B. (2020). Understanding and predicting large-scale hydrological variability in a changing environment. Proceedings of the International Association of Hydrological Sciences, 383, 141–149. https://doi.org/10.5194/piahs-383-141-2020
  • Medina, F. D., Zossi, B. S., Bossolasco, A., & Elias, A. G. (2023). Performance of CHIRPS dataset for monthly and annual rainfall indices in Northern Argentina. Atmospheric Research, 283, 106545. https://doi.org/10.1016/j.atmosres.2022.106545
  • Mohammed, J. A. (2024). Trend analysis of the extreme rainfall indices from Lake Tana Sub-Basin of the Upper Blue Nile, Ethiopia. Natural Hazards Research. https://doi.org/10.1016/j.nhres.2024.01.005
  • Muia, M. V. K., Opere, A. O., Ndunda, E., & Amwata, D. A. (2024). Rainfall and temperature trend analysis using Mann-Kendall and Sen's slope estimator test in Makueni County, Kenya. Journal of Materials and Environmental Science, 15(3), 349–367.
  • Nacar, S., Şan, M., Kankal, M., & Şan, M., Okkan, U. (2024). Trends and amount changes of temperature and precipitation under future projections in high–low groups and intra-period for the Eastern Black Sea, the wettest basin in Türkiye. Natural Hazards. Advance online publication. https://doi.org/10.1007/s11069-024-06588-z
  • NASA Science. (2024). Evidence. Retrieved May 8, 2024, from https://science.nasa.gov/climate-change/evidence/
  • Rahaman, M. H., Saha, T. K., Masroor, M., Roshani, & Sajjad, H. (2024). Trend analysis and forecasting of meteorological variables in the lower Thoubal river watershed, India using non-parametrical approach and machine learning models. Modeling Earth Systems and Environment, 10, 551–577. https://doi.org/10.1007/s40808-023-01799-y
  • Rani, S., Singh, J., Singh, S., Singh, S., Tiwari, P., & Mal, S. (2023). Decadal trends in precipitable water vapor over the Indus River Basin using ERA5 reanalysis data. Journal of Mountain Science, 20(11), 2928–2945. https://doi.org/10.1007/s11629-023-8112-8
  • Sa'adi, Z., Yaseen, Z. M., Farooque, A. A., Mohamad, N. A., Muhammad, M. K. I., & Iqbal, Z. (2023). Long-term trend analysis of extreme climate in Sarawak tropical peatland under the influence of climate change. Weather and Climate Extremes, 40, Article 100554. https://doi.org/10.1016/j.wace.2023.100554
  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
  • Serencam, U. (2019). Innovative trend analysis of total annual rainfall and temperature variability case study: Yesilirmak region, Turkey. Arabian Journal of Geosciences, 12(21), Article 704. https://doi.org/10.1007/s12517-019-4903-1
  • Shah, L., Arnillas, C. A., & Arhonditsis, G. B. (2022). Characterizing temporal trends of meteorological extremes in Southern and Central Ontario, Canada. Weather and Climate Extremes, 35, Article 100411. https://doi.org/10.1016/j.wace.2022.100411
  • Şen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17, 1042–1046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556
  • Şen, Z. (2014). Trend identification simulation and application. Journal of Hydrologic Engineering, 19, 635–642. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000811
  • Şen, Z., & Şişman, E. (2024). Risk attachment Sen’s Slope calculation in hydrometeorological trend analysis. Natural Hazards, 120, 3239–3252. https://doi.org/10.1007/s11069-023-06329-8
  • Titkova, T. B., Zolotokrylin, A. N., & Cherenkova, E. A. (2023). Current climatic trends in evaporation and soil moisture changes in the south of European Russia. Arid Ecosystems, 13(3), 239–247. https://doi.org/10.1134/S2079096123030150
  • Touhedi, H., Kankal, M., & Yıldız, M. B. (2023). Trend analysis of maximum rainfall series of standard durations in Turkey with innovative methods. Natural Hazards, 119, 1479–1511. https://doi.org/10.1007/s11069-023-06085-9
  • World Climate Research Programme. (n.d.). WCRP Coupled Model Intercomparison Project (CMIP). Retrieved May 8, 2024, from https://www.wcrp-climate.org/wgcm-cmip
  • Yang, P., Zhang, Y., Li, J., Xia, J., Huang, H., & Zhu, Y. (2023). Characterization of precipitation and temperature equilibrium and its driving forces in the Yangtze river basin under climate change. Climate Dynamics, 61(11), 5861–5873. https://doi.org/10.1007/s00382-023-06888-3
  • Zhu, Y., Luo, P., Zhang, S., & Sun, B. (2020). Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sensing, 12(24), Article 4177. https://doi.org/10.3390/rs12244177
There are 65 citations in total.

Details

Primary Language English
Subjects Climate Change Impacts and Adaptation (Other), Geographic Information Systems, Hydrology (Other)
Journal Section Research Articles
Authors

Mehmet Seren Korkmaz 0000-0001-8345-7265

Kevser Merkür 0009-0009-4772-9951

Ertuğrul Sunan 0000-0003-1646-1752

Early Pub Date January 25, 2025
Publication Date January 27, 2025
Submission Date November 1, 2024
Acceptance Date January 15, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Korkmaz, M. S., Merkür, K., & Sunan, E. (2025). A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin. Doğal Afetler Ve Çevre Dergisi, 11(1), 268-289. https://doi.org/10.21324/dacd.1577479
AMA Korkmaz MS, Merkür K, Sunan E. A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin. J Nat Haz Environ. January 2025;11(1):268-289. doi:10.21324/dacd.1577479
Chicago Korkmaz, Mehmet Seren, Kevser Merkür, and Ertuğrul Sunan. “A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin”. Doğal Afetler Ve Çevre Dergisi 11, no. 1 (January 2025): 268-89. https://doi.org/10.21324/dacd.1577479.
EndNote Korkmaz MS, Merkür K, Sunan E (January 1, 2025) A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin. Doğal Afetler ve Çevre Dergisi 11 1 268–289.
IEEE M. S. Korkmaz, K. Merkür, and E. Sunan, “A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin”, J Nat Haz Environ, vol. 11, no. 1, pp. 268–289, 2025, doi: 10.21324/dacd.1577479.
ISNAD Korkmaz, Mehmet Seren et al. “A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin”. Doğal Afetler ve Çevre Dergisi 11/1 (January 2025), 268-289. https://doi.org/10.21324/dacd.1577479.
JAMA Korkmaz MS, Merkür K, Sunan E. A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin. J Nat Haz Environ. 2025;11:268–289.
MLA Korkmaz, Mehmet Seren et al. “A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin”. Doğal Afetler Ve Çevre Dergisi, vol. 11, no. 1, 2025, pp. 268-89, doi:10.21324/dacd.1577479.
Vancouver Korkmaz MS, Merkür K, Sunan E. A Comparative Spatiotemporal Analysis for Long-Term Trends of Hydrometeorological Variables in Maritsa River Basin. J Nat Haz Environ. 2025;11(1):268-89.