Research Article
BibTex RIS Cite

Cer Transformatörlerinde Kaçak Reaktansın Sonlu Elemanlar Yöntemi ile Üç Farklı Geometrik Eksen Sistemi ile Hesaplanması

Year 2025, Issue: 22, 76 - 90, 31.07.2025
https://doi.org/10.47072/demiryolu.1721553

Abstract

Elektrikli lokomotif sistemlerinde gerilim dönüşümünü gerçekleştirip konverter ve trenin iç ihtiyaç donanımlarına güç sağlayan eleman cer transformatörüdür. Cer transformatörlerinin tasarımı aşamasında, belirlenmesi gerekli olan kritik elektriksel parametreler bulunmaktadır. Bu parametrelerden en önemli olanlardan biri de transformatörün kaçak reaktans değeridir. Transformatörün kaçak reaktans değerine göre konverter sistemlerinin çalışması etkilenmektedir. Uyum açısından cer transformatörlerinin kaçak reaktans değerleri belirlenen aralıklarda olmalıdır. Bundan dolayı da tasarım aşamasında cer transformatörü dizaynının kaçak reaktans değerlerinin doğru bir şekilde hesaplanabilmesi önem taşımaktadır. Bu aşamada ise teorik hesaplamalar cer transformatörünün yapısı gereği yetersiz kalabilmektedir. Cer transformatörlerinde genellikle birden fazla sayıda cer çıkışı olmakla beraber yüksek gerilim tarafında paralel sargı yapısı bulunmaktadır. Bu paralel sargıların kendi aralarında bulunan kuplajdan dolayı teorik hesaplamaların doğruluğu sınırlı olmaktadır. Bu aşamada sonlu elemanlar yöntemi (SEY) gibi nümerik analiz programları ile modelleme gerçekleştirilip sonuçlar hesaplanabilmektedir. Bu çalışmada örnek bir cer transformatörü üzerinde sonlu elemanlar yöntemi ile kaçak reaktans hesaplama uygulamaları gerçekleştirilmiştir. Modelleme çalışmaları yapılırken farklı geometrik eksen sistemleri kullanılmış ve sonuçlar karşılaştırılmıştır. Bunun yanında ilgili cer transformatörü üzerinde saha testleri gerçekleştirilmiş ve analiz sonuçları ile test sonuçları karşılaştırılmıştır. Çalışmanın sonucunda cer transformatörlerinde kaçak reaktans hesaplamalarında sonlu elemanlar yönteminin kullanımı açıklanmış ve gerekliliği vurgulanmıştır.

References

  • [1] Railway applications - Traction transformers and inductors on board rolling stock, IEC 60310, 2016.
  • [2] Power transformers - Part 1: General, IEC-60076-1, 2011.
  • [3] K. Dawood, B. Alboyaci, M. A. Cinar, and O. Sonmez, “A new method for the calculation of leakage reactance in power transformers,” J. Electr. Eng. Technol., vol. 12, no. 5, pp. 1883–1890, 2017, doi: 10.5370/JEET.2017.12.5.1883.
  • [4] K. Dawood, M. A. Cinar, B. Alboyaci, and O. Sonmez, “Calculation of the leakage reactance in distribution transformers via numerical and analytical methods,” J. Electr. Syst., vol. 15, no. 2, 2019.
  • [5] R. L. C. Hernandez, G. A. D. Florez, J. J. P. Gelves, and E. E. Mombello, “Analytic formulation for the calculation of leakage reactance in wound-core transformers,” Int. J. Appl. Electromagn. Mech., vol. 65, no. 2, 2021, doi: 10.3233/JAE-190140.
  • [6] B. S. Alves, P. Kuo-Peng, and P. Dular, “Contribution to power transformers leakage reactance calculation using analytical approach,” Int. J. Electr. Power Energy Syst., vol. 105, 2019, doi: 10.1016/j.ijepes.2018.08.044.
  • [7] D. Azizian and M. Bigdeli, “Leakage inductance calculations in different geometries of traction transformers,” ECTI Trans. Electr. Eng. Electron. Commun., vol. 12, no. 2, pp. 28–34, 2014.
  • [8] D. Azizian, “Winding temperature prediction in split-winding traction transformer,” Turkish J. Electr. Eng. Comput. Sci., vol. 24, no. 4, 2016, doi: 10.3906/elk-1403-304.
  • [9] C. Yang, Y. Ding, H. Qiu, and B. Xiong, “Analysis of turn-to-turn fault on split-winding transformer using coupled field-circuit approach,” Processes, vol. 9, no. 8, pp. 1–13, 2021, doi: 10.3390/pr9081314.
  • [10] I. Sitar, M. Bilo, and D. Vale, “New design of traction transformers for fixed installations,” in International Colloquium Transformer Research and Asset Management, 2009, pp. 1–10.
  • [11] I. Sitar and M. Jurković, “Modern design of EMU traction transformers,” in Automation in transportation 2014, 2014, pp. 234–237.
  • [12] D. Liu, B. Xiong, Z. Cheng, and F. Liu, “Effects of axial gap length between disc windings on magnetic fields and power losses of evaporative cooling traction transformers,” in Asia-Pacific Power and Energy Engineering Conference, APPEEC, 2020, vol. 2020-Septe, doi: 10.1109/APPEEC48164.2020.9220626.
  • [13] B. G. Park, T. S. Kim, K. J. Lee, R. Y. Kim, and D. S. Hyun, “Magnetic-field analysis on winding disposition of transformer for distributed high-speed train applications,” in IEEE Transactions on Magnetics, 2010, vol. 46, no. 6, doi: 10.1109/TMAG.2010.2043646.
  • [14] S. Çürükova, Y. B. Demirol, O. Sönmez, M. A. Çınar, and B. Alboyacı, “Cer transformatörlerinde elektriksel parametrelerin sonlu elemanlar yöntemi ile analizi,” Demiryolu Mühendisliği, no. 16, pp. 66–78, 2022, doi: 10.47072/demiryolu.1110515.
  • [15] S. Çürükova Kale, O. Sönmez, Y. B. Demirol, E. Sakallioglu, and B. Alboyacı, “Calculation of no-load losses in traction transformers with finite element method,” Railw. Eng., vol. 19, no. 1, pp. 171–183, 2024, doi: https://doi.org/10.47072/demiryolu.1395174.
  • [16] S. Çürükova Kale, Y. B. Demirol, O. Sönmez, M. A. Çınar, and B. Alboyacı, “Elektrikli lokomotif sistemlerinde cer transformatörü ve baraların oluşturduğu manyetik alanların sonlu elemanlar yöntemi ile hesaplanması,” Demiryolu Mühendisliği, vol. 17, pp. 54–65, 2023, [Online]. Available: 10.47072/demiryolu.1175771.
  • [17] Z. Ye et al., "A Calculation Method to Adjust the Short-Circuit Impedance of a Transformer," in IEEE Access, vol. 8, pp. 223848-223858, 2020, doi: 10.1109/ACCESS.2020.3042983.
  • [18] A.M. Evstaf’ev, A.Y.Yakushev, & A.G. Sereda,. A simulation mathematical model of a traction transformer with tapped secondary windings. Russ. Electr. Engin. 87, 275–281 (2016). https://doi.org/10.3103/S1068371216050072
  • [19] C. Tian, J. Fang and X. Zhao, "Short-Circuit Impedance Analysis of HTS Traction Transformer With Flux Diverters Using Magnetic Energy Method," in IEEE Transactions on Applied Superconductivity, vol. 34, no. 8, pp. 1-5, Nov. 2024, Art no. 5501405, doi: 10.1109/TASC.2024.3420293
  • [20] J. Xiang, J. Xu, Q. Wu, Z. Shuai, N. Tong, and Y. Liu, “Traction transformer integrated LCL filtering method for high-frequency harmonic and resonance suppression in AC train,” Int. J. Electr. Power Energy Syst., vol. 148, 2023, doi: 10.1016/j.ijepes.2022.108922
  • [21] S. V. Kulkarni and S. A. Khaparde, Transformer engineering design, technology, and diagnostics. CRC Press, 2004.
  • [22] B. Alboyacı, M. A. Çınar, and Y. B. Demirol, “Influence of busbar trunking system design on thermal performance operating with non-sinusoidal currents,” Electr. Power Syst. Res., vol. 214, no. 108815, pp. 1–9, 2023.
  • [23] Y. B. Demirol and Ö. Kalenderli, “Investigation of effect of laying and bonding parameters of high-voltage underground cables on thermal and electrical performances by multiphysics FEM analysis,” Electr. Power Syst. Res., vol. 227, p. 109987, 2024, [Online]. Available: https://doi.org/10.1016/j.epsr.2023.109987.
  • [24] Y. B. Demirol, M. A. Çınar, and B. Alboyacı, “Evaluation of cable and busbar system in multiconductor distribution systems in terms of current and magnetic field distributions,” Turkish J. Electr. Eng. Comput. Sci., vol. 29, no. 7, pp. 3119–3132, 2021, doi: 10.3906/ELK-2103-108.
  • [25] B. Alboyacı, M. A. Çınar, Y. B. Demirol, and A. Ince, “Evaluation of the effect of structural defects in the heat-shrink cable terminal on electric field distribution,” Eng. Fail. Anal., vol. 132, no. 105920, pp. 1–15, 2022, doi: 10.1016/j.engfailanal.2021.105920.
  • [26] B. Alboyacı, M. A. Çınar, Y. B. Demirol, and M. Uzar, “Reducing the failures with adding glass insulators to composite insulators of 400 kV transmission line at high altitude,” Eng. Fail. Anal., p. 106678, 2022, doi: 10.1016/j.engfailanal.2022.106678.
  • [27] M. Uzar, Y. B. Demirol, M. A. Çınar, and B. Alboyacı, “Investigation of the effect of corona ring design parameters on electric field distribution by finite element method,” Turk J Electr Power Energy Syst., vol. 3, no. 1, pp. 1–8, 2023, [Online]. Available: https://tepesjournal.org/en/investigation-of-the-effect-of-corona-ring-design-parameters-on-electric-field-distribution-by-finite-element-method-1679.

Calculation of Leakage Reactance in Traction Transformers with Three Different Geometric Axis Systems by Finite Element Method

Year 2025, Issue: 22, 76 - 90, 31.07.2025
https://doi.org/10.47072/demiryolu.1721553

Abstract

In electric locomotive systems, the traction transformer is the component that performs voltage transformation and provides power to the converter and internal equipment of the train. During the traction transformers' design phase, critical electrical parameters need to be determined. One of the most important of these parameters is the leakage reactance value of the transformer. The operation of the converter systems is affected by the leakage reactance value of the transformer. In terms of compliance, the leakage reactance values of the traction transformers should be within the specified ranges. Therefore, it is important to accurately calculate the leakage reactance values of the traction transformer during the design phase. Theoretical calculations may be insufficient due to the structure of the traction transformer. Traction transformers usually have more than one traction output and parallel winding structure on the high-voltage side. The theoretical calculations are insufficient due to the coupling between these parallel windings. Calculations can be performed with numerical analysis programs such as the finite element method, and results can be calculated. In this study, leakage reactance calculation applications were performed on a sample traction transformer using the finite element method (FEM). Different geometric axis systems were used during the modeling studies, and the results were compared. In addition, field tests were performed, and the analysis results were compared. As a result of the study, the use of the finite element method in leakage reactance calculations in traction transformers is explained, and its necessity is emphasized.

References

  • [1] Railway applications - Traction transformers and inductors on board rolling stock, IEC 60310, 2016.
  • [2] Power transformers - Part 1: General, IEC-60076-1, 2011.
  • [3] K. Dawood, B. Alboyaci, M. A. Cinar, and O. Sonmez, “A new method for the calculation of leakage reactance in power transformers,” J. Electr. Eng. Technol., vol. 12, no. 5, pp. 1883–1890, 2017, doi: 10.5370/JEET.2017.12.5.1883.
  • [4] K. Dawood, M. A. Cinar, B. Alboyaci, and O. Sonmez, “Calculation of the leakage reactance in distribution transformers via numerical and analytical methods,” J. Electr. Syst., vol. 15, no. 2, 2019.
  • [5] R. L. C. Hernandez, G. A. D. Florez, J. J. P. Gelves, and E. E. Mombello, “Analytic formulation for the calculation of leakage reactance in wound-core transformers,” Int. J. Appl. Electromagn. Mech., vol. 65, no. 2, 2021, doi: 10.3233/JAE-190140.
  • [6] B. S. Alves, P. Kuo-Peng, and P. Dular, “Contribution to power transformers leakage reactance calculation using analytical approach,” Int. J. Electr. Power Energy Syst., vol. 105, 2019, doi: 10.1016/j.ijepes.2018.08.044.
  • [7] D. Azizian and M. Bigdeli, “Leakage inductance calculations in different geometries of traction transformers,” ECTI Trans. Electr. Eng. Electron. Commun., vol. 12, no. 2, pp. 28–34, 2014.
  • [8] D. Azizian, “Winding temperature prediction in split-winding traction transformer,” Turkish J. Electr. Eng. Comput. Sci., vol. 24, no. 4, 2016, doi: 10.3906/elk-1403-304.
  • [9] C. Yang, Y. Ding, H. Qiu, and B. Xiong, “Analysis of turn-to-turn fault on split-winding transformer using coupled field-circuit approach,” Processes, vol. 9, no. 8, pp. 1–13, 2021, doi: 10.3390/pr9081314.
  • [10] I. Sitar, M. Bilo, and D. Vale, “New design of traction transformers for fixed installations,” in International Colloquium Transformer Research and Asset Management, 2009, pp. 1–10.
  • [11] I. Sitar and M. Jurković, “Modern design of EMU traction transformers,” in Automation in transportation 2014, 2014, pp. 234–237.
  • [12] D. Liu, B. Xiong, Z. Cheng, and F. Liu, “Effects of axial gap length between disc windings on magnetic fields and power losses of evaporative cooling traction transformers,” in Asia-Pacific Power and Energy Engineering Conference, APPEEC, 2020, vol. 2020-Septe, doi: 10.1109/APPEEC48164.2020.9220626.
  • [13] B. G. Park, T. S. Kim, K. J. Lee, R. Y. Kim, and D. S. Hyun, “Magnetic-field analysis on winding disposition of transformer for distributed high-speed train applications,” in IEEE Transactions on Magnetics, 2010, vol. 46, no. 6, doi: 10.1109/TMAG.2010.2043646.
  • [14] S. Çürükova, Y. B. Demirol, O. Sönmez, M. A. Çınar, and B. Alboyacı, “Cer transformatörlerinde elektriksel parametrelerin sonlu elemanlar yöntemi ile analizi,” Demiryolu Mühendisliği, no. 16, pp. 66–78, 2022, doi: 10.47072/demiryolu.1110515.
  • [15] S. Çürükova Kale, O. Sönmez, Y. B. Demirol, E. Sakallioglu, and B. Alboyacı, “Calculation of no-load losses in traction transformers with finite element method,” Railw. Eng., vol. 19, no. 1, pp. 171–183, 2024, doi: https://doi.org/10.47072/demiryolu.1395174.
  • [16] S. Çürükova Kale, Y. B. Demirol, O. Sönmez, M. A. Çınar, and B. Alboyacı, “Elektrikli lokomotif sistemlerinde cer transformatörü ve baraların oluşturduğu manyetik alanların sonlu elemanlar yöntemi ile hesaplanması,” Demiryolu Mühendisliği, vol. 17, pp. 54–65, 2023, [Online]. Available: 10.47072/demiryolu.1175771.
  • [17] Z. Ye et al., "A Calculation Method to Adjust the Short-Circuit Impedance of a Transformer," in IEEE Access, vol. 8, pp. 223848-223858, 2020, doi: 10.1109/ACCESS.2020.3042983.
  • [18] A.M. Evstaf’ev, A.Y.Yakushev, & A.G. Sereda,. A simulation mathematical model of a traction transformer with tapped secondary windings. Russ. Electr. Engin. 87, 275–281 (2016). https://doi.org/10.3103/S1068371216050072
  • [19] C. Tian, J. Fang and X. Zhao, "Short-Circuit Impedance Analysis of HTS Traction Transformer With Flux Diverters Using Magnetic Energy Method," in IEEE Transactions on Applied Superconductivity, vol. 34, no. 8, pp. 1-5, Nov. 2024, Art no. 5501405, doi: 10.1109/TASC.2024.3420293
  • [20] J. Xiang, J. Xu, Q. Wu, Z. Shuai, N. Tong, and Y. Liu, “Traction transformer integrated LCL filtering method for high-frequency harmonic and resonance suppression in AC train,” Int. J. Electr. Power Energy Syst., vol. 148, 2023, doi: 10.1016/j.ijepes.2022.108922
  • [21] S. V. Kulkarni and S. A. Khaparde, Transformer engineering design, technology, and diagnostics. CRC Press, 2004.
  • [22] B. Alboyacı, M. A. Çınar, and Y. B. Demirol, “Influence of busbar trunking system design on thermal performance operating with non-sinusoidal currents,” Electr. Power Syst. Res., vol. 214, no. 108815, pp. 1–9, 2023.
  • [23] Y. B. Demirol and Ö. Kalenderli, “Investigation of effect of laying and bonding parameters of high-voltage underground cables on thermal and electrical performances by multiphysics FEM analysis,” Electr. Power Syst. Res., vol. 227, p. 109987, 2024, [Online]. Available: https://doi.org/10.1016/j.epsr.2023.109987.
  • [24] Y. B. Demirol, M. A. Çınar, and B. Alboyacı, “Evaluation of cable and busbar system in multiconductor distribution systems in terms of current and magnetic field distributions,” Turkish J. Electr. Eng. Comput. Sci., vol. 29, no. 7, pp. 3119–3132, 2021, doi: 10.3906/ELK-2103-108.
  • [25] B. Alboyacı, M. A. Çınar, Y. B. Demirol, and A. Ince, “Evaluation of the effect of structural defects in the heat-shrink cable terminal on electric field distribution,” Eng. Fail. Anal., vol. 132, no. 105920, pp. 1–15, 2022, doi: 10.1016/j.engfailanal.2021.105920.
  • [26] B. Alboyacı, M. A. Çınar, Y. B. Demirol, and M. Uzar, “Reducing the failures with adding glass insulators to composite insulators of 400 kV transmission line at high altitude,” Eng. Fail. Anal., p. 106678, 2022, doi: 10.1016/j.engfailanal.2022.106678.
  • [27] M. Uzar, Y. B. Demirol, M. A. Çınar, and B. Alboyacı, “Investigation of the effect of corona ring design parameters on electric field distribution by finite element method,” Turk J Electr Power Energy Syst., vol. 3, no. 1, pp. 1–8, 2023, [Online]. Available: https://tepesjournal.org/en/investigation-of-the-effect-of-corona-ring-design-parameters-on-electric-field-distribution-by-finite-element-method-1679.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Electrical Machines and Drives
Journal Section Article
Authors

Serenay Çürükova Kale 0000-0003-2485-2120

Oluş Sönmez 0000-0002-4773-6555

Bora Alboyacı 0000-0002-1117-0326

Yunus Berat Demirol 0000-0001-7168-2764

Publication Date July 31, 2025
Submission Date June 23, 2025
Acceptance Date July 17, 2025
Published in Issue Year 2025 Issue: 22

Cite

IEEE S. Çürükova Kale, O. Sönmez, B. Alboyacı, and Y. B. Demirol, “Cer Transformatörlerinde Kaçak Reaktansın Sonlu Elemanlar Yöntemi ile Üç Farklı Geometrik Eksen Sistemi ile Hesaplanması”, Demiryolu Mühendisliği, no. 22, pp. 76–90, July 2025, doi: 10.47072/demiryolu.1721553.