Research Article
BibTex RIS Cite

Investigating the effects of multiple representations on learning in photosynthesis instruction through transitions between representation

Year 2025, Issue: 64, 1342 - 1366, 30.06.2025
https://doi.org/10.53444/deubefd.1458350

Abstract

As learning science requires comprehending different representations of science concepts, being able to translate them to each other, and understanding their coordinated use in demonstrating scientific knowledge, multiple representations are efficient tools for conceptual understanding. The purpose of this research is to examine the effects of learning activities enriched with multiple representations on students' learning about the subject of photosynthesis. A total of 21 8th-grade students, 12 in the experimental group and 9 in the control group, participated in the study, which was carried out with the pre and post-test control group design of the quasi-experimental research method. Following the control groups' lesson plan prepared with the current textbook and its content and the experiment group's lesson plan enriched with multiple representations, teaching have been executed by the researcher. The transition test between representations on photosynthesis (TTRP) was used as a data collection tool. While there was a significant difference in favor of the post-test in the pre-post test scores of the experimental group, there was no statistically significant difference between the mean rank of the pre-post test scores of the control group and the scores of the experimental group and the control group in the post test.
The study showed that the students in the experimental and control groups were most successful in the transition type from graphic to the table, least visual to other representations types, and vice versa. While there was not much change in the transition levels of the control group students after the instruction, it was apparent that the teaching activities affected the transition levels between the representations of the experimental group students. Post-test analyses have shown that both groups learning about photosynthesis are not on the desired level.

References

  • Abraham, M., R., Williamson, V., M. & Westbrook, S., L. (1994). A cross age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching, 31(2), 147-165. doi:http://dx.doi.org/10.1002/tea.3660310206
  • Adu-Gyamfi, K., Bossé, M. J., & Chandler, K. (2017). Student connections between algebraic and graphical polynomial representations in the context of a polynomial relation. International Journal of Science and Mathematics Education, 15(5), 915-938. https://doi.org/10.1007/s10763-016-9730-1
  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152. https://doi.org/10.1016/S0360-1315(99)00029-9
  • Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In Visualization: Theory and practice in Science Education (pp. 191-208). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5267-5_9
  • Avunç, F. (2018). Maddenin halleri ve ısı konusuyla ilgili fen bilgisi öğretmen adaylarının gösterim türleri arasında geçiş yapabilme durumlarının incelenmesi.[Yayınlanmamış Yüksek Lisans Tezi]. Kastamonu Üniversitesi.
  • Bacanak, A., Küçük, M., & Çepni, S. (2004). İlköğretim öğrencilerinin fotosentez ve solunum konularındaki kavram yanılgılarının belirlenmesi: Trabzon örneklemi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 17(1), 75-88.
  • Balcı, A. (2010). Sosyal bilimlerde araştırma. Yöntem, teknik ve ilkeler. Ankara: Pegem Akademi.
  • Bayri, N. G. (2014). Sekizinci sınıf öğrencilerinin basınç konusuyla ilgili gösterim türleri arasında geçiş yapabilme durumlarının incelenmesi. [Yayınlanmamış yüksek lisans tezi], Kastamonu Üniversitesi.
  • Benedetič, N. (2018). David F. Treagust, Reinders Duit and Hans E. Fischer (Eds), Multiple Representations in Physics Education, Models and Modelling in Science Education (Volume 10), Cham: Springer, 2017; 322 pp.: ISBN 978-3-319-58912-1. Center for Educational Policy Studies Journal, 8(1), 205-209. https://doi.org/10.1007/978-3-319-58914-5
  • Chang, C. S., Sheu, J. P., & Lin, Y. J. (2021). On the theoretical gap of channel hopping sequences with maximum rendezvous diversity in the multichannel rendezvous problem. IEEE/ACM Transactions on Networking, 29(4), 1620-1633. https://doi.org/10.1109/TNET.2021.3067643
  • Chang, J. Y., Cheng, M. F., Lin, S. Y., & Lin, J. L. (2021). Exploring students’ translation performance and use of intermediary representations among multiple representations: Example from torque and rotation. Teaching and Teacher Education, 97, 103-209.
  • Chi, M.T.H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R.J. Sternberg (Ed.), Advances in The Psychology of Human Intelligence (Vol. 1, 7-76). Hillsdale, NJ: Erlbaum. https://doi.org/10.1016/j.tate.2020.103209
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. https://doi.org/10.1177/001316446002000104
  • Çelik, D., & Sağlam-Arslan, A. (2012). Öğretmen adaylarının çoklu gösterimleri kullanma becerilerinin analizi. İlköğretim Online, 11(1), 239-250.
  • Dimas, A., Suparmi, A., Sarwanto, & Nugraha, D. A. (2018). Analysis multiple representation skills of high school students on simple harmonic motion. In AIP Conference Proceedings (Vol. 2014, No. 1, p. 1-9). AIP Publishing LLC. https://doi.org/10.1063/1.5054535
  • Dolin, J. (2001). Representational forms in physics. In Science education research in the knowledge-based society. Proceedings of the Third International Conference of the ESERA (pp. 359-361).
  • Dreher, A., & Kuntze, S. (2015). Teachers’ professional knowledge and noticing: The case of multiple representations in the mathematics classroom. Educational Studies in Mathematics, 88, 89-114. https://doi.org/10.1007/s10649-014-9577-8
  • Duschl, R. A. (2007). Quality argumentation and epistemic criteria. In Argumentation in science education: Perspectives from classroom-based research (pp. 159-175). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6670-2
  • Duval R. (1993). Registres de Répresentations sémiotiques et Fonctionnement cognitif de la Pensée. Annales de didactique et de sciences cognitives, 5, 37-65. https://doi.org/10.5007/1981-1322.2012v7n2p266
  • Duval, R. (2002). The cognitive analysis of problems of comprehension in the learning of mathematics. Mediterranean Journal for Research in Mathematics Education, 1(2), 1–16. https://doi.org/10.1007/s10649-006-0400-z
  • Even, R. (1998). Factors involved in linking representations of functions. The Journal of Mathematical Behavior, 17(1), 105-121. https://doi.org/10.1016/S0732-3123(99)80063-7
  • Günay K. (2022). Fen bilimleri 5, 6, 7 ve 8. sınıf ders kitaplarının gösterim türleri ve gösterimler arası geçişler açısından incelenmesi. [Yayınlanmamış Yüksek Lisans Tezi]. Giresun Üniversitesi.
  • Gürbüz, R., & Şahin, S. (2015). 8. sınıf öğrencilerinin çoklu temsiller arasındaki geçiş becerileri. Kastamonu Eğitim Dergisi, 23(4), 1869-1888.
  • Hammer, T. H., Saksvik, P. Ø., Nytrø, K., Torvatn, H., & Bayazit, M. (2004). Expanding the psychosocial work environment: workplace norms and work-family conflict as correlates of stress and health. Journal of Occupational Health Psychology, 9(1), 83-97. https://doi.org/10.1037/1076-8998.9.1.83
  • Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex systems. Journal of the Learning Sciences, 16(3), 307–331. https://doi.org/10.1080/10508400701413401
  • Jayanti, P. (2019). Comparative study: Misconceptions on photosynthesis and respiration concepts from past to the present. JPPS (Jurnal Penelitian Pendidikan Sains), 9(1), 1750-1755. https://doi.org/10.26740/jpps.v9n1.p1750-1755
  • Karal Eyüboğlu, I.S. (2019) Değerlendirmede çoklu gösterimlerin kullanımı: Manyetik akı örneği. IV Ulusal Fizik Eğitimi Kongresi. Trabzon.
  • Kohl, P. B., Rosengrant, D., & Finkelstein, N. D. (2007). Strongly and weakly directed approaches to teaching multiple representation use in physics. Physical Review Special Topics Physics Education Research, 3(1), 010108. http://dx.doi.org/10.1103/PhysRevSTPER.3.010108
  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226. https://doi.org/10.1016/S0959-4752(02)00021-X
  • Köse, S. & Uşak, M. (2006). Determination of prospective science teachers’ misconceptions: Photosynthesis and respiration in plants. International Journal of Environmental and Science Education, 1(1), 25 – 52.
  • Kuo, Y. R., Won, M., Zadnik, M., Siddiqui, S., & Treagust, D. F. (2017). Learning optics with multiple representations: not as simple as expected. In Multiple Representations in Physics Education (pp. 123-138). Springer, Cham. https://doi.org/10.1007/978-3-319-58914-5_6
  • Kurnaz, M. A. (2013). Investigation of the student teachers' skills of transition between multiple representations about pressure. Online Submission, 5(1), 66-71. https://doi.org/10.7813/2075-4124.2013/5-1/B.12
  • Kurnaz, M. A., Ezberci, E., & Bayri, N. G. (2015). İlköğretim öğrencilerinin madde ve ısı konusuna ilişkin gösterim türleri arasında geçiş yapabilme durumlarının incelenmesi. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 13(1), 1-25.
  • Kurnaz, M. A., Çevik, E. E., & Bayri, N. G. (2016). Fen ve teknoloji ders kitaplarındaki gösterim türleri arası geçişlerin incelenmesi. Cumhuriyet Uluslararası Eğitim Dergisi, 5(3), 31-47.
  • Larkin, J. H. (1983). The role of problem representation in physics. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 75 – 98). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Landis, J, R., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. https://doi.org/10.2307/2529310
  • Lin, Y. I., Son, J. Y., & Rudd, J. A. (2016). Asymmetric translation between multiple representations in chemistry. International Journal of Science Education, 38(4), 644-662. https://doi.org/10.1080/09500693.2016.1144945
  • Marmaroti, P., & Galanopoulou, D. (2006). Pupils' understanding of photosynthesis: A questionnaire for the simultaneous assessment of all aspects. International Journal of Science Education, 28(4), 383-403. https://doi.org/10.1080/09500690500277805
  • McMillan, J. H., & Schumacher, S. (2001). Research in education: A conceptual introduction, 5 th Longman. New York. ed.,(1), 31-43.
  • Mujis,D. (2004) Doing quantative research in education with SPSS. London: GBR,Sage Publications. Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 96(5), 849-877. https://doi.org/10.1002/sce.21026
  • Nieminen, P., Savinainen, A., & Viiri, J. (2017). Learning about forces using multiple representations. In Multiple Representations in Physics Education (pp. 163-182). Springer, Cham. https://doi.org/10.1007/978-3-319-58914-5_8
  • Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple representations in physics and science education–why should we use them?. In Multiple representations in physics education (pp. 1-22). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-58914-5_1
  • Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843 – 1866. https://doi.org/10.1080/09500690600718294
  • Prain, V., Tytler, R., & Peterson, S. (2009). Multiple representation in learning about evaporation. International Journal of Science Education, 31(6), 787-808. https://doi.org/10.1080/09500690701824249
  • Rau, M. A., Aleven, V., & Rummel, N. (2015). Successful learning with multiple graphical representations and self-explanation prompts. Journal of Educational Psychology, 107(1), 30-46.
  • Rau, M. A. (2017). Conditions for the effectiveness of multiple visual representations in enhancing STEM learning. Educational Psychology Review, 29, 717-761. https://doi.org/10.1007/s10648-016-9365-3
  • Rosengrant, D., Etkina, E., & Van Heuvelen, A. (2007). An overview of recent research on multiple representations. In AIP Conference Proceedings (Vol. 883, No. 1, pp. 149-152). American Institute of Physics. https://doi.org/10.1063/1.2508714
  • Schönborn, K. J., & Bögeholz, S. (2013). Experts’ views on translation across multiple external representations in acquiring biological knowledge about ecology, genetics, and evolution. In Multiple Representations in Biological Education (pp. 111-128). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4192-8_7
  • Sunyono, S., Leny, Y., & Muslimin, I. (2015). Supporting students in learning with multiple representation to improve student mental models on atomic structure concepts. Science Education International, 26(2), 104-125.
  • Sunyono, S., & Meristin, A. (2018). The effect of multiple representation-based learning (mrl) to increase students’ understanding of chemical bonding concepts. Jurnal Pendidikan IPA Indonesia, 7(4), 399-406.
  • Stavy, R., Eisen, Y., & Yaakobi, D. (1987). How students aged 13-15 understand photosynthesis. International Journal of Science Education, 9(1), 105-115. https://doi.org/10.1080/0950069870090111
  • Svandova, K. (2014). Secondary school students’ misconceptions about photosynthesis and plant respiration: Preliminary results. Eurasia Journal of Mathematics, Science and Technology Education, 10(1), 59-67. https://doi.org/10.12973/eurasia.2014.1018a
  • Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368. https://doi.org/10.1080/0950069032000070306
  • Tsay, J. R., & Tso, T. Y. (2001). Cognitive characteristics of senior high school students in constructing multiple representations of ellipse. Chinese Journal of Science Education, 9(3), 281-297.
  • Tsui, C. Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In Multiple Representations in Biological Education (pp. 3-18). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4192-8_1
  • Tytler, R., Hubber, P., Prain, V., & Waldrip, B. (2013). A representation construction approach. In Constructing Representations to Learn in Science (pp. 31-50). Brill.
  • Uslu, N., & Kocakülah, A. (2024). Çoklu gösterimlerle desteklenmiş öğretimin üniversite öğrencilerinin bazı duyuşsal değişkenleri üzerine etkisi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, 60, 1367-1393. https://doi.org/10.53444/deubefd.1436962
  • Ürey, M. (2018). Defining the relationship between the perceptions and the misconceptions about photosynthesis topic of the preservice science teachers. European Journal of Educational Research, 7(4), 813-826. https://doi.org/10.12973/eu-jer.7.4.813
  • Van Heuvelen, A., & Zou, X. (2001). Multiple representations of work–energy processes. American Journal of Physics, 69(2), 184-194. https://doi.org/10.1119/1.1286662
  • Van der Meij, J., & de Jong, T. (2006). Supporting students' learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16(3), 199-212. https://doi.org/10.1016/j.learninstruc.2006.03.007
  • Van der Meij, J. (2007). Support for learning with multiple representations designing simulationbased learning environments. [Doctoral thesis], Universiteit Twente, Netherlands.
  • Van Meter, P., & Stepanik, N. (2020). Interventions to support learning from multiple external representations. In Handbook of learning from multiple representations and perspectives (pp. 76-91). Routledge.
  • Yong, C. L., & Kee, C. N. Z. (2017). Utilizing concept cartoons to diagnose and remediate misconceptions related to photosynthesis among primary school students. In Overcoming Students' Misconceptions in Science (pp. 9-27). Springer, Singapore. https://doi.org/10.1007/978-981-10-3437-4_2
  • Widiastari, K., & Redhana, I. W. (2021, March). Multiple representation-based chemistry learning textbook of colloid topic. In Journal of Physics: Conference Series, 1806(1), 1-7. https://doi.org/10.1088/1742-6596/1806/1/012185
  • Wu, H. K., & Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of Science Education and Technology, 21(6), 754-767. https://doi.org/10.1007/s10956-011-9363-7

Fotosentez öğretiminde çoklu gösterimlerin öğrenmeye etkilerinin gösterimler arası geçişler aracılığıyla incelenmesi

Year 2025, Issue: 64, 1342 - 1366, 30.06.2025
https://doi.org/10.53444/deubefd.1458350

Abstract

Fen bilimlerini öğrenme, fen kavramlarının farklı gösterimlerini anlamayı, bunları birbirine çevirebilmeyi ve bunların bilimsel bilgiyi göstermede koordineli kullanımlarını anlamayı gerektirdiğinden çoklu gösterimler kavramsal anlamada güçlü araçlar olarak görülmektedir. Bu çalışma ile çoklu gösterimlerle zenginleştirilmiş öğretim etkinliklerinin öğrencilerin fotosentez konusunu öğrenmeleri üzerindeki etkilerinin incelenmesi amaçlanmıştır. Yarı deneysel araştırma yönteminin ön test-son test kontrol gruplu deseni ile yürütülen çalışmaya deney grubu 12, kontrol grubu 9 olmak üzere ortaokul 8.sınıf seviyesinden toplam 21 öğrenci katılmıştır. Kontrol grubunda güncel ders kitabı ve içeriği dikkate alınarak hazırlanan, deney grubunda ise çoklu gösterimlerle zenginleştirilerek geliştirilen ders planlarına göre öğretim yapılmıştır. Veri toplama aracı olarak fotosentez ile ilgili gösterimler arası geçiş testi (FGAGT) kullanılmıştır. Deney grubu ön-son test puanlarında son test lehine anlamlı farklılık varken, kontrol grubuna ait ön-son test puanlarında ve deney grubu ile kontrol grubu son test puanlarının sıra ortalamaları arasında istatistiksel olarak anlamlı bir farklılık olmadığı görülmüştür. Çalışma her iki grubun en başarılı oldukları geçiş türünün grafikten tabloya, en az görselden diğer gösterim türlerine ve diğer gösterim türlerinden görsele geçişte olduğunu göstermiştir. Kontrol grubu öğrencilerinin öğretim sonrası gösterimler arası geçiş düzeylerinde fazla bir değişim olmazken, öğretim etkinliklerinin deney grubu öğrencilerinin gösterimler arası geçiş düzeylerini etkilediği görülmüştür. Son test analizleri her iki grubun da fotosentez konusundaki öğrenmelerinin hedeflenen düzeyde olmadığını göstermiştir.

Ethical Statement

Çalışmanın etik kurul izinleri, çalışmanın yapıldığı üniversitenin etik kurulundan alınmıştır.

Thanks

Araştırma süreci boyunca destek ve geri bildirimlerini esirgemeyen Prof.Dr. Ayşegül SAĞLAM ARSLAN’a teşekkür ederiz.

References

  • Abraham, M., R., Williamson, V., M. & Westbrook, S., L. (1994). A cross age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching, 31(2), 147-165. doi:http://dx.doi.org/10.1002/tea.3660310206
  • Adu-Gyamfi, K., Bossé, M. J., & Chandler, K. (2017). Student connections between algebraic and graphical polynomial representations in the context of a polynomial relation. International Journal of Science and Mathematics Education, 15(5), 915-938. https://doi.org/10.1007/s10763-016-9730-1
  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152. https://doi.org/10.1016/S0360-1315(99)00029-9
  • Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In Visualization: Theory and practice in Science Education (pp. 191-208). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5267-5_9
  • Avunç, F. (2018). Maddenin halleri ve ısı konusuyla ilgili fen bilgisi öğretmen adaylarının gösterim türleri arasında geçiş yapabilme durumlarının incelenmesi.[Yayınlanmamış Yüksek Lisans Tezi]. Kastamonu Üniversitesi.
  • Bacanak, A., Küçük, M., & Çepni, S. (2004). İlköğretim öğrencilerinin fotosentez ve solunum konularındaki kavram yanılgılarının belirlenmesi: Trabzon örneklemi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 17(1), 75-88.
  • Balcı, A. (2010). Sosyal bilimlerde araştırma. Yöntem, teknik ve ilkeler. Ankara: Pegem Akademi.
  • Bayri, N. G. (2014). Sekizinci sınıf öğrencilerinin basınç konusuyla ilgili gösterim türleri arasında geçiş yapabilme durumlarının incelenmesi. [Yayınlanmamış yüksek lisans tezi], Kastamonu Üniversitesi.
  • Benedetič, N. (2018). David F. Treagust, Reinders Duit and Hans E. Fischer (Eds), Multiple Representations in Physics Education, Models and Modelling in Science Education (Volume 10), Cham: Springer, 2017; 322 pp.: ISBN 978-3-319-58912-1. Center for Educational Policy Studies Journal, 8(1), 205-209. https://doi.org/10.1007/978-3-319-58914-5
  • Chang, C. S., Sheu, J. P., & Lin, Y. J. (2021). On the theoretical gap of channel hopping sequences with maximum rendezvous diversity in the multichannel rendezvous problem. IEEE/ACM Transactions on Networking, 29(4), 1620-1633. https://doi.org/10.1109/TNET.2021.3067643
  • Chang, J. Y., Cheng, M. F., Lin, S. Y., & Lin, J. L. (2021). Exploring students’ translation performance and use of intermediary representations among multiple representations: Example from torque and rotation. Teaching and Teacher Education, 97, 103-209.
  • Chi, M.T.H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R.J. Sternberg (Ed.), Advances in The Psychology of Human Intelligence (Vol. 1, 7-76). Hillsdale, NJ: Erlbaum. https://doi.org/10.1016/j.tate.2020.103209
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. https://doi.org/10.1177/001316446002000104
  • Çelik, D., & Sağlam-Arslan, A. (2012). Öğretmen adaylarının çoklu gösterimleri kullanma becerilerinin analizi. İlköğretim Online, 11(1), 239-250.
  • Dimas, A., Suparmi, A., Sarwanto, & Nugraha, D. A. (2018). Analysis multiple representation skills of high school students on simple harmonic motion. In AIP Conference Proceedings (Vol. 2014, No. 1, p. 1-9). AIP Publishing LLC. https://doi.org/10.1063/1.5054535
  • Dolin, J. (2001). Representational forms in physics. In Science education research in the knowledge-based society. Proceedings of the Third International Conference of the ESERA (pp. 359-361).
  • Dreher, A., & Kuntze, S. (2015). Teachers’ professional knowledge and noticing: The case of multiple representations in the mathematics classroom. Educational Studies in Mathematics, 88, 89-114. https://doi.org/10.1007/s10649-014-9577-8
  • Duschl, R. A. (2007). Quality argumentation and epistemic criteria. In Argumentation in science education: Perspectives from classroom-based research (pp. 159-175). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6670-2
  • Duval R. (1993). Registres de Répresentations sémiotiques et Fonctionnement cognitif de la Pensée. Annales de didactique et de sciences cognitives, 5, 37-65. https://doi.org/10.5007/1981-1322.2012v7n2p266
  • Duval, R. (2002). The cognitive analysis of problems of comprehension in the learning of mathematics. Mediterranean Journal for Research in Mathematics Education, 1(2), 1–16. https://doi.org/10.1007/s10649-006-0400-z
  • Even, R. (1998). Factors involved in linking representations of functions. The Journal of Mathematical Behavior, 17(1), 105-121. https://doi.org/10.1016/S0732-3123(99)80063-7
  • Günay K. (2022). Fen bilimleri 5, 6, 7 ve 8. sınıf ders kitaplarının gösterim türleri ve gösterimler arası geçişler açısından incelenmesi. [Yayınlanmamış Yüksek Lisans Tezi]. Giresun Üniversitesi.
  • Gürbüz, R., & Şahin, S. (2015). 8. sınıf öğrencilerinin çoklu temsiller arasındaki geçiş becerileri. Kastamonu Eğitim Dergisi, 23(4), 1869-1888.
  • Hammer, T. H., Saksvik, P. Ø., Nytrø, K., Torvatn, H., & Bayazit, M. (2004). Expanding the psychosocial work environment: workplace norms and work-family conflict as correlates of stress and health. Journal of Occupational Health Psychology, 9(1), 83-97. https://doi.org/10.1037/1076-8998.9.1.83
  • Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex systems. Journal of the Learning Sciences, 16(3), 307–331. https://doi.org/10.1080/10508400701413401
  • Jayanti, P. (2019). Comparative study: Misconceptions on photosynthesis and respiration concepts from past to the present. JPPS (Jurnal Penelitian Pendidikan Sains), 9(1), 1750-1755. https://doi.org/10.26740/jpps.v9n1.p1750-1755
  • Karal Eyüboğlu, I.S. (2019) Değerlendirmede çoklu gösterimlerin kullanımı: Manyetik akı örneği. IV Ulusal Fizik Eğitimi Kongresi. Trabzon.
  • Kohl, P. B., Rosengrant, D., & Finkelstein, N. D. (2007). Strongly and weakly directed approaches to teaching multiple representation use in physics. Physical Review Special Topics Physics Education Research, 3(1), 010108. http://dx.doi.org/10.1103/PhysRevSTPER.3.010108
  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226. https://doi.org/10.1016/S0959-4752(02)00021-X
  • Köse, S. & Uşak, M. (2006). Determination of prospective science teachers’ misconceptions: Photosynthesis and respiration in plants. International Journal of Environmental and Science Education, 1(1), 25 – 52.
  • Kuo, Y. R., Won, M., Zadnik, M., Siddiqui, S., & Treagust, D. F. (2017). Learning optics with multiple representations: not as simple as expected. In Multiple Representations in Physics Education (pp. 123-138). Springer, Cham. https://doi.org/10.1007/978-3-319-58914-5_6
  • Kurnaz, M. A. (2013). Investigation of the student teachers' skills of transition between multiple representations about pressure. Online Submission, 5(1), 66-71. https://doi.org/10.7813/2075-4124.2013/5-1/B.12
  • Kurnaz, M. A., Ezberci, E., & Bayri, N. G. (2015). İlköğretim öğrencilerinin madde ve ısı konusuna ilişkin gösterim türleri arasında geçiş yapabilme durumlarının incelenmesi. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 13(1), 1-25.
  • Kurnaz, M. A., Çevik, E. E., & Bayri, N. G. (2016). Fen ve teknoloji ders kitaplarındaki gösterim türleri arası geçişlerin incelenmesi. Cumhuriyet Uluslararası Eğitim Dergisi, 5(3), 31-47.
  • Larkin, J. H. (1983). The role of problem representation in physics. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 75 – 98). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Landis, J, R., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. https://doi.org/10.2307/2529310
  • Lin, Y. I., Son, J. Y., & Rudd, J. A. (2016). Asymmetric translation between multiple representations in chemistry. International Journal of Science Education, 38(4), 644-662. https://doi.org/10.1080/09500693.2016.1144945
  • Marmaroti, P., & Galanopoulou, D. (2006). Pupils' understanding of photosynthesis: A questionnaire for the simultaneous assessment of all aspects. International Journal of Science Education, 28(4), 383-403. https://doi.org/10.1080/09500690500277805
  • McMillan, J. H., & Schumacher, S. (2001). Research in education: A conceptual introduction, 5 th Longman. New York. ed.,(1), 31-43.
  • Mujis,D. (2004) Doing quantative research in education with SPSS. London: GBR,Sage Publications. Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 96(5), 849-877. https://doi.org/10.1002/sce.21026
  • Nieminen, P., Savinainen, A., & Viiri, J. (2017). Learning about forces using multiple representations. In Multiple Representations in Physics Education (pp. 163-182). Springer, Cham. https://doi.org/10.1007/978-3-319-58914-5_8
  • Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple representations in physics and science education–why should we use them?. In Multiple representations in physics education (pp. 1-22). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-58914-5_1
  • Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843 – 1866. https://doi.org/10.1080/09500690600718294
  • Prain, V., Tytler, R., & Peterson, S. (2009). Multiple representation in learning about evaporation. International Journal of Science Education, 31(6), 787-808. https://doi.org/10.1080/09500690701824249
  • Rau, M. A., Aleven, V., & Rummel, N. (2015). Successful learning with multiple graphical representations and self-explanation prompts. Journal of Educational Psychology, 107(1), 30-46.
  • Rau, M. A. (2017). Conditions for the effectiveness of multiple visual representations in enhancing STEM learning. Educational Psychology Review, 29, 717-761. https://doi.org/10.1007/s10648-016-9365-3
  • Rosengrant, D., Etkina, E., & Van Heuvelen, A. (2007). An overview of recent research on multiple representations. In AIP Conference Proceedings (Vol. 883, No. 1, pp. 149-152). American Institute of Physics. https://doi.org/10.1063/1.2508714
  • Schönborn, K. J., & Bögeholz, S. (2013). Experts’ views on translation across multiple external representations in acquiring biological knowledge about ecology, genetics, and evolution. In Multiple Representations in Biological Education (pp. 111-128). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4192-8_7
  • Sunyono, S., Leny, Y., & Muslimin, I. (2015). Supporting students in learning with multiple representation to improve student mental models on atomic structure concepts. Science Education International, 26(2), 104-125.
  • Sunyono, S., & Meristin, A. (2018). The effect of multiple representation-based learning (mrl) to increase students’ understanding of chemical bonding concepts. Jurnal Pendidikan IPA Indonesia, 7(4), 399-406.
  • Stavy, R., Eisen, Y., & Yaakobi, D. (1987). How students aged 13-15 understand photosynthesis. International Journal of Science Education, 9(1), 105-115. https://doi.org/10.1080/0950069870090111
  • Svandova, K. (2014). Secondary school students’ misconceptions about photosynthesis and plant respiration: Preliminary results. Eurasia Journal of Mathematics, Science and Technology Education, 10(1), 59-67. https://doi.org/10.12973/eurasia.2014.1018a
  • Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368. https://doi.org/10.1080/0950069032000070306
  • Tsay, J. R., & Tso, T. Y. (2001). Cognitive characteristics of senior high school students in constructing multiple representations of ellipse. Chinese Journal of Science Education, 9(3), 281-297.
  • Tsui, C. Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In Multiple Representations in Biological Education (pp. 3-18). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4192-8_1
  • Tytler, R., Hubber, P., Prain, V., & Waldrip, B. (2013). A representation construction approach. In Constructing Representations to Learn in Science (pp. 31-50). Brill.
  • Uslu, N., & Kocakülah, A. (2024). Çoklu gösterimlerle desteklenmiş öğretimin üniversite öğrencilerinin bazı duyuşsal değişkenleri üzerine etkisi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, 60, 1367-1393. https://doi.org/10.53444/deubefd.1436962
  • Ürey, M. (2018). Defining the relationship between the perceptions and the misconceptions about photosynthesis topic of the preservice science teachers. European Journal of Educational Research, 7(4), 813-826. https://doi.org/10.12973/eu-jer.7.4.813
  • Van Heuvelen, A., & Zou, X. (2001). Multiple representations of work–energy processes. American Journal of Physics, 69(2), 184-194. https://doi.org/10.1119/1.1286662
  • Van der Meij, J., & de Jong, T. (2006). Supporting students' learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16(3), 199-212. https://doi.org/10.1016/j.learninstruc.2006.03.007
  • Van der Meij, J. (2007). Support for learning with multiple representations designing simulationbased learning environments. [Doctoral thesis], Universiteit Twente, Netherlands.
  • Van Meter, P., & Stepanik, N. (2020). Interventions to support learning from multiple external representations. In Handbook of learning from multiple representations and perspectives (pp. 76-91). Routledge.
  • Yong, C. L., & Kee, C. N. Z. (2017). Utilizing concept cartoons to diagnose and remediate misconceptions related to photosynthesis among primary school students. In Overcoming Students' Misconceptions in Science (pp. 9-27). Springer, Singapore. https://doi.org/10.1007/978-981-10-3437-4_2
  • Widiastari, K., & Redhana, I. W. (2021, March). Multiple representation-based chemistry learning textbook of colloid topic. In Journal of Physics: Conference Series, 1806(1), 1-7. https://doi.org/10.1088/1742-6596/1806/1/012185
  • Wu, H. K., & Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of Science Education and Technology, 21(6), 754-767. https://doi.org/10.1007/s10956-011-9363-7
There are 65 citations in total.

Details

Primary Language Turkish
Subjects Science and Mathematics Education (Other)
Journal Section Articles
Authors

Harun Gökçe 0000-0003-0681-4403

Işık Saliha Karal Eyüboğlu 0000-0002-6966-9947

Publication Date June 30, 2025
Submission Date March 26, 2024
Acceptance Date May 16, 2025
Published in Issue Year 2025 Issue: 64

Cite

APA Gökçe, H., & Karal Eyüboğlu, I. S. (2025). Fotosentez öğretiminde çoklu gösterimlerin öğrenmeye etkilerinin gösterimler arası geçişler aracılığıyla incelenmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi(64), 1342-1366. https://doi.org/10.53444/deubefd.1458350