Review
BibTex RIS Cite

Environmental Factors Influencing In Vitro Culture in Cattle

Year 2025, Volume: 18 Issue: 1, 71 - 78, 30.06.2025
https://doi.org/10.47027/duvetfd.1577834

Abstract

In vitro production of bovine embryos has improved significantly in recent years. However, studies show that in vitro embryo production is less successful than in vivo embryo production. However, studies have shown that in vitro production results are lower than in vivo embryo production success because embryos need to adapt to many microenvironments. Also, in in vitro embryo production, there are serious problems in mimicking the fluids and stabilizing the environments. Therefore, the influence of environmental factors affecting the in vitro culture environment (temperature, light, osmolarity, humidity, incubator, volatile organic compounds, gas phase, culture medium, oil coating, preferred plastic materials, etc.) should not be forgotten in order to stabilize the laboratory environment and increase the success of embryo production. In this review, it is aimed to explain the importance of environmental factors affecting the in vitro culture stage, which is one of the most important steps of in vitro embryo production.

References

  • Seidel GE (2007). New technologies for reproduction in cattle. In: Proceedings, applied reproductive strategies in beef cattle, Billings, Montana.
  • Gadisa M, Furgasa W, Duguma M (2019). Review on embryo transfer and It’s application in animal production. AJMS,1(1):4-12.
  • Alkan H, Tekindal MA, Demirel MA et al. (2024). Effect of strategies to increase progesterone levels on fertility of bovine embryo transfer recipients-A meta-analysis. Theriogenology, 215:177-186.
  • Günlü A, İmik H, Tekerli M (2001). Afyon ili süt sığırcılık işletmelerinin genel özellikleri ile karlılık ve verimlilik analizleri. Lalahan Hay Araş Enst Derg., 41(1):1-12.
  • Madan ML (2005). Hayvan biyoteknolojisi: gelişmekte olan ülkelerdeki uygulamalar ve ekonomik çıkarımlar. Rev Sci Tech Int Epiz., 24-1:127-139.
  • Bülbül B, Dursun Ş, Kırbaş M et al. (2010). Düvelerde embriyo transferi öncesi flunixin meglumin uygulamasının gebelik oranı üzerine etkisi. Kafkas Univ Vet Fak Derg., 16(1):105-109.
  • Abdoon ASS (2005). Factors affecting In vitro production of bovine embryos. Erişim adresi: http://esarf2.tripod.com/abdoon.html. Erişim tarihi: 12.05.2023.
  • Viana J (2019). Statistics of embryo production and transfer in domestic farm animals. Embryo Technology Newsletter, 36(4):17.
  • Saleh WM (2017). Assessment of different methods of bovine oocytes collection, maturation and Invitro fertilization of abattoir specimens. Iraqi J Vet Sci., 31(1):55-65.
  • Satılmıs F (2019). The effects of different antioxidants (pentoxifylline and boric acid) on embryo development and quality supplement in vitro bovine embryo culture mediums. Ph.D. Thesis, Selcuk University Health Sciences Institute, Konya.
  • Gordon I (2003). Laboratory production of cattle embryos, Vol. 27. Cabi.
  • Pool TB, Atiee SH, Martin JE (1998). Oocyte and embryo culture: basic concepts and recent advances. Infertil Reprod Med Clin N Am., 9:181-204.
  • Feugang JM, Camargo-Rodríguez O, Memili E (2009). Culture systems for bovine embryos. Livest Sci., 121(2-3):141-149.
  • Blanco MR, Demyda S, Moreno Millán M et al. (2011). Developmental competence of in vivo and in vitro matured oocytes: a review. Biotechnol Mol Biol Rev., 6(7):155-165.
  • Rizos D, Ward F, Duffy PAT et al. (2002). Con sequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev., 61(2):234-248.
  • Krisher RL, Lane M, Bavister BD (1999). Developmental competence and metabolism of bovine embryos cultures in semi-defined and defined culture media. Biol Reprod., 60:1345-1352.
  • Lonergan P, Fair T, Corcoran D et al. (2006). Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology, 65:137-152.
  • Wrenzycki C (2018). In vitro culture systems: how far are we from optimal conditions? Ani Reprod., 13(3):279-282.
  • Akyol N, Sulu N (2005). Östrustaki inek serumu ve fötal buzağı serumunun in vitro embriyo elde edilmesine etkisi. Lalahan Hay Araş Enst Derg., 45(1):1-8.
  • Piletz JE, Drivon J, Eisenga J et al. (2018). Human cells grown with or without substitutes for fetal bovine serum. Cell Medicine,10:1-11.
  • Verma A, Verma M, Singh A (2020). Animal tissue culture principles and applications. In: Anim Biotechnol., 269–293.
  • Bavister BD (1995). Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update., 1:91-148.
  • Camargo LSA, Sá WF, Ferreira AM et al. (2002). Taurina no desenvolvimento de embriões bovinos fecundados in vitro. Arq Bras Med Vet Zoot., 54:396-404.
  • Chauhan MS, Palta P, Das SK et al. (1997). Replacement of serum and hormone additives with follicular fluid in the IVM medium: Effects on maturation, fertilization and subsequent development of buffalo oocytes in vitro. Theriogenology, 48:461-469.
  • Chauhan MS, Singla SK, Palta P (1998). In vitro maturation and fertilization, and subsequent development of buffalo (Bubalus Bubalis) embryos: effects of oocytes quality and type of serum. Reprod Fertil Dev., 10:173-177.
  • Gardner DK (2008). Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev., 20, 9-18.
  • Gruber I, Klein M (2011). Embryo culture media for human IVF: which possibilities exist? J Turkish German Gynecological Assoc., 12(2):110-117.
  • Lane M, Gardner DK (1994). Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. Reprod., 102(2):305-312.
  • Keskintepe L (1995). Production of viable bovine blastocysts in defined in vitro conditions. Biol Reprod., 52(6):1410-1417.
  • Pujol M, López-Béjar M, Paramio MT (2004). Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology, 61(4):735-744.
  • Vanroose G, Van Soom A, de Kruif A (2001). From co-culture to defined medium: state of the art and practical considerations. Reprod Domest Anim., 36:25-28.
  • Waldrop JG, Stringfellow DA, Riddell KP et al. (2004). Different strains of noncytopathic bovine viral diarrhea virus (BVDV) vary in their affinity for in vivo-derived bovine embryos. Theriogenology, 62(1-2):45-55.
  • Leese HJ, Baumann CG, Brison DR et al. (2008). Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod.,14:667–672.
  • Monaco E, De Rosa A, Attanasio l et al. (2006). In vitro culture of buffalo (Bubalus bubalis) embryos in the presence or absence of glucose. Reprod Dom Anim., 41(4):332.
  • Guerin P (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update, 7(2):175-189.
  • Alkan KK, Satilmis F, Sonmez G et al. (2024). Putrescine Supplementation Improves the Developmental Competence of In Vitro Produced Bovine Embryos. Theriogenology, 231(1):133-143.
  • Bucak MN, Satılmıs HK (2010). Sığır embriyolarının in vitro gelişiminde kültür medyumlarına katılan antioksidanların etkisi. Kafkas Univ Vet Fak Derg., 16(1):69-74.
  • Raty M, Ketoja E, Pitkänen T et al. (2011). In vitro maturation supplements affect developmental competence of bovine cumulus–oocyte complexes and embryo quality after vitrification. Cryobiology, 63(3):245-255.
  • Satilmis F (2022). Bovine In Vitro Embryo Production (IVEP). In: Abbas RZ, Khan A, Liu P and Saleemi MK (eds). Animal Health Perspectives, Unique Scientific Publishers, Faisalabad, Pakistan, Vol. I, 187-193.
  • Truong TT, Soh YM, Gardner DK (2016). Antioxidants improve mouse preimplantation embryo development and viability. Hum Reprod., 31(7):1445-1454.
  • Gasparrini B, Neglia G, Di Palo R (2000). Effect of cysteamine during in vitro maturation on buffalo embryo development. Theriogenology, 54(9):1537-1542.
  • Wang X, Falcone T, Attaran M et al. (2002). Vitamin C and vitamin E supplementation reduce oxidative stress–induced embryo toxicity and improve the blastocyst development rate. Fertility and Sterility, 78(6):1272–1277.
  • Wrenzycki C, Herrmann D, Keskintepe L et al. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum Reprod., 16:893-890.
  • Wrenzycki C, Herrmann D, Lucas-Hahn A et al. (2005). Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod Fertil Dev., 17(2):23-35.
  • Aguila L, Treulen F, Therrien J et al. (2020). Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals, 10(12):2196.
  • Young LE, Sinclair KD, Wilmut I (1998). Large offspring syndrome in cattle and sheep. Rev Reprod., 3:15.
  • Lazzari G, Wrenzycki C, Herrmann D et al. (2002). Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod., 67:767-775.
  • Wale PL, Gardner DK (2016). The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod., 22(1):2-22.
  • Baltz JM (2012). Media composition: salts and osmolality. Methods Mol Biol., 912:61-80.
  • Leese HJ (2012). Metabolism of the preimplantation embryo: 40 years on. Reprod., 143:417-427.
  • Hughes PM, Morbeck DE, Hudson SB et al. (2010). Peroxides in mineral oil used for in vitro fertilization: defining limits of standard quality control assays. J Assist Reprod Gen., 27(2-3):87-92.
  • Ebrahimi M, Mara L, Parham A et al. (2022). Mineral Oil for in vitro Embryo Production: What We Should Know? Arch Razi Inst., 77(4):1325-1330.
  • Blaschka C, Diers S, Aravina M et al. (2021). Evaluation of a small volume oil-free in vitro production system for bovine embryos. Vet Med Sci., 7(3):868-875.
  • Van Soom A, Mahmoudzadeh AR, Christophe A et al. (2001). Silicone oil used in microdrop culture can affect bovine embryonic development and freezability. Reprod Domest Anim., 36(3-4):169-176.
  • Swain JE (2015). Optimal human embryo culture. In Seminars in reproductive medicine, 33(2):103-117.
  • Zhang JQ, Li XL, Peng Y et al. (2010). Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod Biomed Online, 20(4):510-515.
  • Thomas T (2012). Culture systems: air quality. Methods Mol Biol., 912:313-324.
  • Merton JS, Vermeulen ZL, Otter T et al. (2007). Carbon-activated gas filtration during in vitro culture increased pregnancy rate following transfer of in vitro-produced bovine embryos. Theriogenology, 67(7):1233-1238.
  • Khoudja RY, Xu Y, Li T et al. (2013). Better IVF outcomes following improvements in laboratory air quality. J Assist Reprod Gen., 30(1):69-76.
  • Inamdar A, Moore J, Cohen R et al. (2012). A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells. Mycopathologia, 173:13–20.
  • Smith GD, Takayama S, Swain JE (2012). Rethinking in vitro embryo culture: new developments in culture platforms and potential to improve assisted reproductive technologies. Biol Reprod., 86(3):62-71.
  • Wolff HS, Fredrickson JR, Walker DL et al. (2013). Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum Reprod., 28(7):1776-1782.
  • Lane M, Lyons EA, Bavister BD (2000). Cryopreservation reduces the ability of hamster 2-cell embryos to regulate intracellular pH. Hum Reprod., 15(2):389-394.
  • Squirrell JM, Lane M, Bavister BD (2001). Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod., 64(6):1845-1854.
  • Group Cairo Consensus (2020). There is only one thing that is truly important in an IVF laboratory: Everything’ Cairo Consensus Guidelines on IVF Culture Conditions. Reprod Biomed Online, 40:33-60.
  • Agarwal A, Maldonado Rosas I, Anagnostopoulou C et al. (2022). Oxidative stress and assisted reproduction: a comprehensive review of its pathophysiological role and strategies for optimizing embryo culture environment. Antioxidants, 11(3):477.
  • Armstrong S, Bhide P, Jordan V et al. (2019). Time-lapse systems for embryo incubation andassessment in assisted reproduction. Cochrane Database Syst Rev 5, Cd011320.
  • Chi HJ, Park JS, Yoo CS et al. (2020). Effect of evaporationinduced osmotic changes in culture media in a dry-type incubator on clinical outcomes in in vitro fertilization-embryo transfer cycles. Clin Exp Reprod Med., 47:284–292.
  • Nakayama T, Noda Y, Goto Y et al. (1994). Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology, 41:499-510.

Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler

Year 2025, Volume: 18 Issue: 1, 71 - 78, 30.06.2025
https://doi.org/10.47027/duvetfd.1577834

Abstract

Son yıllarda yapılan çalışmalarda, sığır embriyolarının in vitro üretimi önemli ölçüde geliştirilmiştir. Ancak, yapılan çalışmalar, in vitro üretimde embriyoların birçok mikro ortama uyum sağlaması gerektiği için sonuçların in vivo embriyo üretim başarısına göre daha düşük olduğunu göstermektedir. Ayrıca in vitro embriyo üretiminde bulunulan sıvıların taklit edilmesi ve ortamların stabilizasyonunda da ciddi problemler yaşanmaktadır. Bu nedenle embriyoların üretilmesi sırasında laboratuvar ortamının stabilizasyonunu sağlamak ve başarıyı artırmak için, in vitro kültür ortamını etkileyen çevresel faktörlerin (ısı, ışık, osmolarite, nem, inkübatör, uçucu organikler, gaz fazı, kültür ortamı, yağ kaplaması, tercih edilen plastik materyaller vb) etkisi unutulmamalıdır. Sunulan bu derlemede, in vitro embriyo üretiminin en önemli basamaklarından biri olan in vitro kültür aşamasını etkileyen çevresel faktörlerin öneminin açıklanması amaçlanmaktadır.

References

  • Seidel GE (2007). New technologies for reproduction in cattle. In: Proceedings, applied reproductive strategies in beef cattle, Billings, Montana.
  • Gadisa M, Furgasa W, Duguma M (2019). Review on embryo transfer and It’s application in animal production. AJMS,1(1):4-12.
  • Alkan H, Tekindal MA, Demirel MA et al. (2024). Effect of strategies to increase progesterone levels on fertility of bovine embryo transfer recipients-A meta-analysis. Theriogenology, 215:177-186.
  • Günlü A, İmik H, Tekerli M (2001). Afyon ili süt sığırcılık işletmelerinin genel özellikleri ile karlılık ve verimlilik analizleri. Lalahan Hay Araş Enst Derg., 41(1):1-12.
  • Madan ML (2005). Hayvan biyoteknolojisi: gelişmekte olan ülkelerdeki uygulamalar ve ekonomik çıkarımlar. Rev Sci Tech Int Epiz., 24-1:127-139.
  • Bülbül B, Dursun Ş, Kırbaş M et al. (2010). Düvelerde embriyo transferi öncesi flunixin meglumin uygulamasının gebelik oranı üzerine etkisi. Kafkas Univ Vet Fak Derg., 16(1):105-109.
  • Abdoon ASS (2005). Factors affecting In vitro production of bovine embryos. Erişim adresi: http://esarf2.tripod.com/abdoon.html. Erişim tarihi: 12.05.2023.
  • Viana J (2019). Statistics of embryo production and transfer in domestic farm animals. Embryo Technology Newsletter, 36(4):17.
  • Saleh WM (2017). Assessment of different methods of bovine oocytes collection, maturation and Invitro fertilization of abattoir specimens. Iraqi J Vet Sci., 31(1):55-65.
  • Satılmıs F (2019). The effects of different antioxidants (pentoxifylline and boric acid) on embryo development and quality supplement in vitro bovine embryo culture mediums. Ph.D. Thesis, Selcuk University Health Sciences Institute, Konya.
  • Gordon I (2003). Laboratory production of cattle embryos, Vol. 27. Cabi.
  • Pool TB, Atiee SH, Martin JE (1998). Oocyte and embryo culture: basic concepts and recent advances. Infertil Reprod Med Clin N Am., 9:181-204.
  • Feugang JM, Camargo-Rodríguez O, Memili E (2009). Culture systems for bovine embryos. Livest Sci., 121(2-3):141-149.
  • Blanco MR, Demyda S, Moreno Millán M et al. (2011). Developmental competence of in vivo and in vitro matured oocytes: a review. Biotechnol Mol Biol Rev., 6(7):155-165.
  • Rizos D, Ward F, Duffy PAT et al. (2002). Con sequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev., 61(2):234-248.
  • Krisher RL, Lane M, Bavister BD (1999). Developmental competence and metabolism of bovine embryos cultures in semi-defined and defined culture media. Biol Reprod., 60:1345-1352.
  • Lonergan P, Fair T, Corcoran D et al. (2006). Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology, 65:137-152.
  • Wrenzycki C (2018). In vitro culture systems: how far are we from optimal conditions? Ani Reprod., 13(3):279-282.
  • Akyol N, Sulu N (2005). Östrustaki inek serumu ve fötal buzağı serumunun in vitro embriyo elde edilmesine etkisi. Lalahan Hay Araş Enst Derg., 45(1):1-8.
  • Piletz JE, Drivon J, Eisenga J et al. (2018). Human cells grown with or without substitutes for fetal bovine serum. Cell Medicine,10:1-11.
  • Verma A, Verma M, Singh A (2020). Animal tissue culture principles and applications. In: Anim Biotechnol., 269–293.
  • Bavister BD (1995). Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update., 1:91-148.
  • Camargo LSA, Sá WF, Ferreira AM et al. (2002). Taurina no desenvolvimento de embriões bovinos fecundados in vitro. Arq Bras Med Vet Zoot., 54:396-404.
  • Chauhan MS, Palta P, Das SK et al. (1997). Replacement of serum and hormone additives with follicular fluid in the IVM medium: Effects on maturation, fertilization and subsequent development of buffalo oocytes in vitro. Theriogenology, 48:461-469.
  • Chauhan MS, Singla SK, Palta P (1998). In vitro maturation and fertilization, and subsequent development of buffalo (Bubalus Bubalis) embryos: effects of oocytes quality and type of serum. Reprod Fertil Dev., 10:173-177.
  • Gardner DK (2008). Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev., 20, 9-18.
  • Gruber I, Klein M (2011). Embryo culture media for human IVF: which possibilities exist? J Turkish German Gynecological Assoc., 12(2):110-117.
  • Lane M, Gardner DK (1994). Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. Reprod., 102(2):305-312.
  • Keskintepe L (1995). Production of viable bovine blastocysts in defined in vitro conditions. Biol Reprod., 52(6):1410-1417.
  • Pujol M, López-Béjar M, Paramio MT (2004). Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology, 61(4):735-744.
  • Vanroose G, Van Soom A, de Kruif A (2001). From co-culture to defined medium: state of the art and practical considerations. Reprod Domest Anim., 36:25-28.
  • Waldrop JG, Stringfellow DA, Riddell KP et al. (2004). Different strains of noncytopathic bovine viral diarrhea virus (BVDV) vary in their affinity for in vivo-derived bovine embryos. Theriogenology, 62(1-2):45-55.
  • Leese HJ, Baumann CG, Brison DR et al. (2008). Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod.,14:667–672.
  • Monaco E, De Rosa A, Attanasio l et al. (2006). In vitro culture of buffalo (Bubalus bubalis) embryos in the presence or absence of glucose. Reprod Dom Anim., 41(4):332.
  • Guerin P (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update, 7(2):175-189.
  • Alkan KK, Satilmis F, Sonmez G et al. (2024). Putrescine Supplementation Improves the Developmental Competence of In Vitro Produced Bovine Embryos. Theriogenology, 231(1):133-143.
  • Bucak MN, Satılmıs HK (2010). Sığır embriyolarının in vitro gelişiminde kültür medyumlarına katılan antioksidanların etkisi. Kafkas Univ Vet Fak Derg., 16(1):69-74.
  • Raty M, Ketoja E, Pitkänen T et al. (2011). In vitro maturation supplements affect developmental competence of bovine cumulus–oocyte complexes and embryo quality after vitrification. Cryobiology, 63(3):245-255.
  • Satilmis F (2022). Bovine In Vitro Embryo Production (IVEP). In: Abbas RZ, Khan A, Liu P and Saleemi MK (eds). Animal Health Perspectives, Unique Scientific Publishers, Faisalabad, Pakistan, Vol. I, 187-193.
  • Truong TT, Soh YM, Gardner DK (2016). Antioxidants improve mouse preimplantation embryo development and viability. Hum Reprod., 31(7):1445-1454.
  • Gasparrini B, Neglia G, Di Palo R (2000). Effect of cysteamine during in vitro maturation on buffalo embryo development. Theriogenology, 54(9):1537-1542.
  • Wang X, Falcone T, Attaran M et al. (2002). Vitamin C and vitamin E supplementation reduce oxidative stress–induced embryo toxicity and improve the blastocyst development rate. Fertility and Sterility, 78(6):1272–1277.
  • Wrenzycki C, Herrmann D, Keskintepe L et al. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum Reprod., 16:893-890.
  • Wrenzycki C, Herrmann D, Lucas-Hahn A et al. (2005). Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod Fertil Dev., 17(2):23-35.
  • Aguila L, Treulen F, Therrien J et al. (2020). Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals, 10(12):2196.
  • Young LE, Sinclair KD, Wilmut I (1998). Large offspring syndrome in cattle and sheep. Rev Reprod., 3:15.
  • Lazzari G, Wrenzycki C, Herrmann D et al. (2002). Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod., 67:767-775.
  • Wale PL, Gardner DK (2016). The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod., 22(1):2-22.
  • Baltz JM (2012). Media composition: salts and osmolality. Methods Mol Biol., 912:61-80.
  • Leese HJ (2012). Metabolism of the preimplantation embryo: 40 years on. Reprod., 143:417-427.
  • Hughes PM, Morbeck DE, Hudson SB et al. (2010). Peroxides in mineral oil used for in vitro fertilization: defining limits of standard quality control assays. J Assist Reprod Gen., 27(2-3):87-92.
  • Ebrahimi M, Mara L, Parham A et al. (2022). Mineral Oil for in vitro Embryo Production: What We Should Know? Arch Razi Inst., 77(4):1325-1330.
  • Blaschka C, Diers S, Aravina M et al. (2021). Evaluation of a small volume oil-free in vitro production system for bovine embryos. Vet Med Sci., 7(3):868-875.
  • Van Soom A, Mahmoudzadeh AR, Christophe A et al. (2001). Silicone oil used in microdrop culture can affect bovine embryonic development and freezability. Reprod Domest Anim., 36(3-4):169-176.
  • Swain JE (2015). Optimal human embryo culture. In Seminars in reproductive medicine, 33(2):103-117.
  • Zhang JQ, Li XL, Peng Y et al. (2010). Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod Biomed Online, 20(4):510-515.
  • Thomas T (2012). Culture systems: air quality. Methods Mol Biol., 912:313-324.
  • Merton JS, Vermeulen ZL, Otter T et al. (2007). Carbon-activated gas filtration during in vitro culture increased pregnancy rate following transfer of in vitro-produced bovine embryos. Theriogenology, 67(7):1233-1238.
  • Khoudja RY, Xu Y, Li T et al. (2013). Better IVF outcomes following improvements in laboratory air quality. J Assist Reprod Gen., 30(1):69-76.
  • Inamdar A, Moore J, Cohen R et al. (2012). A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells. Mycopathologia, 173:13–20.
  • Smith GD, Takayama S, Swain JE (2012). Rethinking in vitro embryo culture: new developments in culture platforms and potential to improve assisted reproductive technologies. Biol Reprod., 86(3):62-71.
  • Wolff HS, Fredrickson JR, Walker DL et al. (2013). Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum Reprod., 28(7):1776-1782.
  • Lane M, Lyons EA, Bavister BD (2000). Cryopreservation reduces the ability of hamster 2-cell embryos to regulate intracellular pH. Hum Reprod., 15(2):389-394.
  • Squirrell JM, Lane M, Bavister BD (2001). Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod., 64(6):1845-1854.
  • Group Cairo Consensus (2020). There is only one thing that is truly important in an IVF laboratory: Everything’ Cairo Consensus Guidelines on IVF Culture Conditions. Reprod Biomed Online, 40:33-60.
  • Agarwal A, Maldonado Rosas I, Anagnostopoulou C et al. (2022). Oxidative stress and assisted reproduction: a comprehensive review of its pathophysiological role and strategies for optimizing embryo culture environment. Antioxidants, 11(3):477.
  • Armstrong S, Bhide P, Jordan V et al. (2019). Time-lapse systems for embryo incubation andassessment in assisted reproduction. Cochrane Database Syst Rev 5, Cd011320.
  • Chi HJ, Park JS, Yoo CS et al. (2020). Effect of evaporationinduced osmotic changes in culture media in a dry-type incubator on clinical outcomes in in vitro fertilization-embryo transfer cycles. Clin Exp Reprod Med., 47:284–292.
  • Nakayama T, Noda Y, Goto Y et al. (1994). Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology, 41:499-510.
There are 69 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Obstetrics and Gynecology
Journal Section Review
Authors

Ayşe Sapci 0009-0009-6739-4466

Yunus Emre Deniz 0009-0005-9847-3061

Fatma Satılmış 0000-0002-9877-8405

Publication Date June 30, 2025
Submission Date November 1, 2024
Acceptance Date March 6, 2025
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

APA Sapci, A., Deniz, Y. E., & Satılmış, F. (2025). Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 18(1), 71-78. https://doi.org/10.47027/duvetfd.1577834
AMA Sapci A, Deniz YE, Satılmış F. Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler. Dicle Üniv Vet Fak Derg. June 2025;18(1):71-78. doi:10.47027/duvetfd.1577834
Chicago Sapci, Ayşe, Yunus Emre Deniz, and Fatma Satılmış. “Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 18, no. 1 (June 2025): 71-78. https://doi.org/10.47027/duvetfd.1577834.
EndNote Sapci A, Deniz YE, Satılmış F (June 1, 2025) Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler. Dicle Üniversitesi Veteriner Fakültesi Dergisi 18 1 71–78.
IEEE A. Sapci, Y. E. Deniz, and F. Satılmış, “Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler”, Dicle Üniv Vet Fak Derg, vol. 18, no. 1, pp. 71–78, 2025, doi: 10.47027/duvetfd.1577834.
ISNAD Sapci, Ayşe et al. “Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 18/1 (June 2025), 71-78. https://doi.org/10.47027/duvetfd.1577834.
JAMA Sapci A, Deniz YE, Satılmış F. Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler. Dicle Üniv Vet Fak Derg. 2025;18:71–78.
MLA Sapci, Ayşe et al. “Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, vol. 18, no. 1, 2025, pp. 71-78, doi:10.47027/duvetfd.1577834.
Vancouver Sapci A, Deniz YE, Satılmış F. Sığırlarda İn Vitro Kültürü Etkileyen Çevresel Faktörler. Dicle Üniv Vet Fak Derg. 2025;18(1):71-8.