Research Article
BibTex RIS Cite
Year 2021, Volume: 1 Issue: 1, 1 - 5, 31.03.2021
https://doi.org/10.29228/sciperspective.48525

Abstract

References

  • Alif, A., & Boule, P. (1991). Photochemistry and envi-ronment Part XIV. Phototransformation of nitrophenols induced by excitation of nitrite and nitrate ions. Journal of Photochemistry and Photobiology A: Chemistry, 59(3), 357-367.
  • Takahashi, N., Nakai, T., Satoh, Y., & Katoh, Y. (1994). Variation of biodegradability of nitrogenous organic compounds by ozonation. Water Research, 28(7), 1563-1570.
  • U.S. Environmental Protection Agency, Health and Envi-ronmental Effects, Ambient Water Quality Criteria for Ni-trophenols. EPA 440/5-80-063, Washington, DC (1980).
  • Roldan, M. D., Blasco, R., Caballero, F. J., & Castillo, F. (1997). Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Archives of microbi-ology, 169(1), 36-42.
  • Niazi, A., & Yazdanipour, A. (2007). Spectrophotometric simultaneous determination of nitrophenol isomers by or-thogonal signal correction and partial least squares. Jour-nal of hazardous materials, 146(1-2), 421-427.
  • Zhang, W., Wilson, C. R., & Danielson, N. D. (2008). Indi-rect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate. Talanta, 74(5), 1400-1407.
  • Padilla-Sánchez, J. A., Plaza-Bolaños, P., Romero-González, R., Garrido-Frenich, A., & Vidal, J. L. M. (2010). Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous ex-traction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chro-matography–triple quadrupole-mass spectrometry/mass spectrometry. Journal of Chromatography A, 1217(36), 5724-5731.
  • Guo, X., Wang, Z., & Zhou, S. (2004). The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta, 64(1), 135-139.
  • Hofmann, D., Hartmann, F., & Herrmann, H. (2008). Anal-ysis of nitrophenols in cloud water with a miniaturized light-phase rotary perforator and HPLC-MS. Analytical and bioanalytical chemistry, 391(1), 161-169.
  • Liu, J., Chen, Y., Guo, Y., Yang, F., & Cheng, F. (2013). Electrochemical sensor for o-nitrophenol based on β-cyclodextrin functionalized graphene nanosheets. Journal of Nanomaterials, 2013.
  • Luo, L. Q., Zou, X. L., Ding, Y. P., & Wu, Q. S. (2008). De-rivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors and Actuators B: Chemical, 135(1), 61-65.
  • Baysal, G., Uzun, D., & Hasdemir, E. (2020). The fabrica-tion of a new modified pencil graphite electrode for the electrocatalytic reduction of 2-nitrophenol in water sam-ples. Journal of Electroanalytical Chemistry, 860, 113893.
  • Uzun, D., Gündüzalp, A. B., & Hasdemir, E. (2015). Selec-tive determination of dopamine in the presence of uric ac-id and ascorbic acid by N, N′-bis (indole-3-carboxaldimine)-1, 2-diaminocyclohexane thin film mod-ified glassy carbon electrode by differential pulse volt-ammetry. Journal of Electroanalytical Chemistry, 747, 68-76.
  • Calam, T. T., & Uzun, D. (2019). Rapid and Selective De-termination of Vanillin in the Presence of Caffeine, its Electrochemical Behavior on an Au Electrode Electropol-ymerized with 3‐amino‐1, 2, 4‐triazole‐5‐thiol. Electroanalysis, 31(12), 2347-2358.
  • Tabanlıgil Calam, T. Elektropolimerize 3, 5-Diamino-1, 2, 4-triazol Film ile Modifiye Edilmiş Altın Elektrot Yüzey-inde Epinefrinin Voltammetrik Tayini ve Elektrokimyasal Davranışı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7(4), 985-998.
  • Brycht, M., Özmen, T., Burnat, B., Kaczmarska, K., Leniart, A., Taştekin, M., ... & Skrzypek, S. (2016). Voltammetric behavior, quantitative determination, and corrosion in-vestigation of herbicide bromacil. Journal of Electroana-lytical Chemistry, 770, 6-13.
  • Tabanlıgil Calam, T. (2019). Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples. International Journal of Environmental Analytical Chemistry, 99(13), 1298-1312.
  • Purushothama, H. T., Nayaka, Y. A., Vinay, M. M., Manjunatha, P., Yathisha, R. O., & Basavarajappa, K. V. (2018). Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorproma-zine. Journal of Science: Advanced Materials and Devic-es, 3(2), 161-166.
  • Barsan, M. M., Pinto, E. M., & Brett, C. M. (2008). Elec-trosynthesis and electrochemical characterisation of phenazine polymers for application in biosen-sors. Electrochimica Acta, 53(11), 3973-3982.
  • Capelari, T. B., Pereira, A. C., Gonçalves de Oliveira, L. L., & Teixeira Tarley, C. R. (2019). Sensitive simultaneous determination of o-nitrophenol and p-nitrophenol in wa-ter by surfactant-mediated differential pulse voltamme-try. Analytical Letters, 52(9), 1462-1476.
  • Birhanzlová-Rumlová, T., Barek, J., Fischer, J., & Vyskočil, V. (2020). Anodic differential pulse voltammet-ric determination of 2-nitrophenol at a non-traditional carbon film composite electrode. Journal of Electroana-lytical Chemistry, 877, 114510.
  • Rodríguez, I. N., Leyva, J. A. M., Hidalgo, J., & de Cisne-ros, H. (1997). Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse voltammetry. Analytica chimica ac-ta, 344(3), 167-173.
  • Birhanzlová-Rumlová, T., Barek, J., Fischer, J., & Vyskočil, V. (2020). Anodic differential pulse voltammet-ric determination of 2-nitrophenol at a non-traditional carbon film composite electrode. Journal of Electroana-lytical Chemistry, 877, 114510.

Electrochemical Behavior and Voltammetric Determination of 2-Nitrophenol on Glassy Carbon Electrode Surface Modified with 1-Amino-2-Naphthol-4-Sulphonic Acid

Year 2021, Volume: 1 Issue: 1, 1 - 5, 31.03.2021
https://doi.org/10.29228/sciperspective.48525

Abstract

2NP is among the priority pollutants for the environmental ecosystem and poses a threat to the health of living things by mixing in wastewater. Therefore, the 2NP determination is important. In this study, the glassy carbon (GC) electrode surface was modified with 1-amino-2-naphthol-4-sulfonic acid (ANSA). The electrochemical behavior and voltammetric determination of 2-nitrophenol (2NP) on the modified surface (ANSA-GC) was performed. Firstly, it was decided that the supporting electrolyte medium suitable for 2NP determination was Britton-Robinson (BR) buffer and the effect of pH change on the reduction peak of 2NP in this environment was investigated. The effect of changing scan rate on the reduction peak of 2NP was examined and this study showed that the reduction process of 2NP on the ANSA-GC modified electrode surface was diffusion controlled process. For 2NP determination,two linear working ranges with two different slopes, 1.19×10-6-1.66×10-4 M and 1.66×10-4-1.14×10-3 M were obtained. LOD and LOQ values were calculated as 0.29 µM and 0.97 µM, respectively. Finally, lake water was used as the real sample, and 2NP was determined in this lake water. The experimental results showed that it can be used with a high accuracy and precision in the determination of 2NP with ANSA-GC modified electrode.

References

  • Alif, A., & Boule, P. (1991). Photochemistry and envi-ronment Part XIV. Phototransformation of nitrophenols induced by excitation of nitrite and nitrate ions. Journal of Photochemistry and Photobiology A: Chemistry, 59(3), 357-367.
  • Takahashi, N., Nakai, T., Satoh, Y., & Katoh, Y. (1994). Variation of biodegradability of nitrogenous organic compounds by ozonation. Water Research, 28(7), 1563-1570.
  • U.S. Environmental Protection Agency, Health and Envi-ronmental Effects, Ambient Water Quality Criteria for Ni-trophenols. EPA 440/5-80-063, Washington, DC (1980).
  • Roldan, M. D., Blasco, R., Caballero, F. J., & Castillo, F. (1997). Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Archives of microbi-ology, 169(1), 36-42.
  • Niazi, A., & Yazdanipour, A. (2007). Spectrophotometric simultaneous determination of nitrophenol isomers by or-thogonal signal correction and partial least squares. Jour-nal of hazardous materials, 146(1-2), 421-427.
  • Zhang, W., Wilson, C. R., & Danielson, N. D. (2008). Indi-rect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate. Talanta, 74(5), 1400-1407.
  • Padilla-Sánchez, J. A., Plaza-Bolaños, P., Romero-González, R., Garrido-Frenich, A., & Vidal, J. L. M. (2010). Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous ex-traction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chro-matography–triple quadrupole-mass spectrometry/mass spectrometry. Journal of Chromatography A, 1217(36), 5724-5731.
  • Guo, X., Wang, Z., & Zhou, S. (2004). The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta, 64(1), 135-139.
  • Hofmann, D., Hartmann, F., & Herrmann, H. (2008). Anal-ysis of nitrophenols in cloud water with a miniaturized light-phase rotary perforator and HPLC-MS. Analytical and bioanalytical chemistry, 391(1), 161-169.
  • Liu, J., Chen, Y., Guo, Y., Yang, F., & Cheng, F. (2013). Electrochemical sensor for o-nitrophenol based on β-cyclodextrin functionalized graphene nanosheets. Journal of Nanomaterials, 2013.
  • Luo, L. Q., Zou, X. L., Ding, Y. P., & Wu, Q. S. (2008). De-rivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors and Actuators B: Chemical, 135(1), 61-65.
  • Baysal, G., Uzun, D., & Hasdemir, E. (2020). The fabrica-tion of a new modified pencil graphite electrode for the electrocatalytic reduction of 2-nitrophenol in water sam-ples. Journal of Electroanalytical Chemistry, 860, 113893.
  • Uzun, D., Gündüzalp, A. B., & Hasdemir, E. (2015). Selec-tive determination of dopamine in the presence of uric ac-id and ascorbic acid by N, N′-bis (indole-3-carboxaldimine)-1, 2-diaminocyclohexane thin film mod-ified glassy carbon electrode by differential pulse volt-ammetry. Journal of Electroanalytical Chemistry, 747, 68-76.
  • Calam, T. T., & Uzun, D. (2019). Rapid and Selective De-termination of Vanillin in the Presence of Caffeine, its Electrochemical Behavior on an Au Electrode Electropol-ymerized with 3‐amino‐1, 2, 4‐triazole‐5‐thiol. Electroanalysis, 31(12), 2347-2358.
  • Tabanlıgil Calam, T. Elektropolimerize 3, 5-Diamino-1, 2, 4-triazol Film ile Modifiye Edilmiş Altın Elektrot Yüzey-inde Epinefrinin Voltammetrik Tayini ve Elektrokimyasal Davranışı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7(4), 985-998.
  • Brycht, M., Özmen, T., Burnat, B., Kaczmarska, K., Leniart, A., Taştekin, M., ... & Skrzypek, S. (2016). Voltammetric behavior, quantitative determination, and corrosion in-vestigation of herbicide bromacil. Journal of Electroana-lytical Chemistry, 770, 6-13.
  • Tabanlıgil Calam, T. (2019). Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples. International Journal of Environmental Analytical Chemistry, 99(13), 1298-1312.
  • Purushothama, H. T., Nayaka, Y. A., Vinay, M. M., Manjunatha, P., Yathisha, R. O., & Basavarajappa, K. V. (2018). Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorproma-zine. Journal of Science: Advanced Materials and Devic-es, 3(2), 161-166.
  • Barsan, M. M., Pinto, E. M., & Brett, C. M. (2008). Elec-trosynthesis and electrochemical characterisation of phenazine polymers for application in biosen-sors. Electrochimica Acta, 53(11), 3973-3982.
  • Capelari, T. B., Pereira, A. C., Gonçalves de Oliveira, L. L., & Teixeira Tarley, C. R. (2019). Sensitive simultaneous determination of o-nitrophenol and p-nitrophenol in wa-ter by surfactant-mediated differential pulse voltamme-try. Analytical Letters, 52(9), 1462-1476.
  • Birhanzlová-Rumlová, T., Barek, J., Fischer, J., & Vyskočil, V. (2020). Anodic differential pulse voltammet-ric determination of 2-nitrophenol at a non-traditional carbon film composite electrode. Journal of Electroana-lytical Chemistry, 877, 114510.
  • Rodríguez, I. N., Leyva, J. A. M., Hidalgo, J., & de Cisne-ros, H. (1997). Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse voltammetry. Analytica chimica ac-ta, 344(3), 167-173.
  • Birhanzlová-Rumlová, T., Barek, J., Fischer, J., & Vyskočil, V. (2020). Anodic differential pulse voltammet-ric determination of 2-nitrophenol at a non-traditional carbon film composite electrode. Journal of Electroana-lytical Chemistry, 877, 114510.
There are 23 citations in total.

Details

Primary Language English
Subjects Chemical Reaction
Journal Section Articles
Authors

Tuğba Tabanlıgil Calam 0000-0002-3712-7713

Publication Date March 31, 2021
Published in Issue Year 2021 Volume: 1 Issue: 1

Cite

APA Tabanlıgil Calam, T. (2021). Electrochemical Behavior and Voltammetric Determination of 2-Nitrophenol on Glassy Carbon Electrode Surface Modified with 1-Amino-2-Naphthol-4-Sulphonic Acid. Engineering Perspective, 1(1), 1-5. https://doi.org/10.29228/sciperspective.48525