Research Article
BibTex RIS Cite

Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi

Year 2025, Volume: 41 Issue: 1, 1 - 19, 30.04.2025

Abstract

Bu çalışmada R programlama dili içerisinde yer alan kütüphaneler kullanılarak makine öğrenmesi temelli bir web tabanlı yazılım geliştirilmiştir. Yazılım makine öğrenmesi algoritmalarından lineer regresyon analizine olanak tanırken aynı zamanda adsorbsiyon uygulamalarında sıklıkla kullanılan Pseudo first order ve Pseudo second order kinetik modelleri ile Freundlich, Langmuir ve Temkin izoterm modellerinin kullanımına izin vermektedir. Geliştirilen yazılımın ilk versiyonu olan Adsorb 1.0 içerisinde yazılımın testi için aktif karbon (AC) ile Crystal Violet (CV) boyasının sulu çözeltisinin kesikli adsorbsiyon testlerinin sonuçları kullanılmıştır. Ayrıca scanning electron microscope (SEM) ve energy dispersive X-ray (EDX) ve fourier dönüşümlü kızılötesi (FTIR) analizleri yapılarak adsorbsiyon prosesi desteklenmiştir. Kesikli adsorbsiyon testlerinde başlangıç pH’ının (2-10) başlangıç boya derişiminin (5,0-1000 mg/L), değişken adsorbent miktarının (12,5-2000 mg), temas süresinin (0-60 dk) ve sıcaklığın (25, 35 ve 45 0C) etkisi araştırılmıştır. Geliştirilen yazılımdan elde edilen sonuçlara göre AC üzerine CV boyasının gideriminde en uygun kinetik ve izoterm modeller sırasıyla Pseudo second order (R2:1) ve Langmuir olduğu tespit edilmiş, ayrıca birim AC başına giderilen CV boyası miktarı ise 223,73mgCV/gAC olarak hesaplanmıştır. Geliştirilen yazılım MS-Excel’deki karmaşık formüllerle yapılan hesapların ve birbirine bağlı köprüler arasındaki olası hataların ortadan kaldırılmasına sağlamıştır. Adsorb 1.0 yazılımına “https://iste.shinyapps.io/Adsorb/” adresinden üzerinden erişilebilmektedir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

TÜBİTAK 123Y087

Thanks

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 123Y087 Hibe Numarası ile desteklenmiştir. Yazarlar desteklerinden dolayı TÜBİTAK'a teşekkür ederler.

References

  • D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, L. Yang, Critical review of advanced oxidation processes in organic wastewater treatment, Chemosphere 275 (2021) 130104. https://doi.org/10.1016/j.chemosphere.2021.130104.
  • S. Tsani, P. Koundouri, E. Akinsete, Resource management and sustainable development: A review of the European water policies in accordance with the United Nations’ Sustainable Development Goals, Environ Sci Policy 114 (2020) 570–579. https://doi.org/10.1016/j.envsci.2020.09.008.
  • R. Riveros, Chemical treatment and reuse applications for latex paint industry wastewater, Desalination Water Treat 103 (2018) 290–295. https://doi.org/10.5004/dwt.2018.21932.
  • S. Nair K, B. Manu, A. Azhoni, Sustainable treatment of paint industry wastewater: Current techniques and challenges, J Environ Manage 296 (2021) 113105. https://doi.org/10.1016/j.jenvman.2021.113105.
  • A.K. Surela, L.K. Chhachhia, V.K. Surela, P.L. Meena, Polypyrrole-Based Composites for Dyes Removal From Contaminated Water, in: Reference Module in Materials Science and Materials Engineering, Elsevier, 2024. https://doi.org/10.1016/B978-0-323-95486-0.00019-3.
  • W. Konicki, M. Aleksandrzak, D. Moszyński, E. Mijowska, https://doi.org/10.1007/s13762-018-1728-5, J Colloid Interface Sci 496 (2017) 188–200. https://doi.org/10.1016/j.jcis.2017.02.031.
  • E.J.R. Almeida, C.R. Corso, Decolorization and removal of toxicity of textile azo dyes using fungal biomass pelletized, International Journal of Environmental Science and Technology 16 (2019) 1319–1328. https://doi.org/10.1007/s13762-018-1728-5.
  • J.N. Wekoye, W.C. Wanyonyi, P.T. Wangila, M.K. Tonui, Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder, Environmental Chemistry and Ecotoxicology 2 (2020) 24–31. https://doi.org/10.1016/j.enceco.2020.01.004.
  • A. Tkaczyk, K. Mitrowska, A. Posyniak, Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review, Science of The Total Environment 717 (2020) 137222. https://doi.org/10.1016/j.scitotenv.2020.137222.
  • Ş. Parlayıcı, E. Pehlivan, Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study, Int J Phytoremediation 23 (2021) 26–40. https://doi.org/10.1080/15226514.2020.1788502.
  • H.M. Solayman, Md.A. Hossen, A. Abd Aziz, N.Y. Yahya, K.H. Leong, L.C. Sim, M.U. Monir, K.-D. Zoh, Performance evaluation of dye wastewater treatment technologies: A review, J Environ Chem Eng 11 (2023) 109610. https://doi.org/10.1016/j.jece.2023.109610.
  • H.M. Ali, S.F. Shehata, K.M.A. Ramadan, Microbial decolorization and degradation of crystal violet dye by Aspergillus niger, International Journal of Environmental Science and Technology 13 (2016) 2917–2926. https://doi.org/10.1007/s13762-016-1117-x.
  • K. Vikrant, B.S. Giri, N. Raza, K. Roy, K.-H. Kim, B.N. Rai, R.S. Singh, Recent advancements in bioremediation of dye: Current status and challenges, Bioresour Technol 253 (2018) 355–367. https://doi.org/10.1016/j.biortech.2018.01.029.
  • B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnology Research and Innovation 3 (2019) 275–290. https://doi.org/10.1016/J.BIORI.2019.09.001.
  • S. Rahimi, A. Poormohammadi, B. Salmani, M. Ahmadian, M. Rezaei, Comparing the photocatalytic process efficiency using batch and tubular reactors in removal of methylene blue dye and COD from simulated textile wastewater, Journal of Water Reuse and Desalination 6 (2016) 574–582. https://doi.org/10.2166/wrd.2016.190.
  • V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: A review, J Environ Chem Eng 6 (2018) 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060.
  • H. Liu, J. Zhang, M. Lu, L. Liang, H. Zhang, J. Wei, Biosynthesis based membrane filtration coupled with iron nanoparticles reduction process in removal of dyes, Chemical Engineering Journal 387 (2020) 124202. https://doi.org/10.1016/j.cej.2020.124202.
  • E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl Catal B 166–167 (2015) 603–643. https://doi.org/10.1016/j.apcatb.2014.11.016.
  • J.M. Sánchez-Silva, A. Aguilar-Aguilar, G.J. Labrada-Delgado, E.G. Villabona-Leal, H.J. Ojeda-Galván, J.L. Sánchez-García, H. Collins-Martínez, MV. López-Ramón, R. Ocampo-Pérez, Hydrothermal synthesis of a photocatalyst based on Byrsonima crassifolia and TiO2 for degradation of crystal violet by UV and visible radiation, Environ Res 231 (2023) 116280. https://doi.org/10.1016/j.envres.2023.116280.
  • E. Hosseini Koupaie, M.R. Alavi Moghaddam, S.H. Hashemi, Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines, J Hazard Mater 195 (2011) 147–154. https://doi.org/10.1016/j.jhazmat.2011.08.017.
  • N.M. Marin, L.F. Pascu, A. Demba, M. Nita-Lazar, I.A. Badea, H.Y. Aboul-Enein, Removal of the Acid Orange 10 by ion exchange and microbiological methods, International Journal of Environmental Science and Technology 16 (2019) 6357–6366. https://doi.org/10.1007/s13762-018-2164-2.
  • S. Samsami, M. Mohamadizaniani, M.-H. Sarrafzadeh, E.R. Rene, M. Firoozbahr, Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives, Process Safety and Environmental Protection 143 (2020) 138–163. https://doi.org/10.1016/j.psep.2020.05.034.
  • A.K. Badawi, K. Zaher, Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation, Journal of Water Process Engineering 40 (2021) 101963. https://doi.org/10.1016/j.jwpe.2021.101963.
  • A. Marey, W.S. Gado, A.G. Soliman, A.M. Masoud, A.A. El-Zahhar, G.A.A.M. Al-Hazmi, M.H. Taha, A.M.A. El Naggar, Efficient removal of methylene blue dye from wastewater specimen using polystyrene coated nanoparticles of silica, Inorg Chem Commun 160 (2024) 112018. https://doi.org/10.1016/j.inoche.2024.112018.
  • J.-X. Jiang, Q.-Q. Zhang, Y.-H. Li, L. Li, Three-dimensional network graphene aerogel for enhancing adsorption and visible light photocatalysis of nitrogen-doped TiO2, Mater Lett 234 (2019) 298–301. https://doi.org/10.1016/j.matlet.2018.09.114.
  • R. Agarwala, L. Mulky, Adsorption of Dyes from Wastewater: A Comprehensive Review, ChemBioEng Reviews 10 (2023) 326–335. https://doi.org/10.1002/cben.202200011.
  • Amrutha, G. Jeppu, C.R. Girish, B. Prabhu, K. Mayer, Multi-component Adsorption Isotherms: Review and Modeling Studies, Environmental Processes 10 (2023) 38. https://doi.org/10.1007/s40710-023-00631-0.
  • K. Mohanty, J.T. Naidu, B.C. Meikap, M.N. Biswas, Removal of Crystal Violet from Wastewater by Activated Carbons Prepared from Rice Husk, Ind Eng Chem Res 45 (2006) 5165–5171. https://doi.org/10.1021/ie060257r.
  • S.K. Lagergren, About the theory of so-called adsorption of soluble substances, Sven. Vetenskapsakad. Handingarl 24 (1898) 1–39.
  • Y.S. Ho, D. Wase’, C.F. Forster, Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent, Water SA 22 (1996) 214–219.
  • H.M.F. Freundlich, Over the adsorption in solution , J. Phys. Chem. 57 (1906) 1100–1107.
  • J. Wang, X. Guo, Adsorption isotherm models: Classification, physical meaning, application and solving method, Chemosphere 258 (2020) 127279. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127279.
  • I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J Am Chem Soc 38 (1916) 2221–2295. https://doi.org/10.1021/JA02268A002/ASSET/JA02268A002.FP.PNG_V03.
  • K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal 156 (2010) 2–10. https://doi.org/10.1016/J.CEJ.2009.09.013.
  • M.I. Temkin, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim 12 (1940) 327–356.
  • E. Kaya, M. Agca, F. Adiguzel, M. Cetin, Spatial data analysis with R programming for environment, Human and Ecological Risk Assessment: An International Journal 25 (2019) 1521–1530. https://doi.org/10.1080/10807039.2018.1470896.
  • E. Kaya, E. Şentürk, A. Erener, C. Özkul, N.H. Akyol, SoilSpatvis: WEB Application for Geographical Data Visualization with R Language for Assessing Soil Pollution, Soil and Sediment Contamination: An International Journal (2023) 1–15. https://doi.org/10.1080/15320383.2023.2282108.
  • J.-F. Gao, Q. Zhang, K. Su, J.-H. Wang, Competitive biosorption of Yellow 2G and Reactive Brilliant Red K-2G onto inactive aerobic granules: Simultaneous determination of two dyes by first-order derivative spectrophotometry and isotherm studies, Bioresour Technol 101 (2010) 5793–5801. https://doi.org/10.1016/j.biortech.2010.02.091.
  • C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, T. Tavares, Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin, Chemical Engineering Journal 149 (2009) 319–324. https://doi.org/10.1016/j.cej.2008.11.025.
  • Y. Raji, A. Nadi, I. Mechnou, M. Saadouni, O. Cherkaoui, S. Zyade, High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study, Diam Relat Mater 135 (2023) 109834. https://doi.org/10.1016/j.diamond.2023.109834.
  • A.S. Yusuff, O.A. Ajayi, L.T. Popoola, Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter, Sci Afr 13 (2021) e00850. https://doi.org/10.1016/j.sciaf.2021.e00850.
  • Y. Raji, A. Nadi, I. Mechnou, M. Saadouni, O. Cherkaoui, S. Zyade, High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study, Diam Relat Mater 135 (2023) 109834. https://doi.org/10.1016/j.diamond.2023.109834.
  • S.A. Patil, P.D. Kumbhar, B.S. Satvekar, N.S. Harale, S.C. Bhise, S.K. Patil, A.S. Sartape, S.S. Kolekar, M.A. Anuse, Adsorption of toxic crystal violet dye from aqueous solution by using waste sugarcane leaf-based activated carbon: isotherm, kinetic and thermodynamic study, Journal of the Iranian Chemical Society 19 (2022) 2891–2906. https://doi.org/10.1007/s13738-022-02500-3.
  • N.A.M. Hanafi, A.S. Abdulhameed, A.H. Jawad, Z.A. ALOthman, T.A. Yousef, O.K. Al Duaij, N.S. Alsaiari, Optimized removal process and tailored adsorption mechanism of crystal violet and methylene blue dyes by activated carbon derived from mixed orange peel and watermelon rind using microwave-induced ZnCl2 activation, Biomass Convers Biorefin 14 (2024) 28415–28427. https://doi.org/10.1007/s13399-022-03646-z.
  • A.A. Kamath, N.G. Nayak, R. Sagar, Coconut flower sheath derived activated charcoal as efficient and cost effective adsorbent for crystal violet dye removal, Inorg Chem Commun 134 (2021) 109077. https://doi.org/10.1016/j.inoche.2021.109077.
  • A. Solmaz, Z.A. Sari, M. Karta, T. Turna, A. Yücel, T. Depci, Production and Characterization of Activated Carbon from Pomegranate Peel for Pharmaceutical Waste (Paracetamol) Removal: Response Surface Methodology Application, Water Air Soil Pollut 234 (2023) 645. https://doi.org/10.1007/s11270-023-06641-w.
  • A. Solmaz, M. Karta, T. Depci, T. Turna, Z.A. Sari, Preparation and characterization of activated carbons from Lemon Pulp for oxytetracycline removal, Environ Monit Assess 195 (2023) 797. https://doi.org/10.1007/s10661-023-11421-4.
  • M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, M. Sillanpää, Adsorption isotherm models: A comprehensive and systematic review (2010−2020), Science of The Total Environment 812 (2022) 151334. https://doi.org/10.1016/J.SCITOTENV.2021.151334.
  • N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and Interpretation of Adsorption Isotherms, J Chem 2017 (2017). https://doi.org/10.1155/2017/3039817.
  • G.K. Rajahmundry, C. Garlapati, P.S. Kumar, R.S. Alwi, D.V.N. Vo, Statistical analysis of adsorption isotherm models and its appropriate selection, Chemosphere 276 (2021) 130176. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130176.
  • Q. Ji, H. Li, High surface area activated carbon derived from chitin for efficient adsorption of Crystal Violet, Diam Relat Mater 118 (2021) 108516. https://doi.org/10.1016/j.diamond.2021.108516.
  • S.M. Yakout, M.S. Ali, Removal of the Hazardous Crystal Violet Dye by Adsorption on Corncob-Based and Phosphoric Acid-Activated Carbon, Particulate Science and Technology 33 (2015) 621–625. https://doi.org/10.1080/02726351.2015.1016642.
  • E.E. Jasper, V.O. Ajibola, J.C. Onwuka, Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon, Appl Water Sci 10 (2020) 132. https://doi.org/10.1007/s13201-020-01218-y.
  • I. Loulidi, M. Jabri, A. Amar, A. Kali, A. A. Alrashdi, C. Hadey, M. Ouchabi, P.S. Abdullah, H. Lgaz, Y. Cho, F. Boukhlifi, Comparative Study on Adsorption of Crystal Violet and Chromium (VI) by Activated Carbon Derived from Spent Coffee Grounds, Applied Sciences 13 (2023) 985. https://doi.org/10.3390/app13020985.

Developing Machine Learning Supported Web-Based Software for Adsorption Application and Testing it in Crystal Violet Dye Removal

Year 2025, Volume: 41 Issue: 1, 1 - 19, 30.04.2025

Abstract

In this study, a web-based software based on machine learning was developed using libraries in the R programming language. While the software allows linear regression analysis from machine learning algorithms, it also allows the use of Pseudo first order and Pseudo second order kinetic models and Freundlich, Langmuir and Temkin isotherm models, which are frequently used in adsorption applications. In Adsorb 1.0, the first version of the developed software, the results of batch adsorption tests of activated carbon (AC) and aqueous solution of Crystal Violet (CV) dye were used to test the software. Additionally, the adsorption process was supported by scanning electron microscope (SEM), energy dispersive X-ray (EDX) and Fourier Transform Infrared (FTIR) analyses. In batch adsorption tests, initial pH (2-10), initial dye concentration (5.0-1000 mg/L), variable adsorbent amount (12.5-2000 mg), contact time (0-60 min) and temperature (25 min). , 35 and 45 0C) effects were investigated. According to the results obtained from the developed software, the most suitable kinetic and isotherm models for the removal of CV dye on AC were determined to be Pseudo second order (R2:1) and Langmuir, respectively, and the amount of CV dye removed per unit AC was calculated as 223.73mgCV/gAC. The developed software enabled the elimination of calculations made with complex formulas in MS-Excel and possible errors between interconnected bridges. Adsorb 1.0 software can be accessed at “https://iste.shinyapps.io/Adsorb/”.

Project Number

TÜBİTAK 123Y087

References

  • D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, L. Yang, Critical review of advanced oxidation processes in organic wastewater treatment, Chemosphere 275 (2021) 130104. https://doi.org/10.1016/j.chemosphere.2021.130104.
  • S. Tsani, P. Koundouri, E. Akinsete, Resource management and sustainable development: A review of the European water policies in accordance with the United Nations’ Sustainable Development Goals, Environ Sci Policy 114 (2020) 570–579. https://doi.org/10.1016/j.envsci.2020.09.008.
  • R. Riveros, Chemical treatment and reuse applications for latex paint industry wastewater, Desalination Water Treat 103 (2018) 290–295. https://doi.org/10.5004/dwt.2018.21932.
  • S. Nair K, B. Manu, A. Azhoni, Sustainable treatment of paint industry wastewater: Current techniques and challenges, J Environ Manage 296 (2021) 113105. https://doi.org/10.1016/j.jenvman.2021.113105.
  • A.K. Surela, L.K. Chhachhia, V.K. Surela, P.L. Meena, Polypyrrole-Based Composites for Dyes Removal From Contaminated Water, in: Reference Module in Materials Science and Materials Engineering, Elsevier, 2024. https://doi.org/10.1016/B978-0-323-95486-0.00019-3.
  • W. Konicki, M. Aleksandrzak, D. Moszyński, E. Mijowska, https://doi.org/10.1007/s13762-018-1728-5, J Colloid Interface Sci 496 (2017) 188–200. https://doi.org/10.1016/j.jcis.2017.02.031.
  • E.J.R. Almeida, C.R. Corso, Decolorization and removal of toxicity of textile azo dyes using fungal biomass pelletized, International Journal of Environmental Science and Technology 16 (2019) 1319–1328. https://doi.org/10.1007/s13762-018-1728-5.
  • J.N. Wekoye, W.C. Wanyonyi, P.T. Wangila, M.K. Tonui, Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder, Environmental Chemistry and Ecotoxicology 2 (2020) 24–31. https://doi.org/10.1016/j.enceco.2020.01.004.
  • A. Tkaczyk, K. Mitrowska, A. Posyniak, Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review, Science of The Total Environment 717 (2020) 137222. https://doi.org/10.1016/j.scitotenv.2020.137222.
  • Ş. Parlayıcı, E. Pehlivan, Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study, Int J Phytoremediation 23 (2021) 26–40. https://doi.org/10.1080/15226514.2020.1788502.
  • H.M. Solayman, Md.A. Hossen, A. Abd Aziz, N.Y. Yahya, K.H. Leong, L.C. Sim, M.U. Monir, K.-D. Zoh, Performance evaluation of dye wastewater treatment technologies: A review, J Environ Chem Eng 11 (2023) 109610. https://doi.org/10.1016/j.jece.2023.109610.
  • H.M. Ali, S.F. Shehata, K.M.A. Ramadan, Microbial decolorization and degradation of crystal violet dye by Aspergillus niger, International Journal of Environmental Science and Technology 13 (2016) 2917–2926. https://doi.org/10.1007/s13762-016-1117-x.
  • K. Vikrant, B.S. Giri, N. Raza, K. Roy, K.-H. Kim, B.N. Rai, R.S. Singh, Recent advancements in bioremediation of dye: Current status and challenges, Bioresour Technol 253 (2018) 355–367. https://doi.org/10.1016/j.biortech.2018.01.029.
  • B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnology Research and Innovation 3 (2019) 275–290. https://doi.org/10.1016/J.BIORI.2019.09.001.
  • S. Rahimi, A. Poormohammadi, B. Salmani, M. Ahmadian, M. Rezaei, Comparing the photocatalytic process efficiency using batch and tubular reactors in removal of methylene blue dye and COD from simulated textile wastewater, Journal of Water Reuse and Desalination 6 (2016) 574–582. https://doi.org/10.2166/wrd.2016.190.
  • V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: A review, J Environ Chem Eng 6 (2018) 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060.
  • H. Liu, J. Zhang, M. Lu, L. Liang, H. Zhang, J. Wei, Biosynthesis based membrane filtration coupled with iron nanoparticles reduction process in removal of dyes, Chemical Engineering Journal 387 (2020) 124202. https://doi.org/10.1016/j.cej.2020.124202.
  • E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl Catal B 166–167 (2015) 603–643. https://doi.org/10.1016/j.apcatb.2014.11.016.
  • J.M. Sánchez-Silva, A. Aguilar-Aguilar, G.J. Labrada-Delgado, E.G. Villabona-Leal, H.J. Ojeda-Galván, J.L. Sánchez-García, H. Collins-Martínez, MV. López-Ramón, R. Ocampo-Pérez, Hydrothermal synthesis of a photocatalyst based on Byrsonima crassifolia and TiO2 for degradation of crystal violet by UV and visible radiation, Environ Res 231 (2023) 116280. https://doi.org/10.1016/j.envres.2023.116280.
  • E. Hosseini Koupaie, M.R. Alavi Moghaddam, S.H. Hashemi, Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines, J Hazard Mater 195 (2011) 147–154. https://doi.org/10.1016/j.jhazmat.2011.08.017.
  • N.M. Marin, L.F. Pascu, A. Demba, M. Nita-Lazar, I.A. Badea, H.Y. Aboul-Enein, Removal of the Acid Orange 10 by ion exchange and microbiological methods, International Journal of Environmental Science and Technology 16 (2019) 6357–6366. https://doi.org/10.1007/s13762-018-2164-2.
  • S. Samsami, M. Mohamadizaniani, M.-H. Sarrafzadeh, E.R. Rene, M. Firoozbahr, Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives, Process Safety and Environmental Protection 143 (2020) 138–163. https://doi.org/10.1016/j.psep.2020.05.034.
  • A.K. Badawi, K. Zaher, Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation, Journal of Water Process Engineering 40 (2021) 101963. https://doi.org/10.1016/j.jwpe.2021.101963.
  • A. Marey, W.S. Gado, A.G. Soliman, A.M. Masoud, A.A. El-Zahhar, G.A.A.M. Al-Hazmi, M.H. Taha, A.M.A. El Naggar, Efficient removal of methylene blue dye from wastewater specimen using polystyrene coated nanoparticles of silica, Inorg Chem Commun 160 (2024) 112018. https://doi.org/10.1016/j.inoche.2024.112018.
  • J.-X. Jiang, Q.-Q. Zhang, Y.-H. Li, L. Li, Three-dimensional network graphene aerogel for enhancing adsorption and visible light photocatalysis of nitrogen-doped TiO2, Mater Lett 234 (2019) 298–301. https://doi.org/10.1016/j.matlet.2018.09.114.
  • R. Agarwala, L. Mulky, Adsorption of Dyes from Wastewater: A Comprehensive Review, ChemBioEng Reviews 10 (2023) 326–335. https://doi.org/10.1002/cben.202200011.
  • Amrutha, G. Jeppu, C.R. Girish, B. Prabhu, K. Mayer, Multi-component Adsorption Isotherms: Review and Modeling Studies, Environmental Processes 10 (2023) 38. https://doi.org/10.1007/s40710-023-00631-0.
  • K. Mohanty, J.T. Naidu, B.C. Meikap, M.N. Biswas, Removal of Crystal Violet from Wastewater by Activated Carbons Prepared from Rice Husk, Ind Eng Chem Res 45 (2006) 5165–5171. https://doi.org/10.1021/ie060257r.
  • S.K. Lagergren, About the theory of so-called adsorption of soluble substances, Sven. Vetenskapsakad. Handingarl 24 (1898) 1–39.
  • Y.S. Ho, D. Wase’, C.F. Forster, Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent, Water SA 22 (1996) 214–219.
  • H.M.F. Freundlich, Over the adsorption in solution , J. Phys. Chem. 57 (1906) 1100–1107.
  • J. Wang, X. Guo, Adsorption isotherm models: Classification, physical meaning, application and solving method, Chemosphere 258 (2020) 127279. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127279.
  • I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J Am Chem Soc 38 (1916) 2221–2295. https://doi.org/10.1021/JA02268A002/ASSET/JA02268A002.FP.PNG_V03.
  • K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal 156 (2010) 2–10. https://doi.org/10.1016/J.CEJ.2009.09.013.
  • M.I. Temkin, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim 12 (1940) 327–356.
  • E. Kaya, M. Agca, F. Adiguzel, M. Cetin, Spatial data analysis with R programming for environment, Human and Ecological Risk Assessment: An International Journal 25 (2019) 1521–1530. https://doi.org/10.1080/10807039.2018.1470896.
  • E. Kaya, E. Şentürk, A. Erener, C. Özkul, N.H. Akyol, SoilSpatvis: WEB Application for Geographical Data Visualization with R Language for Assessing Soil Pollution, Soil and Sediment Contamination: An International Journal (2023) 1–15. https://doi.org/10.1080/15320383.2023.2282108.
  • J.-F. Gao, Q. Zhang, K. Su, J.-H. Wang, Competitive biosorption of Yellow 2G and Reactive Brilliant Red K-2G onto inactive aerobic granules: Simultaneous determination of two dyes by first-order derivative spectrophotometry and isotherm studies, Bioresour Technol 101 (2010) 5793–5801. https://doi.org/10.1016/j.biortech.2010.02.091.
  • C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, T. Tavares, Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin, Chemical Engineering Journal 149 (2009) 319–324. https://doi.org/10.1016/j.cej.2008.11.025.
  • Y. Raji, A. Nadi, I. Mechnou, M. Saadouni, O. Cherkaoui, S. Zyade, High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study, Diam Relat Mater 135 (2023) 109834. https://doi.org/10.1016/j.diamond.2023.109834.
  • A.S. Yusuff, O.A. Ajayi, L.T. Popoola, Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter, Sci Afr 13 (2021) e00850. https://doi.org/10.1016/j.sciaf.2021.e00850.
  • Y. Raji, A. Nadi, I. Mechnou, M. Saadouni, O. Cherkaoui, S. Zyade, High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study, Diam Relat Mater 135 (2023) 109834. https://doi.org/10.1016/j.diamond.2023.109834.
  • S.A. Patil, P.D. Kumbhar, B.S. Satvekar, N.S. Harale, S.C. Bhise, S.K. Patil, A.S. Sartape, S.S. Kolekar, M.A. Anuse, Adsorption of toxic crystal violet dye from aqueous solution by using waste sugarcane leaf-based activated carbon: isotherm, kinetic and thermodynamic study, Journal of the Iranian Chemical Society 19 (2022) 2891–2906. https://doi.org/10.1007/s13738-022-02500-3.
  • N.A.M. Hanafi, A.S. Abdulhameed, A.H. Jawad, Z.A. ALOthman, T.A. Yousef, O.K. Al Duaij, N.S. Alsaiari, Optimized removal process and tailored adsorption mechanism of crystal violet and methylene blue dyes by activated carbon derived from mixed orange peel and watermelon rind using microwave-induced ZnCl2 activation, Biomass Convers Biorefin 14 (2024) 28415–28427. https://doi.org/10.1007/s13399-022-03646-z.
  • A.A. Kamath, N.G. Nayak, R. Sagar, Coconut flower sheath derived activated charcoal as efficient and cost effective adsorbent for crystal violet dye removal, Inorg Chem Commun 134 (2021) 109077. https://doi.org/10.1016/j.inoche.2021.109077.
  • A. Solmaz, Z.A. Sari, M. Karta, T. Turna, A. Yücel, T. Depci, Production and Characterization of Activated Carbon from Pomegranate Peel for Pharmaceutical Waste (Paracetamol) Removal: Response Surface Methodology Application, Water Air Soil Pollut 234 (2023) 645. https://doi.org/10.1007/s11270-023-06641-w.
  • A. Solmaz, M. Karta, T. Depci, T. Turna, Z.A. Sari, Preparation and characterization of activated carbons from Lemon Pulp for oxytetracycline removal, Environ Monit Assess 195 (2023) 797. https://doi.org/10.1007/s10661-023-11421-4.
  • M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, M. Sillanpää, Adsorption isotherm models: A comprehensive and systematic review (2010−2020), Science of The Total Environment 812 (2022) 151334. https://doi.org/10.1016/J.SCITOTENV.2021.151334.
  • N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and Interpretation of Adsorption Isotherms, J Chem 2017 (2017). https://doi.org/10.1155/2017/3039817.
  • G.K. Rajahmundry, C. Garlapati, P.S. Kumar, R.S. Alwi, D.V.N. Vo, Statistical analysis of adsorption isotherm models and its appropriate selection, Chemosphere 276 (2021) 130176. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130176.
  • Q. Ji, H. Li, High surface area activated carbon derived from chitin for efficient adsorption of Crystal Violet, Diam Relat Mater 118 (2021) 108516. https://doi.org/10.1016/j.diamond.2021.108516.
  • S.M. Yakout, M.S. Ali, Removal of the Hazardous Crystal Violet Dye by Adsorption on Corncob-Based and Phosphoric Acid-Activated Carbon, Particulate Science and Technology 33 (2015) 621–625. https://doi.org/10.1080/02726351.2015.1016642.
  • E.E. Jasper, V.O. Ajibola, J.C. Onwuka, Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon, Appl Water Sci 10 (2020) 132. https://doi.org/10.1007/s13201-020-01218-y.
  • I. Loulidi, M. Jabri, A. Amar, A. Kali, A. A. Alrashdi, C. Hadey, M. Ouchabi, P.S. Abdullah, H. Lgaz, Y. Cho, F. Boukhlifi, Comparative Study on Adsorption of Crystal Violet and Chromium (VI) by Activated Carbon Derived from Spent Coffee Grounds, Applied Sciences 13 (2023) 985. https://doi.org/10.3390/app13020985.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Environmental Management (Other)
Journal Section Articles
Authors

Alper Solmaz 0000-0001-6928-3289

Efdal Kaya 0000-0002-5553-0143

Talip Turna 0000-0001-6318-7245

Zeynel Abidin Sarı 0000-0001-5932-2141

İbrahim Uyanık 0000-0003-4850-6708

Mesut Karta

Ayşegül Yücel 0000-0001-7069-7518

Project Number TÜBİTAK 123Y087
Publication Date April 30, 2025
Submission Date June 25, 2024
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 41 Issue: 1

Cite

APA Solmaz, A., Kaya, E., Turna, T., Sarı, Z. A., et al. (2025). Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 41(1), 1-19.
AMA Solmaz A, Kaya E, Turna T, Sarı ZA, Uyanık İ, Karta M, Yücel A. Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. April 2025;41(1):1-19.
Chicago Solmaz, Alper, Efdal Kaya, Talip Turna, Zeynel Abidin Sarı, İbrahim Uyanık, Mesut Karta, and Ayşegül Yücel. “Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41, no. 1 (April 2025): 1-19.
EndNote Solmaz A, Kaya E, Turna T, Sarı ZA, Uyanık İ, Karta M, Yücel A (April 1, 2025) Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41 1 1–19.
IEEE A. Solmaz, E. Kaya, T. Turna, Z. A. Sarı, İ. Uyanık, M. Karta, and A. Yücel, “Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 41, no. 1, pp. 1–19, 2025.
ISNAD Solmaz, Alper et al. “Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41/1 (April 2025), 1-19.
JAMA Solmaz A, Kaya E, Turna T, Sarı ZA, Uyanık İ, Karta M, Yücel A. Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2025;41:1–19.
MLA Solmaz, Alper et al. “Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 41, no. 1, 2025, pp. 1-19.
Vancouver Solmaz A, Kaya E, Turna T, Sarı ZA, Uyanık İ, Karta M, Yücel A. Adsorbsiyon Uygulaması İçin Makine Öğrenmesi Destekli Web Tabanlı Yazılım Geliştirilerek Crystal Violet Boyası Giderimde Test Edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2025;41(1):1-19.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.