Research Article
BibTex RIS Cite

Dijital bankacılık ve enflasyon ilişkisinin makine öğrenme algoritmaları ile tespiti

Year 2025, Issue: 70, 193 - 199, 30.04.2025
https://doi.org/10.18070/erciyesiibd.1618053

Abstract

Son dönemlerde özellikle finans alanında dijital teknolojinin artan kullanımı, pek çok farklı ekonomik göstergenin seyrini değiştirmektedir. Bu dijital teknolojiler, finansal işlemlerde hızlı ve yenilikçi çözümler sunarken, ekonominin dinamiklerinin daha hızlı ve farklı yöntemlerle şekillenmesine neden olmaktadır. Dolayısıyla ekonomik performansın değişmesinde rol oynayan finansal kurumlardan bankacılık sektöründe meydana gelen dijitalleşme hareketleri, finansal sistemin ve ekonominin geneli için incelenmesi gereken bir konu haline gelmektedir. Dijitalleşmenin kapsamı ve yarattığı etkiler göz önünde bulundurulduğunda, etkinin makroekonomik boyutunun incelenmesi de önem arz etmektedir. Dolayısıyla bu çalışmada, bankacılık sektöründe dijitalleşmenin enflasyon üzerinde yarattığı etkiyi anlamak amacıyla makine öğrenme algoritmaları kullanılarak 2014M01-2023M12 dönemi Türkiye için tahmin odaklı bir model geliştirilmiştir. Yapılan tahminleme sonuçlarına göre, enflasyonu en doğru tahmin eden makine öğrenme algoritmasının gradyan artırma olduğu, mobil bankacılık kullanımının ise enflasyon üzerinde en fazla etkisi olan faktör olarak belirlendiği görülmüştür.

References

  • Abd El-Aal, M. F. (2023). “Analysis factors affecting Egyptian ınflation based on machine learning algorithms”, Data Science in Finance and Economics, 3(3), 285-304.
  • Ahmad, N., & Schreyer, P. (2016). Are GDP and productivity measures up to the challenges of the digital economy?. International Productivity Monitor, (30), 4.
  • Bakırtaş & Ustaömer, K. (2019). Türkiye’nin bankacılık sektöründe dijitalleşme olgusu, Ekonomi İşletme ve Yönetim Dergisi, 3(1), 1-24.
  • Balsmeier, B., & Woerter, M. (2019). Is this time different? How digitalization influences job creation and destruction. Research policy, 48(8), 103765.
  • Bayrakçı, H. C., Çiçekdemir, R. S., & Özkahraman, M. (2021). Tarım arazilerinde harcanan su miktarını yapay zekâ teknikleri kullanarak belirlenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(6), 237-250.
  • Beybur, M. (2022). Şubesiz dijital bankacılık ve Türk bankacılık sektörü için öneriler. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(1), 286-303.
  • Biau, G., Cadre, B., & Rouvìère, L. (2019). Accelerated gradient boosting. Machine learning, 108, 971-992.
  • Charbonneau, K. B., Evans, A., Sarker, S., & Suchanek, L. (2017). Digitalization and inflation: A review of the literature.
  • Csonto, M. B., Huang, Y., & Mora, M. C. E. T. (2019). Is Digitalization Driving Domestic Inflation?. International Monetary Fund.
  • Emara, N., & Zecheru, D. (2024). Asymmetric threshold effects of digitization on inflation in emerging markets. Financial Innovation, 10(1), 32.
  • Gasparovich, E. O., Uskova, E. V., & Dongauzer, E. V. (2021). The impact of digitalization on employee engagement. In Digital Economy and the New Labor Market: Jobs, Competences and Innovative HR Technologies (pp. 143-150). Springer International Publishing.
  • Gbawae, N. C., & Tonye, T. (2023). The impact of cashless economy on inflation and corruption in Nigeria. Glob Acad J Humanit Soc Sci, 5.
  • Geanakoplos, J., & Dubey, P. (2010). Credit cards and inflation. Games and Economic Behavior, 70(2), 325-353.
  • Göv, A., & Salihoglu, E. (2020). Türkiye’de ekonomik göstergeler ve para arzının bireysel kredi kartı kullanımına etkileri. The Journal of International Scientific Researches, 5(1), 50-63.
  • Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, Catania, Sicily, Italy, November 3-7, 2003. Proceedings (pp. 986-996). Springer Berlin Heidelberg.
  • Jadhav, S. D., & Channe, H. P. (2016). Comparative study of K-NN, naive Bayes and decision tree classification techniques. International Journal of Science and Research (IJSR), 5(1), 1842-1845.
  • Kabaklarli, E. (2015). Türkiye’de kredi kartı kullanımının, para politikasındaki rolü ve etkileri. Sosyoekonomi, 23(26), 119-138.
  • Kavzoğlu, T., & Çölkesen, İ. (2010). Karar ağaçları ile uydu görüntülerinin sınıflandırılması. Harita Teknolojileri Elektronik Dergisi, 2(1), 36-45.
  • Katusiime, L. (2018). Private sector credit and inflation volatility. Economies, 6(2), 1-13.
  • Li, Y. S., Pai, P. F., & Lin, Y. L. (2023). “Forecasting Inflation Rates Be Extreme Gradient Boosting with the Genetic Algorithm”, Journal of Ambient Intelligence and Humanized Computing, 14(3), 2211-2220.
  • Lv, L., Liu, Z., & Xu, Y. (2019). Technological progress, globalization and low-inflation: Evidence from the United States. PloS one, 14(4), e0215366.
  • Maharani, D. P.., Romiza, N., Irfan, S., & Febriani, R. E. (2023). Impact of digital payment on economic growth: evidence from Indonesia. Bicemba, 1(1), 233–239.
  • Matolcsy, G., Nagy, M., Palotai, D., & Virág, B. (2020). Inflation in the digital age: Inflation measurement and bias in the 21st Century. Financial and Economic Review, 19(1), 5-36.
  • Mićić, L. (2017). Digital transformation and its influence on GDP. Economics-Innovative and Economics Research Journal, 5(2), 135-147.
  • Mirza, N., Rizvi, S. K. A., Naqvi, B., & Umar, M. (2024). Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting. International Review of Financial Analysis, 94, 103238.
  • Nas, S., Akboz Caner, A. A., & Ünal, A. E. Türkiye’de enflasyon oranlarının makine öğrenme yöntemi ile tahmini. Gaziantep University Journal of Social Sciences, 23(3), 1029-1045.
  • Naumova, O. A., Svetkina, I. A., & Korneeva, T. A. (2020). The impact of digitalization on the economic security index of GDP. In Digital Age: Chances, Challenges and Future 7 (pp. 159-164). Springer International Publishing.
  • Nkemnole, E. B., Wulu, J. T., & Osubu, I. (2024). Application of K-Nearest Neighbours and Long-Short-Term Memory Models using Hidden Markov Model to Predict Inflation Rate and Transition Patterns in Nigeria. Journal of Applied Sciences and Environmental Management, 28(6), 1913-1925.
  • Rahim, F. K., Asdar, M., Sobarsyah, M., & Nursyamsi, I. (2021). The effect of non-cash payments on inflation rate with cash circulation as an intervening variable during the COVID-19 pandemic. International Journal of Innovative Science and Research Technology, 6(7), 765-768.
  • Ramadhan, A. T., & Sudrajad, O. Y. (2022). A comparative study of banking financial performance before and after the bank digitalization in Indonesia. International Journal of Advanced Research in Economics and Finance, 4(3), 129-141.
  • Reddy, K. S., & Kumarasamy, D. (2015). Is There Any Nexus between Electronic Based Payments in Banking and Inflation? Evidence from India. International Journal of Economics and Finance, 7(9), 85-95.
  • Riksbank (2015): Digitisation and inflation. Monetary Policy Report, Riksbank, February.
  • Safdar, S., & Khan, A. (2013). Financial innovation and monetary policy transmission mechanism in Pakistan. International Journal of Development and Sustainability, 2(1), 390-397.
  • Türkiye Cumhuriyet Merkez Bankası (TCMB, 2024) tarafından sağlanan verilere göre.
  • Titalessy, P. B. (2020). Cashless payments and its impact on inflation. Advances in Social Sciences Research Journal, 7(9), 524-532.
  • Ville, B. (2013). Decision trees. Wiley Interdisciplinary Reviews: Computational Statistics, 5(6), 448–455. doi:10.1002/wics.1278
  • Yi, M. H., & Choi, C. (2005). The effect of the internet on inflation: Panel data evidence. Journal of Policy Modeling, 27(7), 885-889.
  • Yücel, R., Akyıldız, Y., & Er, H. (2023). Dijitalleşmenin finans sektörüne getirdiği yenilikler. Özgür Publications.
  • Zhang, S., & Li, J. (2021). KNN classification with one-step computation. IEEE Transactions on Knowledge and Data Engineering, 35(3), 2711-2723.
  • Xing, W., & Bei, Y. (2019). Medical health big data classification based on KNN classification algorithm. Ieee Access, 8, 28808-28819.
  • Xu, X., Li, S., & Liu, W. H. (2025). Forecasting China's inflation rate: Evidence from machine learning methods. International Review of Finance, 25(1), e70000.
  • Watanabe, C., Naveed, K., Tou, Y., & Neittaanmäki, P. (2018). Measuring GDP in the digital economy: Increasing dependence on uncaptured GDP. Technological Forecasting and Social Change, 137, 226-240.

Detecting the relationship between digital banking and inflation with machine learning algorithms

Year 2025, Issue: 70, 193 - 199, 30.04.2025
https://doi.org/10.18070/erciyesiibd.1618053

Abstract

Recently, the growing use of digital technology, particularly in finance, has altered the trajectory of various economic indicators. While these digital technologies provide quick and innovative solutions for financial transactions, they accelerate the dynamics of the economy in new and different ways. Consequently, the digitalization initiatives in the banking sector, a crucial financial institution influencing economic performance, emerge as a topic that warrants examination for the broader financial system and economy. Given the scope and impact of digitalization, it is also vital to explore its macroeconomic ramifications. Hence, this study develops a forecasting-oriented model for Turkey for the period from January 2014 to December 2023, utilizing machine learning algorithms to analyze the influence of digitalization on inflation in the banking sector. The forecasting results indicate that the machine learning algorithm with the highest accuracy in predicting inflation is gradient boosting, while the usage of mobile banking is identified as the factor exerting the greatest influence on inflation.

References

  • Abd El-Aal, M. F. (2023). “Analysis factors affecting Egyptian ınflation based on machine learning algorithms”, Data Science in Finance and Economics, 3(3), 285-304.
  • Ahmad, N., & Schreyer, P. (2016). Are GDP and productivity measures up to the challenges of the digital economy?. International Productivity Monitor, (30), 4.
  • Bakırtaş & Ustaömer, K. (2019). Türkiye’nin bankacılık sektöründe dijitalleşme olgusu, Ekonomi İşletme ve Yönetim Dergisi, 3(1), 1-24.
  • Balsmeier, B., & Woerter, M. (2019). Is this time different? How digitalization influences job creation and destruction. Research policy, 48(8), 103765.
  • Bayrakçı, H. C., Çiçekdemir, R. S., & Özkahraman, M. (2021). Tarım arazilerinde harcanan su miktarını yapay zekâ teknikleri kullanarak belirlenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(6), 237-250.
  • Beybur, M. (2022). Şubesiz dijital bankacılık ve Türk bankacılık sektörü için öneriler. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(1), 286-303.
  • Biau, G., Cadre, B., & Rouvìère, L. (2019). Accelerated gradient boosting. Machine learning, 108, 971-992.
  • Charbonneau, K. B., Evans, A., Sarker, S., & Suchanek, L. (2017). Digitalization and inflation: A review of the literature.
  • Csonto, M. B., Huang, Y., & Mora, M. C. E. T. (2019). Is Digitalization Driving Domestic Inflation?. International Monetary Fund.
  • Emara, N., & Zecheru, D. (2024). Asymmetric threshold effects of digitization on inflation in emerging markets. Financial Innovation, 10(1), 32.
  • Gasparovich, E. O., Uskova, E. V., & Dongauzer, E. V. (2021). The impact of digitalization on employee engagement. In Digital Economy and the New Labor Market: Jobs, Competences and Innovative HR Technologies (pp. 143-150). Springer International Publishing.
  • Gbawae, N. C., & Tonye, T. (2023). The impact of cashless economy on inflation and corruption in Nigeria. Glob Acad J Humanit Soc Sci, 5.
  • Geanakoplos, J., & Dubey, P. (2010). Credit cards and inflation. Games and Economic Behavior, 70(2), 325-353.
  • Göv, A., & Salihoglu, E. (2020). Türkiye’de ekonomik göstergeler ve para arzının bireysel kredi kartı kullanımına etkileri. The Journal of International Scientific Researches, 5(1), 50-63.
  • Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, Catania, Sicily, Italy, November 3-7, 2003. Proceedings (pp. 986-996). Springer Berlin Heidelberg.
  • Jadhav, S. D., & Channe, H. P. (2016). Comparative study of K-NN, naive Bayes and decision tree classification techniques. International Journal of Science and Research (IJSR), 5(1), 1842-1845.
  • Kabaklarli, E. (2015). Türkiye’de kredi kartı kullanımının, para politikasındaki rolü ve etkileri. Sosyoekonomi, 23(26), 119-138.
  • Kavzoğlu, T., & Çölkesen, İ. (2010). Karar ağaçları ile uydu görüntülerinin sınıflandırılması. Harita Teknolojileri Elektronik Dergisi, 2(1), 36-45.
  • Katusiime, L. (2018). Private sector credit and inflation volatility. Economies, 6(2), 1-13.
  • Li, Y. S., Pai, P. F., & Lin, Y. L. (2023). “Forecasting Inflation Rates Be Extreme Gradient Boosting with the Genetic Algorithm”, Journal of Ambient Intelligence and Humanized Computing, 14(3), 2211-2220.
  • Lv, L., Liu, Z., & Xu, Y. (2019). Technological progress, globalization and low-inflation: Evidence from the United States. PloS one, 14(4), e0215366.
  • Maharani, D. P.., Romiza, N., Irfan, S., & Febriani, R. E. (2023). Impact of digital payment on economic growth: evidence from Indonesia. Bicemba, 1(1), 233–239.
  • Matolcsy, G., Nagy, M., Palotai, D., & Virág, B. (2020). Inflation in the digital age: Inflation measurement and bias in the 21st Century. Financial and Economic Review, 19(1), 5-36.
  • Mićić, L. (2017). Digital transformation and its influence on GDP. Economics-Innovative and Economics Research Journal, 5(2), 135-147.
  • Mirza, N., Rizvi, S. K. A., Naqvi, B., & Umar, M. (2024). Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting. International Review of Financial Analysis, 94, 103238.
  • Nas, S., Akboz Caner, A. A., & Ünal, A. E. Türkiye’de enflasyon oranlarının makine öğrenme yöntemi ile tahmini. Gaziantep University Journal of Social Sciences, 23(3), 1029-1045.
  • Naumova, O. A., Svetkina, I. A., & Korneeva, T. A. (2020). The impact of digitalization on the economic security index of GDP. In Digital Age: Chances, Challenges and Future 7 (pp. 159-164). Springer International Publishing.
  • Nkemnole, E. B., Wulu, J. T., & Osubu, I. (2024). Application of K-Nearest Neighbours and Long-Short-Term Memory Models using Hidden Markov Model to Predict Inflation Rate and Transition Patterns in Nigeria. Journal of Applied Sciences and Environmental Management, 28(6), 1913-1925.
  • Rahim, F. K., Asdar, M., Sobarsyah, M., & Nursyamsi, I. (2021). The effect of non-cash payments on inflation rate with cash circulation as an intervening variable during the COVID-19 pandemic. International Journal of Innovative Science and Research Technology, 6(7), 765-768.
  • Ramadhan, A. T., & Sudrajad, O. Y. (2022). A comparative study of banking financial performance before and after the bank digitalization in Indonesia. International Journal of Advanced Research in Economics and Finance, 4(3), 129-141.
  • Reddy, K. S., & Kumarasamy, D. (2015). Is There Any Nexus between Electronic Based Payments in Banking and Inflation? Evidence from India. International Journal of Economics and Finance, 7(9), 85-95.
  • Riksbank (2015): Digitisation and inflation. Monetary Policy Report, Riksbank, February.
  • Safdar, S., & Khan, A. (2013). Financial innovation and monetary policy transmission mechanism in Pakistan. International Journal of Development and Sustainability, 2(1), 390-397.
  • Türkiye Cumhuriyet Merkez Bankası (TCMB, 2024) tarafından sağlanan verilere göre.
  • Titalessy, P. B. (2020). Cashless payments and its impact on inflation. Advances in Social Sciences Research Journal, 7(9), 524-532.
  • Ville, B. (2013). Decision trees. Wiley Interdisciplinary Reviews: Computational Statistics, 5(6), 448–455. doi:10.1002/wics.1278
  • Yi, M. H., & Choi, C. (2005). The effect of the internet on inflation: Panel data evidence. Journal of Policy Modeling, 27(7), 885-889.
  • Yücel, R., Akyıldız, Y., & Er, H. (2023). Dijitalleşmenin finans sektörüne getirdiği yenilikler. Özgür Publications.
  • Zhang, S., & Li, J. (2021). KNN classification with one-step computation. IEEE Transactions on Knowledge and Data Engineering, 35(3), 2711-2723.
  • Xing, W., & Bei, Y. (2019). Medical health big data classification based on KNN classification algorithm. Ieee Access, 8, 28808-28819.
  • Xu, X., Li, S., & Liu, W. H. (2025). Forecasting China's inflation rate: Evidence from machine learning methods. International Review of Finance, 25(1), e70000.
  • Watanabe, C., Naveed, K., Tou, Y., & Neittaanmäki, P. (2018). Measuring GDP in the digital economy: Increasing dependence on uncaptured GDP. Technological Forecasting and Social Change, 137, 226-240.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Financial Economy
Journal Section Makaleler
Authors

Ayşe Akboz Caner 0000-0002-0060-2007

Ayşe Ergin Ünal 0009-0004-5084-6431

Serkan Nas 0000-0002-0040-3091

Early Pub Date April 25, 2025
Publication Date April 30, 2025
Submission Date January 11, 2025
Acceptance Date April 9, 2025
Published in Issue Year 2025 Issue: 70

Cite

APA Akboz Caner, A., Ergin Ünal, A., & Nas, S. (2025). Dijital bankacılık ve enflasyon ilişkisinin makine öğrenme algoritmaları ile tespiti. Erciyes Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi(70), 193-199. https://doi.org/10.18070/erciyesiibd.1618053

Ethical Principles and Ethical Guidelines

The Journal of Erciyes University Faculty of Economics and Administrative Sciences places great emphasis on publication ethics, which serve as a foundation for the impartial and reputable advancement of scientific knowledge. In this context, the journal adopts a publishing approach aligned with the ethical standards set by the Committee on Publication Ethics (COPE) and is committed to preventing potential malpractice. The following ethical responsibilities, established based on COPE’s principles, are expected to be upheld by all stakeholders involved in the publication process (authors, readers and researchers, publishers, reviewers, and editors).

Ethical Responsibilities of Editors
Make decisions on submissions based on the quality and originality of the work, its alignment with the journal's aims and scope, and the reviewers’ evaluations, regardless of the authors' religion, language, race, ethnicity, political views, or gender.
Respond to information requests from readers, authors, and reviewers regarding the publication and evaluation processes.
Conduct all processes without compromising ethical standards and intellectual property rights.
Support freedom of thought and protect human and animal rights.
Ensure the peer review process adheres to the principle of double-blind peer review.
Take full responsibility for accepting, rejecting, or requesting changes to a manuscript and ensure that conflicts of interest among stakeholders do not influence these decisions.
Ethical Responsibilities of Authors
Submitted works must be original. When utilizing other works, proper and complete citations and/or references must be provided.
A manuscript must not be under review by another journal simultaneously.
Individuals who have not contributed to the experimental design, implementation, data analysis, or interpretation should not be listed as authors.
If requested during the review process, datasets used in the manuscript must be provided to the editorial board.
If a significant error or mistake is discovered in the manuscript, the journal’s editorial office must be notified.
For studies requiring ethical committee approval, the relevant document must be submitted to the journal. Details regarding the ethical approval (name of the ethics committee, approval document number, and date) must be included in the manuscript.
Changes to authorship (e.g., adding or removing authors, altering the order of authors) cannot be proposed after the review process has commenced.
Ethical Responsibilities of Reviewers
Accept review assignments only in areas where they have sufficient expertise.
Agree to review manuscripts in a timely and unbiased manner.
Ensure confidentiality of the reviewed manuscript and not disclose any information about it, during or after the review process, beyond what is already published.
Refrain from using information obtained during the review process for personal or third-party benefit.
Notify the journal editor if plagiarism or other ethical violations are suspected in the manuscript.
Conduct reviews objectively and avoid conflicts of interest. If a conflict exists, the reviewer should decline the review.
Use polite and constructive language during the review process and avoid personal comments.
Publication Policy
The Journal of Erciyes University Faculty of Economics and Administrative Sciences is a free, open-access, peer-reviewed academic journal that has been in publication since 1981. The journal welcomes submissions in Turkish and English within the fields of economics, business administration, public finance, political science, public administration, and international relations.

No submission or publication fees are charged by the journal.
Every submitted manuscript undergoes a double-blind peer review process and similarity/plagiarism checks via iThenticate.
Submissions must be original and not previously published, accepted for publication, or under review elsewhere.
Articles published in the journal can be cited under the Open Access Policy and Creative Commons license, provided proper attribution is given.
The journal is published three times a year, in April, August, and December. It includes original, high-quality, and scientifically supported research articles and reviews in its listed fields. Academic studies unrelated to these disciplines or their theoretical and empirical foundations are not accepted. The journal's languages are Turkish and English.

Submissions are first subject to a preliminary review for format and content. Manuscripts not meeting the journal's standards are rejected by the editorial board. Manuscripts deemed suitable proceed to the peer review stage.

Each submission is sent to at least two expert reviewers. If both reviews are favorable, the article is approved for publication. In cases where one review is positive and the other negative, the editorial board decides based on the reviews or may send the manuscript to a third reviewer.

Articles published in the journal are open access and can be cited under the Creative Commons license, provided proper attribution is made.