Research Article
BibTex RIS Cite
Year 2025, Volume: 15 Issue: 1, 41 - 48, 16.04.2025
https://doi.org/10.26650/experimed.1584823

Abstract

Project Number

4201919

References

  • 1. Milev MP, Grout ME, Saint-Dic D, Cheng YH, Glass IA, Hale CJ, et al. Mutations in TRAPPC12 manifest in progressive childhood encephalopathy and Golgi dysfunction. Am J Hum Genet. 2017; 101(2): 291-9. google scholar
  • 2. Scrivens PJ, Noueihed B, Shahrzad N, Hul S, Brunet S, Sacher M. C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking. Mol Biol Cell 2011; 22(12): 2083-93. google scholar
  • 3. Sacher M, Kim YG, Lavie A, Oh BH, Segev N. The TRAPP complex: insights into its architecture and function. Traffic 2008; 9(12): 2032-42. google scholar
  • 4. Whyte JR, Munro S. Vesicle tethering complexes in membrane traffic. J Cell Sci 2002; 115(Pt 13): 2627-37. google scholar
  • 5. Sacher M, Jiang Y, Barrowman J, Scarpa A, Burston J, Zhang L, et al. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J 1998; 17(9): 2494-503. google scholar
  • 6. Kim MS, Yi MJ, Lee KH, Wagner J, Munger C, Kim YG, et al. Biochemical and crystallographic studies reveal a specific interaction between TRAPP subunits Trs33p and Bet3p. Traffic 2005; 6(12): 1183-95. google scholar
  • 7. Cox R, Chen SH, Yoo E, Segev N. Conservation of the TRAPPII-specific subunits of a Ypt/Rab exchanger complex. BMC Evol Biol 2007; 7: 12. google scholar
  • 8. Harris NJ, Jenkins ML, Dalwadi U, Fleming KD, Nam SE, Parson MAH, et al. Biochemical insight into novel Rab-GEF activity of the mammalian TRAPPIII complex. J Mol Biol 2021; 433(18): 167145. google scholar 9. Milev MP, Sacher M. Mitotic transformation of TRAMM/TrappC12. Oncotarget 2015; 6(20): 17853-4. google scholar
  • 10. Milev MP, Hasaj B, Saint-Dic D, Snounou S, Zhao Q, Sacher M. TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment. J Cell Biol 2015; 209(2): 221-34. google scholar
  • 11. Kim JJ, Lipatova Z, Segev N. TRAPP complexes in secretion and autophagy. Front Cell Dev Biol 2016; 4: 20. google scholar
  • 12. Aslanger AD, Demiral E, Sonmez-Sahin S, Guler S, Goncu B, Yucesan E, et al. Expanding clinical phenotype of TRAPPC12-related childhood encephalopathy: Two cases and review of literature. Neuropediatrics 2020; 51(6): 430-4. google scholar
  • 13. Andresen K, Caliebe A, Spielmann M, Nagel I, Eckmann-Scholz C. Expansion of the symptoms associated with bi-allelic variants in TRAPPC12. Z Geburtshilfe Neonatol 2023; 227(S 01): P073. google scholar
  • 14. Bhola PT, Marshall AE, Liang Y, Couse M, Wang X, Miller E, et al. RNA seQuencing to support intronic variant interpretation: A case report of TRAPPC12-related disorder. Am J Med Genet A 2023; 191(6): 1664-8. google scholar
  • 15. Vangipuram M, Ting D, Kim S, Diaz R, Schule B. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp 2013; (77): e3779. google scholar
  • 16. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9(7): 671-5. google scholar
  • 17. Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 1985; 100(3): 965-73. google scholar
  • 18. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum Quantified from variation in 141,456 humans. Nature 2020; 581(7809): 434-43. google scholar
  • 19. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics 2019; 35(11): 1978-80. google scholar
  • 20. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 2010; 20(1): 110-21. google scholar
  • 21. Rabouille C, Haase G. Editorial: Golgi pathology in neurodegenerative diseases. Front Neurosci 2015; 9: 489. google scholar
  • 22. La Cognata V, Morello G, Cavallaro S. Omics Data and Their Integrative analysis to support stratified medicine in neurodegenerative diseases. Int J Mol Sci 2021; 22(9): 4820. google scholar
  • 23. Sacher M, Shahrzad N, Kamel H, Milev MP. TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic 2019; 20(1): 5-26. google scholar
  • 24 . Galindo A, Planelles-Herrero VJ, Degliesposti G, Munro S. Cryo-EM structure of metazoan TRAPPIII, the multi-subunit complex that activates the GTPase Rab1. EMBO J 2021; 40(12): e107608. google scholar
  • 25. Li F, Yi L, Zhao L, Itzen A, Goody RS, Wu YW. The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting. Proc Natl Acad Sci U S A 2014; 111(7): 2572-7. google scholar
  • 26. Gass JM, Head BB, Shields SM, Stevenson RE, Louie RJ. Hydrocephaly associated with compound heterozygous alterations in TRAPPC12. Birth Defects Res 2020; 112(13): 1028-34. google scholar

Impact of a Missense Mutation in TRAPPC12 in Patients with Progressive Encephalopathy, Brain Atrophy and Spasticity Phenotype without Microcephaly and Epilepsy

Year 2025, Volume: 15 Issue: 1, 41 - 48, 16.04.2025
https://doi.org/10.26650/experimed.1584823

Abstract

Objective: Various symptoms, including microcephaly, corpus callosum agenesis, cerebellar atrophy, spasticity, and epilepsy, are associated with variations in the TRAPPC12 gene. This diversity of features contributes to a broad range of mortality and morbidity. Identifying variations with functional conse quences is crucial for accurate diagnosis and appropriate counseling for affected families. This study presented the results of a functional analysis of a previously detected mutation.

Materials and Methods: Patient-derived fibroblast cells (have a c.679T>G; p. Phe227Val variation) and the CCD1079Sk cell line (as a healthy control) were used. The relative protein expression of TRAPPC12 along with morphological changes, including Golgi integrity, endoplasmic reticulum (ER) structure, and vesicle distribution for neutral lipids, were assessed using immunofluorescent staining.

Results: Protein expression analysis revealed an absence of the mature TRAPPC12 protein and the uncharacterized protein fragment (CGI-87) via mutation compared with the wild-type. Additionally, milder outcomes were observed for Golgi integrity, slight ER structure enlargement, and further vesicle distrib ution changes, particularly with the truncated TRAPPC12 protein.

Conclusion: Despite the variant leading to a milder clinical phenotype without microcephaly and epilepsy, as previously reported, the study showed unstable protein expression and mild effects on Golgi and ER structures along with alterations in vesicle distribution throughout the cytoplasm. Despite the lack of mature TRAPPC12 protein expression and mild organelle impairments, the vesicle trafficking persisted. We showed that a single amino acid substitution might cause a loss of mature protein expression and also cause a milder disruption of organelles. More functional analyses are necessary to confirm these outcomes.

Ethical Statement

The study was approved by the Local Ethics Committee (approval number: 2019/2659). Written informed consent with the patient of the Declaration of Helsinki was obtained from the patient and the parents included in this study.

Supporting Institution

Bezmialem Vakif Üniversitesi

Project Number

4201919

Thanks

We are grateful to the patient for their participation in the study.

References

  • 1. Milev MP, Grout ME, Saint-Dic D, Cheng YH, Glass IA, Hale CJ, et al. Mutations in TRAPPC12 manifest in progressive childhood encephalopathy and Golgi dysfunction. Am J Hum Genet. 2017; 101(2): 291-9. google scholar
  • 2. Scrivens PJ, Noueihed B, Shahrzad N, Hul S, Brunet S, Sacher M. C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking. Mol Biol Cell 2011; 22(12): 2083-93. google scholar
  • 3. Sacher M, Kim YG, Lavie A, Oh BH, Segev N. The TRAPP complex: insights into its architecture and function. Traffic 2008; 9(12): 2032-42. google scholar
  • 4. Whyte JR, Munro S. Vesicle tethering complexes in membrane traffic. J Cell Sci 2002; 115(Pt 13): 2627-37. google scholar
  • 5. Sacher M, Jiang Y, Barrowman J, Scarpa A, Burston J, Zhang L, et al. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J 1998; 17(9): 2494-503. google scholar
  • 6. Kim MS, Yi MJ, Lee KH, Wagner J, Munger C, Kim YG, et al. Biochemical and crystallographic studies reveal a specific interaction between TRAPP subunits Trs33p and Bet3p. Traffic 2005; 6(12): 1183-95. google scholar
  • 7. Cox R, Chen SH, Yoo E, Segev N. Conservation of the TRAPPII-specific subunits of a Ypt/Rab exchanger complex. BMC Evol Biol 2007; 7: 12. google scholar
  • 8. Harris NJ, Jenkins ML, Dalwadi U, Fleming KD, Nam SE, Parson MAH, et al. Biochemical insight into novel Rab-GEF activity of the mammalian TRAPPIII complex. J Mol Biol 2021; 433(18): 167145. google scholar 9. Milev MP, Sacher M. Mitotic transformation of TRAMM/TrappC12. Oncotarget 2015; 6(20): 17853-4. google scholar
  • 10. Milev MP, Hasaj B, Saint-Dic D, Snounou S, Zhao Q, Sacher M. TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment. J Cell Biol 2015; 209(2): 221-34. google scholar
  • 11. Kim JJ, Lipatova Z, Segev N. TRAPP complexes in secretion and autophagy. Front Cell Dev Biol 2016; 4: 20. google scholar
  • 12. Aslanger AD, Demiral E, Sonmez-Sahin S, Guler S, Goncu B, Yucesan E, et al. Expanding clinical phenotype of TRAPPC12-related childhood encephalopathy: Two cases and review of literature. Neuropediatrics 2020; 51(6): 430-4. google scholar
  • 13. Andresen K, Caliebe A, Spielmann M, Nagel I, Eckmann-Scholz C. Expansion of the symptoms associated with bi-allelic variants in TRAPPC12. Z Geburtshilfe Neonatol 2023; 227(S 01): P073. google scholar
  • 14. Bhola PT, Marshall AE, Liang Y, Couse M, Wang X, Miller E, et al. RNA seQuencing to support intronic variant interpretation: A case report of TRAPPC12-related disorder. Am J Med Genet A 2023; 191(6): 1664-8. google scholar
  • 15. Vangipuram M, Ting D, Kim S, Diaz R, Schule B. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp 2013; (77): e3779. google scholar
  • 16. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9(7): 671-5. google scholar
  • 17. Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 1985; 100(3): 965-73. google scholar
  • 18. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum Quantified from variation in 141,456 humans. Nature 2020; 581(7809): 434-43. google scholar
  • 19. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics 2019; 35(11): 1978-80. google scholar
  • 20. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 2010; 20(1): 110-21. google scholar
  • 21. Rabouille C, Haase G. Editorial: Golgi pathology in neurodegenerative diseases. Front Neurosci 2015; 9: 489. google scholar
  • 22. La Cognata V, Morello G, Cavallaro S. Omics Data and Their Integrative analysis to support stratified medicine in neurodegenerative diseases. Int J Mol Sci 2021; 22(9): 4820. google scholar
  • 23. Sacher M, Shahrzad N, Kamel H, Milev MP. TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic 2019; 20(1): 5-26. google scholar
  • 24 . Galindo A, Planelles-Herrero VJ, Degliesposti G, Munro S. Cryo-EM structure of metazoan TRAPPIII, the multi-subunit complex that activates the GTPase Rab1. EMBO J 2021; 40(12): e107608. google scholar
  • 25. Li F, Yi L, Zhao L, Itzen A, Goody RS, Wu YW. The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting. Proc Natl Acad Sci U S A 2014; 111(7): 2572-7. google scholar
  • 26. Gass JM, Head BB, Shields SM, Stevenson RE, Louie RJ. Hydrocephaly associated with compound heterozygous alterations in TRAPPC12. Birth Defects Res 2020; 112(13): 1028-34. google scholar
There are 25 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Research Article
Authors

Beyza Göncü 0000-0001-6026-8218

Gözde Yeşil Sayın 0000-0003-1964-6306

Ayça Dilruba Aslanger 0000-0003-1770-1762

Emrah Yücesan 0000-0003-4512-8764

Project Number 4201919
Publication Date April 16, 2025
Submission Date November 13, 2024
Acceptance Date January 13, 2025
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

Vancouver Göncü B, Yeşil Sayın G, Aslanger AD, Yücesan E. Impact of a Missense Mutation in TRAPPC12 in Patients with Progressive Encephalopathy, Brain Atrophy and Spasticity Phenotype without Microcephaly and Epilepsy. Experimed. 2025;15(1):41-8.