Research Article
BibTex RIS Cite

Monosodium glutamate induces tsc1 gene expression in fission yeast

Year 2025, Volume: 6 Issue: 1, 1 - 8, 30.04.2025

Abstract

Tuberous sclerosis complex (TSC) is a disease of cellular migration and proliferation that produces hamartomas (benign tumors or malignant cancers affecting the brain and skin) and also involves the eyes, lungs, kidneys, and heart in patterns that can vary throughout life. TSC is an autosomal dominantly inherited disease. Alterations in the TSC1 and TSC2 proteins that form the TSC complex are among the factors that cause the emergence of this disease. TSC1 and TSC2 proteins are the suppressors on the mTOR signaling pathway. The health risks of monosodium glutamate, the most commonly used food additive today, are still a controversial issue. However, there are studies revealing that monosodium glutamate has a negative effect on cell proliferation. In the present study, parental and tsc1∆ mutant fission yeast cells were used and the effects of monosodium glutamate on tsc1 gene expression, cell proliferation, and apoptosis were investigated. It was observed that 8 mg/mL monosodium glutamate caused an increase in the expression of the tsc1 gene. It was concluded that monosodium glutamate may disrupt cell homeostasis and affect cell division and apoptosis processes via the mTOR pathway, depending on the increase in the expression of the tsc1 gene.

Supporting Institution

Scientific Research Project Coordination Unit of Istanbul University & Scientific and Technological Research Council of Türkiye (TUBITAK) 2209-A

Project Number

FLO-2024-40570 - TÜBİTAK 2209-A

Thanks

This research was funded by the Scientific Research Project Coordination Unit of Istanbul University, Project No: FLO-2024-40570 and by the Scientific and Technological Research Council of Türkiye (TUBITAK) 2209-A.

References

  • Adhikari, D., Zheng, W., Shen, Y., Gorre, N., Hämäläinen, T., Cooney, A. J., ... & Liu, K. (2010). Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Human Molecular Genetics, 19(3), 397-410.
  • Agus, H. H., Sarp, C., & Cemiloglu, M. (2018). Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in Schizosaccharomyces pombe. Toxicology Research, 7(5), 848-858.
  • Akataobi, U. S. (2020). Effect of monosodium glutamate (MSG) on behavior, body and brain weights of exposed rats. Environmental Disease, 5(1), 3-8.
  • Aronica, E., Specchio, N., Luinenburg, M. J., & Curatolo, P. (2023). Epileptogenesis in tuberous sclerosis complex-related developmental and epileptic encephalopathy. Brain, 146(7), 2694-2710.
  • Ataseven, N., Yuzbasioglu, D., Keskin, A. C., & Unal, F. (2016). Genotoxicity of monosodium glutamate. Food and Chemical Toxicology, 91, 8-18.
  • Awang, H., Aziz, A. S., R Azmi, N. N. A., Saad, N. S., Zamri, N. A. S., & Seman-Kamarulzaman, A. F. (2020). Effect of monosodium glutamate on the growth of solanum melongena. Gading Journal for Science and Technology, 3(1), 52-59.
  • Ballesteros‐Álvarez, J., & Andersen, J. K. (2021). mTORC2: The other mTOR in autophagy regulation. Aging cell, 20(8), e13431.
  • Crino, P. B. (2020). mTORopathies: a road well-traveled. Epilepsy currents, 20(6_suppl), 64S-66S.
  • Curatolo, P., Specchio, N., & Aronica, E. (2022). Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. The Lancet Neurology, 21(9), 843-856.
  • Curatolo, P., Scheper, M., Emberti Gialloreti, L., Specchio, N., & Aronica, E. (2024). Is tuberous sclerosis complex-associated autism a preventable and treatable disorder?. World Journal of Pediatrics, 20(1), 40-53.
  • Farombi, E. O., & Onyema, O. (2006). Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Human & experimental toxicology, 25(5), 251-259.
  • Fingar, D. C., & Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 23(18), 3151-3171.
  • Fonseca, B. D., Smith, E. M., Yelle, N., Alain, T., Bushell, M., & Pause, A. (2014). The ever-evolving role of mTOR in translation. In Seminars in cell & developmental biology (Vol. 36, pp. 102-112). Academic Press.
  • Fu, J., Liang, P., Zheng, Y., Xu, C., Xiong, F., & Yang, F. (2024). A large deletion in TSC2 causes tuberous sclerosis complex by dysregulating PI3K/AKT/mTOR signaling pathway. Gene, 909, 148312.
  • Gonzalez-Burgos, I., Perez-Vega, M. I., & Beas-Zarate, C. (2001). Neonatal exposure to monosodium glutamate induces cell death and dendritic hypotrophy in rat prefrontocortical pyramidal neurons. Neuroscience letters, 297(2), 69-72.
  • Hoffman, C. S., Wood, V., & Fantes, P. A. (2015). An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics, 201(2), 403-423.
  • Holmes, G. L., Stafstrom, C. E., & Tuberous Sclerosis Study Group. (2007). Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia, 48(4), 617-630.
  • Huang, J., & Manning, B. D. (2008). The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J., 412(2), 179-190.
  • Imam, R. S. (2019). Genotoxicity of monosodium glutamate: a review on its causes, consequences and prevention. Indian Journal of Pharmaceutical Education and Research, 53(4), S510-517.
  • Islam, M. P. (2021). Tuberous sclerosis complex. In Seminars in pediatric neurology (Vol. 37, p. 100875). WB Saunders.
  • Johnson, S. C., Sangesland, M., Kaeberlein, M., & Rabinovitch, P. S. (2015). Modulating mTOR in aging and health. Aging and health-A systems biology perspective, 40, 107-127.
  • Kakade, S. S., Bote, H. K., Sarvalkar, P. D., Sharma, K. K. K., & Pawar, P. K. (2024). Effects of Common Food Additives on HepG2 Cells: Accumulation of Reactive Oxygen Species and Induction of Cell Damage and Death. ES Food & Agroforestry, 17, 1142.
  • Kassab, R. B., Theyab, A., Al-Ghamdy, A. O., Algahtani, M., Mufti, A. H., Alsharif, K. F., ... & Elmasry, H. A. (2022). Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. Environmental Science and Pollution Research, 1-14.
  • Kayode, O. T., Bello, J. A., Oguntola, J. A., Kayode, A. A., & Olukoya, D. K. (2023). The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon.
  • Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. S. (2017). Monosodium glutamate: Review on clinical reports. International Journal of Food Properties, 20(sup2), 1807-1815.
  • Kesherwani, R., Bhoumik, S., Kumar, R., & Rizvi, S. I. (2024). Monosodium glutamate even at Low dose may affect oxidative stress, inflammation and neurodegeneration in rats. Indian Journal of Clinical Biochemistry, 39(1), 101-109.
  • Kilic, E. (2021). Tuberoskleroz Kompleksi. Turkiye Klinikleri Pediatric Genetic Diseases-Special Topics, 2(2), 93-99.
  • Kim, J., & Guan, K. L. (2019). mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology, 21(1), 63-71.
  • Kim, J. K., & Lee, J. H. (2019). Mechanistic target of rapamycin pathway in epileptic disorders. Journal of Korean Neurosurgical Society, 62(3), 272-287.
  • Lee, M., & Nurse, P. (1988). Cell cycle control genes in fission yeast and mammalian cells. Trends in Genetics, 4(10), 287-290.
  • Li, Z., Liu, Y., Wang, F., Gao, Z., Elhefny, M. A., Habotta, O. A., ... & Kassab, R. B. (2021). Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis. Chemico-Biological Interactions, 337, 109392.
  • Mallela, K., & Kumar, A. (2021). Role of TSC1 in physiology and diseases. Molecular and cellular biochemistry, 476(6), 2269-2282.
  • Man, A., Di Scipio, M., Grewal, S., Suk, Y., Trinari, E., Ejaz, R., & Whitney, R. (2024). The genetics of tuberous sclerosis complex and related mTORopathies: Current understanding and future directions. Genes, 15(3), 332.
  • Merinas-Amo, T., Merinas-Amo, R., Alonso-Moraga, Á., Font, R., & Del Río Celestino, M. (2024). In vivo and in vitro studies assessing the safety of monosodium glutamate. Foods, 13(23), 3981.
  • Mizuguchi, M., Ohsawa, M., Kashii, H., & Sato, A. (2021). Brain symptoms of tuberous sclerosis complex: pathogenesis and treatment. International Journal of Molecular Sciences, 22(13), 6677.
  • Moavero, R., Mühlebner, A., Luinenburg, M. J., Craiu, D., Aronica, E., & Curatolo, P. (2022). Genetic pathogenesis of the epileptogenic lesions in Tuberous Sclerosis Complex: Therapeutic targeting of the mTOR pathway. Epilepsy & Behavior, 131, 107713.
  • Nabbout, R., Belousova, E., Benedik, M. P., Carter, T., Cottin, V., Curatolo, P., ... & Pruna, D. (2019). Epilepsy in tuberous sclerosis complex: Findings from the TOSCA Study. Epilepsia Open, 4(1), 73-84.
  • Nakashima, A., & Tamanoi, F. (2010). Conservation of the Tsc/Rheb/TORC1/S6K/S6 signaling in fission yeast. In The Enzymes (Vol. 28, pp. 167-187). Academic Press.
  • Niu, W., Siciliano, B., & Wen, Z. (2024). Modeling tuberous sclerosis complex with human induced pluripotent stem cells. World Journal of Pediatrics, 20(3), 208-218.
  • Northrup, H., Koenig, M. K., Pearson, D. A., & Au, K. S. (2021). Tuberous sclerosis complex. University of Washington, Seattle, Seattle (WA), 1-95.
  • Pavlovic, V. (2006). The effect of monosodium glutamate on rat thymocyte proliferation and Bcl-2/bax protein expression. Archives of Medical Science, 2(4), 247.
  • Petersen, J., & Russell, P. (2016). Growth and the environment of Schizosaccharomyces pombe. Cold Spring Harbor Protocols, 2016(3), pdb-top079764.
  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), e45-e45.
  • Rehbein, U., Prentzell, M. T., Cadena Sandoval, M., Heberle, A. M., Henske, E. P., Opitz, C. A., & Thedieck, K. (2021). The TSC complex-mTORC1 axis: from lysosomes to stress granules and back. Frontiers in Cell and Developmental Biology, 9, 751892.
  • Rezzani, R., Corsetti, G., Rodella, L., Angoscini, P., Lonati, C., & Bianchi, R. (2003). Cyclosporine-A treatment inhibits the expression of metabotropic glutamate receptors in rat thymus. Acta Histochemica, 105(1), 81-87.
  • Singh, S., Rekha, P. D., Arun, A. B., Huang, Y. M., Shen, F. T., & Young, C. C. (2011). Wastewater from monosodium glutamate industry as a low cost fertilizer source for corn (Zea mays L.). Biomass and Bioenergy, 35(9), 4001-4007.
  • Singh, M., & Panda, S. P. (2024). The Role of Monosodium Glutamate (MSG) in Epilepsy and other Neurodegenerative Diseases: Phytochemical-based Therapeutic Approa-ches and Mechanisms. Current Pharmaceutical Biotechnology, 25(2), 213-229.
  • Slegtenhorst, M. V., Hoogt, R. D., Hermans, C., Nellist, M., Janssen, B., Verhoef, S., ... & Kwiatkowski, D. J. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 277(5327), 805-808.
  • Umbuzeiro, G. D. A., Heringa, M., & Zeiger, E. (2017). In vitro genotoxicity testing: significance and use in environmental monitoring. In vitro Environmental Toxicology-Concepts, Application and Assessment, 59-80.
  • Vadysirisack, D. D., & Ellisen, L. W. (2012). mTOR activity under hypoxia. mTOR: Methods and Protocols, 45-58.
  • Vyas, A., Freitas, A. V., Ralston, Z. A., & Tang, Z. (2021). Fission yeast Schizosaccharomyces pombe: a unicellular “micromammal” model organism. Current Protocols, 1(6), e151.
  • Wood, V., Harris, M. A., McDowall, M. D., Rutherford, K., Vaughan, B. W., Staines, D. M., ... & Oliver, S. G. (2012). PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Research, 40(D1), D695-D699.
  • Yang, M., Chen, S., Du, J., He, J., Wang, Y., Li, Z., ... & Dong, Z. (2016). NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation. Nature Communications, 7(1), 12730.
  • Zhao, Y., & Lieberman, H. B. (1995). Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA and Cell Biology, 14(5), 359-371.

Monosodium glutamate induces tsc1 gene expression in fission yeast

Year 2025, Volume: 6 Issue: 1, 1 - 8, 30.04.2025

Abstract

Tuberous sclerosis complex (TSC) is a disease of cellular migration and proliferation that produces hamartomas (benign tumors or malignant cancers affecting the brain and skin) and also involves the eyes, lungs, kidneys, and heart in patterns that can vary throughout life. TSC is an autosomal dominantly inherited disease. Alterations in the TSC1 and TSC2 proteins that form the TSC complex are among the factors that cause the emergence of this disease. TSC1 and TSC2 proteins are the suppressors on the mTOR signaling pathway. The health risks of monosodium glutamate, the most commonly used food additive today, are still a controversial issue. However, there are studies revealing that monosodium glutamate has a negative effect on cell proliferation. In the present study, parental and tsc1∆ mutant fission yeast cells were used and the effects of monosodium glutamate on tsc1 gene expression, cell proliferation, and apoptosis were investigated. It was observed that 8 mg/mL monosodium glutamate caused an increase in the expression of the tsc1 gene. It was concluded that monosodium glutamate may disrupt cell homeostasis and affect cell division and apoptosis processes via the mTOR pathway, depending on the increase in the expression of the tsc1 gene.

Supporting Institution

Scientific Research Project Coordination Unit of Istanbul University & Scientific and Technological Research Council of Türkiye (TUBITAK) 2209-A

Project Number

FLO-2024-40570 - TÜBİTAK 2209-A

Thanks

This research was funded by the Scientific Research Project Coordination Unit of Istanbul University, Project No: FLO-2024-40570 and by the Scientific and Technological Research Council of Türkiye (TUBITAK) 2209-A.

References

  • Adhikari, D., Zheng, W., Shen, Y., Gorre, N., Hämäläinen, T., Cooney, A. J., ... & Liu, K. (2010). Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Human Molecular Genetics, 19(3), 397-410.
  • Agus, H. H., Sarp, C., & Cemiloglu, M. (2018). Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in Schizosaccharomyces pombe. Toxicology Research, 7(5), 848-858.
  • Akataobi, U. S. (2020). Effect of monosodium glutamate (MSG) on behavior, body and brain weights of exposed rats. Environmental Disease, 5(1), 3-8.
  • Aronica, E., Specchio, N., Luinenburg, M. J., & Curatolo, P. (2023). Epileptogenesis in tuberous sclerosis complex-related developmental and epileptic encephalopathy. Brain, 146(7), 2694-2710.
  • Ataseven, N., Yuzbasioglu, D., Keskin, A. C., & Unal, F. (2016). Genotoxicity of monosodium glutamate. Food and Chemical Toxicology, 91, 8-18.
  • Awang, H., Aziz, A. S., R Azmi, N. N. A., Saad, N. S., Zamri, N. A. S., & Seman-Kamarulzaman, A. F. (2020). Effect of monosodium glutamate on the growth of solanum melongena. Gading Journal for Science and Technology, 3(1), 52-59.
  • Ballesteros‐Álvarez, J., & Andersen, J. K. (2021). mTORC2: The other mTOR in autophagy regulation. Aging cell, 20(8), e13431.
  • Crino, P. B. (2020). mTORopathies: a road well-traveled. Epilepsy currents, 20(6_suppl), 64S-66S.
  • Curatolo, P., Specchio, N., & Aronica, E. (2022). Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. The Lancet Neurology, 21(9), 843-856.
  • Curatolo, P., Scheper, M., Emberti Gialloreti, L., Specchio, N., & Aronica, E. (2024). Is tuberous sclerosis complex-associated autism a preventable and treatable disorder?. World Journal of Pediatrics, 20(1), 40-53.
  • Farombi, E. O., & Onyema, O. (2006). Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Human & experimental toxicology, 25(5), 251-259.
  • Fingar, D. C., & Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 23(18), 3151-3171.
  • Fonseca, B. D., Smith, E. M., Yelle, N., Alain, T., Bushell, M., & Pause, A. (2014). The ever-evolving role of mTOR in translation. In Seminars in cell & developmental biology (Vol. 36, pp. 102-112). Academic Press.
  • Fu, J., Liang, P., Zheng, Y., Xu, C., Xiong, F., & Yang, F. (2024). A large deletion in TSC2 causes tuberous sclerosis complex by dysregulating PI3K/AKT/mTOR signaling pathway. Gene, 909, 148312.
  • Gonzalez-Burgos, I., Perez-Vega, M. I., & Beas-Zarate, C. (2001). Neonatal exposure to monosodium glutamate induces cell death and dendritic hypotrophy in rat prefrontocortical pyramidal neurons. Neuroscience letters, 297(2), 69-72.
  • Hoffman, C. S., Wood, V., & Fantes, P. A. (2015). An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics, 201(2), 403-423.
  • Holmes, G. L., Stafstrom, C. E., & Tuberous Sclerosis Study Group. (2007). Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia, 48(4), 617-630.
  • Huang, J., & Manning, B. D. (2008). The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J., 412(2), 179-190.
  • Imam, R. S. (2019). Genotoxicity of monosodium glutamate: a review on its causes, consequences and prevention. Indian Journal of Pharmaceutical Education and Research, 53(4), S510-517.
  • Islam, M. P. (2021). Tuberous sclerosis complex. In Seminars in pediatric neurology (Vol. 37, p. 100875). WB Saunders.
  • Johnson, S. C., Sangesland, M., Kaeberlein, M., & Rabinovitch, P. S. (2015). Modulating mTOR in aging and health. Aging and health-A systems biology perspective, 40, 107-127.
  • Kakade, S. S., Bote, H. K., Sarvalkar, P. D., Sharma, K. K. K., & Pawar, P. K. (2024). Effects of Common Food Additives on HepG2 Cells: Accumulation of Reactive Oxygen Species and Induction of Cell Damage and Death. ES Food & Agroforestry, 17, 1142.
  • Kassab, R. B., Theyab, A., Al-Ghamdy, A. O., Algahtani, M., Mufti, A. H., Alsharif, K. F., ... & Elmasry, H. A. (2022). Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. Environmental Science and Pollution Research, 1-14.
  • Kayode, O. T., Bello, J. A., Oguntola, J. A., Kayode, A. A., & Olukoya, D. K. (2023). The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon.
  • Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. S. (2017). Monosodium glutamate: Review on clinical reports. International Journal of Food Properties, 20(sup2), 1807-1815.
  • Kesherwani, R., Bhoumik, S., Kumar, R., & Rizvi, S. I. (2024). Monosodium glutamate even at Low dose may affect oxidative stress, inflammation and neurodegeneration in rats. Indian Journal of Clinical Biochemistry, 39(1), 101-109.
  • Kilic, E. (2021). Tuberoskleroz Kompleksi. Turkiye Klinikleri Pediatric Genetic Diseases-Special Topics, 2(2), 93-99.
  • Kim, J., & Guan, K. L. (2019). mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology, 21(1), 63-71.
  • Kim, J. K., & Lee, J. H. (2019). Mechanistic target of rapamycin pathway in epileptic disorders. Journal of Korean Neurosurgical Society, 62(3), 272-287.
  • Lee, M., & Nurse, P. (1988). Cell cycle control genes in fission yeast and mammalian cells. Trends in Genetics, 4(10), 287-290.
  • Li, Z., Liu, Y., Wang, F., Gao, Z., Elhefny, M. A., Habotta, O. A., ... & Kassab, R. B. (2021). Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis. Chemico-Biological Interactions, 337, 109392.
  • Mallela, K., & Kumar, A. (2021). Role of TSC1 in physiology and diseases. Molecular and cellular biochemistry, 476(6), 2269-2282.
  • Man, A., Di Scipio, M., Grewal, S., Suk, Y., Trinari, E., Ejaz, R., & Whitney, R. (2024). The genetics of tuberous sclerosis complex and related mTORopathies: Current understanding and future directions. Genes, 15(3), 332.
  • Merinas-Amo, T., Merinas-Amo, R., Alonso-Moraga, Á., Font, R., & Del Río Celestino, M. (2024). In vivo and in vitro studies assessing the safety of monosodium glutamate. Foods, 13(23), 3981.
  • Mizuguchi, M., Ohsawa, M., Kashii, H., & Sato, A. (2021). Brain symptoms of tuberous sclerosis complex: pathogenesis and treatment. International Journal of Molecular Sciences, 22(13), 6677.
  • Moavero, R., Mühlebner, A., Luinenburg, M. J., Craiu, D., Aronica, E., & Curatolo, P. (2022). Genetic pathogenesis of the epileptogenic lesions in Tuberous Sclerosis Complex: Therapeutic targeting of the mTOR pathway. Epilepsy & Behavior, 131, 107713.
  • Nabbout, R., Belousova, E., Benedik, M. P., Carter, T., Cottin, V., Curatolo, P., ... & Pruna, D. (2019). Epilepsy in tuberous sclerosis complex: Findings from the TOSCA Study. Epilepsia Open, 4(1), 73-84.
  • Nakashima, A., & Tamanoi, F. (2010). Conservation of the Tsc/Rheb/TORC1/S6K/S6 signaling in fission yeast. In The Enzymes (Vol. 28, pp. 167-187). Academic Press.
  • Niu, W., Siciliano, B., & Wen, Z. (2024). Modeling tuberous sclerosis complex with human induced pluripotent stem cells. World Journal of Pediatrics, 20(3), 208-218.
  • Northrup, H., Koenig, M. K., Pearson, D. A., & Au, K. S. (2021). Tuberous sclerosis complex. University of Washington, Seattle, Seattle (WA), 1-95.
  • Pavlovic, V. (2006). The effect of monosodium glutamate on rat thymocyte proliferation and Bcl-2/bax protein expression. Archives of Medical Science, 2(4), 247.
  • Petersen, J., & Russell, P. (2016). Growth and the environment of Schizosaccharomyces pombe. Cold Spring Harbor Protocols, 2016(3), pdb-top079764.
  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), e45-e45.
  • Rehbein, U., Prentzell, M. T., Cadena Sandoval, M., Heberle, A. M., Henske, E. P., Opitz, C. A., & Thedieck, K. (2021). The TSC complex-mTORC1 axis: from lysosomes to stress granules and back. Frontiers in Cell and Developmental Biology, 9, 751892.
  • Rezzani, R., Corsetti, G., Rodella, L., Angoscini, P., Lonati, C., & Bianchi, R. (2003). Cyclosporine-A treatment inhibits the expression of metabotropic glutamate receptors in rat thymus. Acta Histochemica, 105(1), 81-87.
  • Singh, S., Rekha, P. D., Arun, A. B., Huang, Y. M., Shen, F. T., & Young, C. C. (2011). Wastewater from monosodium glutamate industry as a low cost fertilizer source for corn (Zea mays L.). Biomass and Bioenergy, 35(9), 4001-4007.
  • Singh, M., & Panda, S. P. (2024). The Role of Monosodium Glutamate (MSG) in Epilepsy and other Neurodegenerative Diseases: Phytochemical-based Therapeutic Approa-ches and Mechanisms. Current Pharmaceutical Biotechnology, 25(2), 213-229.
  • Slegtenhorst, M. V., Hoogt, R. D., Hermans, C., Nellist, M., Janssen, B., Verhoef, S., ... & Kwiatkowski, D. J. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 277(5327), 805-808.
  • Umbuzeiro, G. D. A., Heringa, M., & Zeiger, E. (2017). In vitro genotoxicity testing: significance and use in environmental monitoring. In vitro Environmental Toxicology-Concepts, Application and Assessment, 59-80.
  • Vadysirisack, D. D., & Ellisen, L. W. (2012). mTOR activity under hypoxia. mTOR: Methods and Protocols, 45-58.
  • Vyas, A., Freitas, A. V., Ralston, Z. A., & Tang, Z. (2021). Fission yeast Schizosaccharomyces pombe: a unicellular “micromammal” model organism. Current Protocols, 1(6), e151.
  • Wood, V., Harris, M. A., McDowall, M. D., Rutherford, K., Vaughan, B. W., Staines, D. M., ... & Oliver, S. G. (2012). PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Research, 40(D1), D695-D699.
  • Yang, M., Chen, S., Du, J., He, J., Wang, Y., Li, Z., ... & Dong, Z. (2016). NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation. Nature Communications, 7(1), 12730.
  • Zhao, Y., & Lieberman, H. B. (1995). Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA and Cell Biology, 14(5), 359-371.
There are 54 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death
Journal Section Research Articles
Authors

Merve Yılmazer 0000-0003-4382-3763

Damla Kale 0009-0002-6979-354X

Project Number FLO-2024-40570 - TÜBİTAK 2209-A
Publication Date April 30, 2025
Submission Date October 19, 2024
Acceptance Date January 15, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Yılmazer, M., & Kale, D. (2025). Monosodium glutamate induces tsc1 gene expression in fission yeast. Frontiers in Life Sciences and Related Technologies, 6(1), 1-8.

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.