Review
BibTex RIS Cite

Exploring the antioxidant and protective effects of usnic acid: Opportunities and challenges

Year 2025, Volume: 6 Issue: 1, 53 - 59, 30.04.2025
https://doi.org/10.51753/flsrt.1572004

Abstract

Lichens are symbiotic organisms that produce a variety of secondary metabolites, including the well-known usnic acid (C18H16O7), which has garnered attention for its diverse biological activities and potential applications. Usnic acid, primarily found in lichen species such as Usnea and Cladonia, is a yellowish-green compound with notable antimicrobial, antiviral, and anti-inflammatory properties. Its antioxidant activity is particularly significant, with the ability to neutralize free radicals, inhibit lipid peroxidation, and stabilize cell membranes. Usnic acid, a secondary metabolite found in various lichen species, is recognized for its potent antioxidant properties. Its structure, characterized by a dibenzofuran backbone and phenolic hydroxyl groups, allows it to neutralize free radicals and inhibit lipid peroxidation, protecting cells from oxidative stress. Usnic acid can also chelate metal ions like iron and copper, preventing them from catalyzing reactions that produce harmful reactive oxygen species. This antioxidant capacity is of interest in both pharmaceutical and cosmetic fields. Usnic acid’s ability to reduce oxidative damage makes it a promising ingredient in sunscreens and anti-aging products, where it protects the skin from ultraviolet (UV) radiation and environmental pollutants. Additionally, its potential to modulate antioxidant enzymes like superoxide dismutase (SOD) and catalase may further enhance its protective effects against oxidative stress-related damage, including inflammation and cell aging. Usnic acid effectively neutralizes free radicals, and its ability to prevent lipid peroxidation is comparable to that of vitamin E. However, this may vary depending on specific conditions. Vitamin C is particularly potent against ROS types in aqueous environments, but its ability to directly prevent lipid peroxidation is more limited compared to vitamin E or usnic acid. However, the practical use of usnic acid is limited by its potential hepatotoxicity at high concentrations, particularly in systemic applications. Despite these challenges, usnic acid remains a valuable compound for ongoing research, especially for topical products aimed at combating oxidative stress and protecting against skin damage.

References

  • Al Rihani, S. B., Elfakhri, K. H., Ebrahim, H. Y., Al-Ghraiybah, N. F., Alkhalifa, A. E., El Sayed, K. A., & Kaddoumi, A. (2024). The usnic acid analogue 4-FPBUA enhances the blood-brain barrier function and ınduces autophagy in Alzheimer’s disease mouse models. ACS Chemical Neuroscience, 15(17), 3152-3167.
  • Ananthi, R., Tinabaye, A., & Selvaraj, G. (2015). Antioxidant study of usnic acid and its derivative usnic acid diacetate. International Journal of Research in Engineering and Technology, 4(2), 356-366.
  • Antonenko, Y. N., Khailova, L. S., Rokitskaya, T. I., Nosikova, E. S., Nazarov, P. A., Luzina, O. A., Salakhutdinov, N. F., & Kotova, E. A. (2019). Mechanism of action of an old antibiotic revisited: Role of calcium ions in protonophoric activity of usnic acid. Biochimica et Biophysica Acta - Bioenergetics, 1860(4), 310-316.
  • Araújo, A. A. S., de Melo, M. G. D., Rabelo, T. K., Nunes, P. S., Santos, S. L., Serafini, M. R., Santos, M. R. V., Quintans-Júnior, L. J., & Gelain, D. P. (2015). Review of the biological properties and toxicity of usnic acid. Natural Product Research, 29(23), 2167-2180.
  • Armstrong, R., & Bradwell, T. (2010). Growth of crustose lichens: a review. Geografiska Annaler: Series A, Physical Geography, 92(1), 3-17.
  • Aslan Engin, T., Emsen, B., Yilmaz Ozturk, R., Cakir Koc, R., Inan, B., & Ozcimen, D. (2023). Cytotoxicity of Usnea longissima Ach. extracts and its secondary metabolite, usnic acid on different cells. Anatolian Journal of Botany, 7(2), 140-145.
  • Asplund, J., & Wardle, D. A. (2017). How lichens impact on terrestrial community and ecosystem properties. Biological Reviews, 92(3), 1720-1738.
  • Ayusman, S., Duraivadivel, P., Gowtham, H. G., Sharma, S., & Hariprasad, P. (2020). Bioactive constituents, vitamin analysis, antioxidant capacity and α-glucosidase inhibition of Canna indica L. rhizome extracts. Food Bioscience, 35, 100544.
  • Azhamuthu, T., Kathiresan, S., Senkuttuvan, I., Asath, N. A. A., Ravichandran, P., & Vasu, R. (2024). Usnic acid alleviates inflammatory responses and induces apoptotic signaling through inhibiting NF‐ĸB expressions in human oral carcinoma cells. Cell Biochemistry and Function, 42(4), e4074.
  • Balanco, J. M. F., Sussmann, R. A. C., Verdaguer, I. B., Gabriel, H. B., Kimura, E. A., & Katzin, A. M. (2019). Tocopherol biosynthesis in Leishmania (L.) amazonensis promastigotes. FEBS Open Bio, 9(4), 743-754.
  • Bangalore, P. K., Vagolu, S. K., Bollikanda, R. K., Veeragoni, D. K., Choudante, P. C., Misra, S., ... & Kantevari, S. (2019). Usnic acid enaminone-coupled 1, 2, 3-triazoles as antibacterial and antitubercular agents. Journal of Natural Products, 83(1), 26-35.
  • Beckett, R. P., Minibayeva, F., Solhaug, K. A., & Roach, T. (2021). Photoprotection in lichens: adaptations of photobionts to high light. The Lichenologist, 53(1), 21-33.
  • Bhagarathi, L. K., DaSilva, P. N. B., Subramanian, G., Maharaj, G., Kalika-Singh, S., Pestano, F., Phillips-Henry, Z., & Cossiah, C. (2023). An integrative review of the biology and chemistry of lichens and their ecological, ethnopharmacological, pharmaceutical and therapeutic potential. GSC Biological and Pharmaceutical Sciences, 23(3), 92-119.
  • Boustie, J., & Grube, M. (2005). Lichens-a promising source of bioactive secondary metabolites. Plant Genetic Resources, 3(2), 273-287.
  • Brugnoli, B., Perna, G., Alfano, S., Piozzi, A., Galantini, L., Axioti, E., Taresco, V., Mariano, A., Scotto d’Abusco, A., & Vecchio Ciprioti, S. (2024). Nanostructured poly-l-lactide and polyglycerol adipate carriers for the encapsulation of usnic acid: a promising approach for hepatoprotection. Polymers, 16(3), 427.
  • Cakmak, K. C., & Gulcin, I. (2019). Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicology Reports, 6, 1273-1280.
  • Cansaran, D., Kahya, D., Yurdakulol, E., & Atakol, O. (2006). Identification and quantitation of usnic acid from the lichen Usnea species of Anatolia and antimicrobial activity. Zeitschrift Für Naturforschung C, 61(11-12), 773-776.
  • Cazarin, C. A., Dalmagro, A. P., Gonçalves, A. E., Boeing, T., da Silva, L. M., Corrêa, R., Klein-Júnior, L. C., Pinto, B. C., Lorenzett, T. S., & da Costa Sobrinho, T. U. (2021). Usnic acid enantiomers restore cognitive deficits and neurochemical alterations induced by Aβ1-42 in mice. Behavioural Brain Research, 397, 112945.
  • Cocchietto, M., Skert, N., Nimis, P., & Sava, G. (2002). A review on usnic acid, an interesting natural compound. Naturwissenschaften, 89, 137-146.
  • Croce, N., Pitaro, M., Gallo, V., & Antonini, G. (2022). Toxicity of usnic acid: A narrative review. Journal of Toxicology, 2022(1), 8244340.
  • de Souza, J. B., de Lacerda Coriolano, D., dos Santos Silva, R. C., da Costa Júnior, S. D., de Almeida Campos, L. A., Cavalcanti, I. D. L., ... & Cavalcanti, I. M. F. (2024). Ceftazidime and Usnic acid encapsulated in chitosan-coated liposomes for oral administration against colorectal cancer-inducing Escherichia coli. Pharmaceuticals, 17(6), 802.
  • Demir, S., Alemdar, N. T., Yulug, E., Demir, E. A., Durmus, T. B., Mentese, A., & Aliyazicioglu, Y. (2025). Usnic acid suppresses inflammation and endoplasmic reticulum stress in a methotrexate-induced pulmonary toxicity model via modulating Nrf2 pathway. South African Journal of Botany, 177, 572-578.
  • Elkhateeb, W. A., El-Ghwas, D. E., & Daba, G. M. (2022). Lichens uses surprising uses of lichens that improve human life. Journal of Biomedical Research and Environmental Sciences, 3(2), 189-194.
  • Emsen, B., Aslan, A., Togar, B., & Turkez, H. (2016). In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharmaceutical Biology, 54(9), 1748-1762.
  • Emsen, B., Aslan, A., Turkez, H., Taghizadehghalehjoughi, A., & Kaya, A. (2018). The anti‑cancer efficacies of diffractaic, lobaric, and usnic acid: in vitro inhibition of glioma. Journal of Cancer Research and Therapeutics, 14(5), 941-951.
  • Emsen, B., Aslan, A., Yildirim, E., & Ercisli, S. (2013). Toxicity effects of some lichen species extracts against the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Egyptian Journal of Biological Pest Control, 23(2), 193-199.
  • Emsen, B., Turkez, H., Togar, B., & Aslan, A. (2017). Evaluation of antioxidant and cytotoxic effects of olivetoric and physodic acid in cultured human amnion fibroblasts. Human and Experimental Toxicology, 36(4), 376-385.
  • Emsen, B., Yildirim, E., & Aslan, A. (2015). Insecticidal activities of extracts of three lichen species on Sitophilus granarius (L.) (Coleoptera: Curculionidae). Plant Protection Science, 51(3), 156-161.
  • Erdogan, O., Abas, B. I., & Cevik, O. (2023). Usnic Acid Exerts Antiproliferative and Apoptotic Effects by Suppressing NF-B p50 in DU145 Cells. European Journal of Biology, 82(2), 251-257.
  • Fadhila, M., Effendy, S., & Siregar, S. H. (2024). Inclusion complexation of usnic acid-hydroxypropyl-β-cyclodextrin: physicochemical characterization and dissolution rate studies. Research Journal of Pharmacy and Technology, 17(5), 2206-2212.
  • Fernández-Moriano, C., Divakar, P. K., Crespo, A., & Gómez-Serranillos, M. P. (2017). Protective effects of lichen metabolites evernic and usnic acids against redox impairment-mediated cytotoxicity in central nervous system-like cells. Food and Chemical Toxicology, 105, 262-277. https://doi.org/10.1016/j.fct.2017.04.030
  • Furmanek, Ł., Czarnota, P., Tekiela, A., Kapusta, I., & Seaward, M. R. D. (2024). A spectrophotometric analysis of extracted water-soluble phenolic metabolites of lichens. Planta, 260(2), 40.
  • Galanty, A., Koczurkiewicz, P., Wnuk, D., Paw, M., Karnas, E., Podolak, I., Węgrzyn, M., Borusiewicz, M., Madeja, Z., Czyż, J., & Michalik, M. (2017). Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicology In Vitro, 40, 161-169.
  • Galanty, A., Popiół, J., Paczkowska-Walendowska, M., Studzińska-Sroka, E., Paśko, P., Cielecka-Piontek, J., Pękala, E., & Podolak, I. (2021). (+)-Usnic acid as a promising candidate for a safe and stable topical photoprotective agent. Molecules, 26(17), 5224.
  • Gao, X., Campasino, K., Yourick, M. R., Cao, Y., Yourick, J. J., & Sprando, R. L. (2024). Oxidative DNA damage contributes to usnic acid‐induced toxicity in human induced pluripotent stem cell‐derived hepatocytes. Journal of Applied Toxicology, 44(9), 1329-1346.
  • Garrido‐Benavent, I., & Pérez‐Ortega, S. (2017). Past, present, and future research in bipolar lichen‐forming fungi and their photobionts. American Journal of Botany, 104(11), 1660-1674.
  • Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 482(3), 419-425.
  • Gimła, M., & Herman-Antosiewicz, A. (2024). Multifaceted properties of usnic acid in disrupting cancer hallmarks. Biomedicines, 12(10), 2199.
  • Gokalsin, B., Berber, D., Hur, J. S., & Sesal, N. C. (2020). Quorum sensing inhibition properties of lichen forming fungi extracts from Cetrelia species against Pseudomonas aeruginosa. Frontiers in Life Sciences and Related Technologies, 1(1), 22-27.
  • Grube, M. (2024). Lichens. In Fungal Associations (pp. 145-179). Springer.
  • Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
  • Hassan, S. T. S., Šudomová, M., Berchová-Bímová, K., Šmejkal, K., & Echeverría, J. (2019). Psoromic acid, a lichen-derived molecule, inhibits the replication of HSV-1 and HSV-2, and inactivates HSV-1 DNA polymerase: shedding light on antiherpetic properties. Molecules, 24(16), 2912.
  • Honegger, R. (2009). Lichen-forming fungi and their photobionts. In Plant Relationships (pp. 307-333). Springer.
  • Ingólfsdóttir, K. (2002). Usnic acid. Phytochemistry, 61(7), 729-736.
  • Kocer, S., Urus, S., Cakir, A., Gulluce, M., Dıgrak, M., Alan, Y., Aslan, A., Tumer, M., Karadayı, M., Kazaz, C., & Dal, H. (2014). The synthesis, characterization, antimicrobial and antimutagenic activities of hydroxyphenylimino ligands and their metal complexes of usnic acid isolated from Usnea longissima. Dalton Transactions, 43(16), 6148-6164.
  • Kocovic, A., Jeremic, J., Bradic, J., Sovrlic, M., Tomovic, J., Vasiljevic, P., Andjic, M., Draginic, N., Grujovic, M., Mladenovic, K., Jakovljevic, V., & Manojlovic, N. (2022). Phytochemical analysis, antioxidant, antimicrobial, and cytotoxic activity of different extracts of Xanthoparmelia stenophylla lichen from Stara Planina, Serbia. Plants, 11(13), 1624.
  • Kováčik, J., Dresler, S., Peterková, V., and Babula, P. (2018). Metal-induced oxidative stress in terrestrial macrolichens. Chemosphere, 203, 402-409.
  • Kumar, K., Mishra, J. P. N., & Singh, R. P. (2020). Usnic acid induces apoptosis in human gastric cancer cells through ROS generation and DNA damage and causes up-regulation of DNA-PKcs and γ-H2A.X phosphorylation. Chemico-Biological Interactions, 315, 108898.
  • Kwong, S. P., & Wang, C. (2020). Usnic acid-induced hepatotoxicity and cell death. Environmental Toxicology and Pharmacology, 80, 103493.
  • Luzina, O. A., & Salakhutdinov, N. F. (2018). Usnic acid and its derivatives for pharmaceutical use: a patent review (2000-2017). Expert Opinion on Therapeutic Patents, 28(6), 477-491.
  • Martin-Cordero, C., Jose Leon-Gonzalez, A., Manuel Calderon-Montano, J., Burgos-Moron, E., & Lopez-Lazaro, M. (2012). Pro-oxidant natural products as anticancer agents. Current Drug Targets, 13(8), 1006-1028.
  • Millot, M., Dieu, A., & Tomasi, S. (2016). Dibenzofurans and derivatives from lichens and ascomycetes. Natural Product Reports, 33(6), 801-811.
  • Mittal, S., Ashhar, M. U., Ahuja, A., Ali, J., & Baboota, S. (2021). Role of natural bioactives and their nanocarriers for overcoming oxidative stress induced cancer. Current Medicinal Chemistry, 28(36), 7477-7512.
  • Morillas, L., Roales, J., Cruz, C., & Munzi, S. (2022). Lichen as multipartner symbiotic relationships. Encyclopedia, 2(3), 1421-1431.
  • Nie, W. Z., Shen, Q. K., Quan, Z. S., Guo, H. Y., & Li, Y. M. (2024). Bioactivities and Structure-Activity Relationships of Usnic Acid Derivatives: A Review. Mini Reviews in Medicinal Chemistry, 24(14), 1368-1384.
  • Ozben, R., & Cansaran-Duman, D. (2020). The expression profiles of apoptosis-related genes induced usnic acid in SK-BR-3 breast cancer cell. Human and Experimental Toxicology.
  • Pandit, S., Kim, M.-A., Jung, J.-E., Choi, H.-M., & Jeon, J.-G. (2024). Usnic acid brief exposure suppresses cariogenic properties and complexity of Streptococcus mutans biofilms. Biofilm, 8, 100241.
  • Paździora, W., Podolak, I., Grudzińska, M., Paśko, P., Grabowska, K., & Galanty, A. (2023). Critical assessment of the anti-Inflammatory potential of usnic acid and its derivatives—A review. Life, 13(4), 1046.
  • Piska, K., Galanty, A., Koczurkiewicz, P., Żmudzki, P., Potaczek, J., Podolak, I., & Pękala, E. (2018). Usnic acid reactive metabolites formation in human, rat, and mice microsomes. Implication for hepatotoxicity. Food and Chemical Toxicology, 120, 112-118.
  • Popovici, V., Bucur, L., Popescu, A., Caraiane, A., & Badea, V. (2018). Determination of the content in usnic acid and polyphenols from the extracts of Usnea barbata L. and the evaluation of their antioxidant activity. Farmacia, 66(2), 337-341.
  • Popovici, V., Matei, E., Cozaru, G. C., Aschie, M., Bucur, L., Rambu, D., Costache, T., Cucolea, I. E., Vochita, G., & Gherghel, D. (2021). Usnic acid and Usnea barbata (L.) FH wigg. dry extracts promote apoptosis and DNA damage in human blood cells through enhancing ROS levels. Antioxidants, 10(8), 1171.
  • Ramakrishnan, V., Aiswarya, P. S., Pallavi, K., Husain, R. S. A., & Ahmed, S. S. S. J. (2020). Photoaging and anti‐photoaging activity of compounds derived from marine origin. Encyclopedia of Marine Biotechnology, 3, 1641-1657.
  • Ramaraj, J. A., & Narayan, S. (2024). Anti-aging strategies and topical delivery of biopolymer-based nanocarriers for skin cancer treatment. Current Aging Science, 17(1), 31-48.
  • Rather, L. J., Jameel, S., Ganie, S. A., & Bhat, K. A. (2018). Lichen derived natural colorants: history, extraction, and applications. Handbook of Renewable Materials for Coloration and Finishing, 1, 103-114.
  • Recknagel, R. O., Glende, E. A., & Britton, R. S. (2020). Free radical damage and lipid peroxidation. In Hepatotoxicology (pp. 401-436). CRC press.
  • Reddy, R. G., Veeraval, L., Maitra, S., Chollet-Krugler, M., Tomasi, S., Dévéhat, F. L. Le, Boustie, J., & Chakravarty, S. (2016). Lichen-derived compounds show potential for central nervous system therapeutics. Phytomedicine, 23(12), 1527-1534.
  • Rojas, J., Londoño, C., & Ciro, Y. (2016). The health benefits of natural skin UVA photoprotective compounds found in botanical sources. International Journal of Pharmacy and Pharmaceutical Sciences, 8(3), 13-23.
  • Salian, A., Dutta, S., & Mandal, S. (2021). A roadmap to UV-protective natural resources: classification, characteristics, and applications. Materials Chemistry Frontiers, 5(21), 7696-7723.
  • Sanchez, W., Maple, J. T., Burgart, L. J., & Kamath, P. S. (2006). Severe hepatotoxicity associated with use of a dietary supplement containing usnic acid. Mayo Clinic Proceedings, 81(4), 541-544.
  • Sepahvand, A., Studzińska-Sroka, E., Ramak, P., & Karimian, V. (2021). Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. Journal of Ethnopharmacology, 268, 113656.
  • Shah, A. A., Badshah, L., Muhammad, M., Basit, A., Ullah, I., Mohamed, H. I., & Khan, A. (2024). Secondary metabolites of lichens and their application. In Fungal Secondary Metabolites (pp. 91-115). Elsevier.
  • Shcherbakova, A., Strömstedt, A. A., Göransson, U., Gnezdilov, O., Turanov, A., Boldbaatar, D., Kochkin, D., Ulrich-Merzenich, G., & Koptina, A. (2021). Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates. World Journal of Microbiology and Biotechnology, 37(8), 129.
  • Shukla, A. K., Yadav, V. K., Mishra, R. K., Kumar, M., Sharma, M., Dev, S. K., & Maurya, R. (2023). Role of Usnic acid and its derivatives in the management of cancer. Asian Journal of Pharmacy and Pharmacology, 9(1), 6-12.
  • Singh, N., Nambiar, D., Kale, R. K., & Singh, R. P. (2013). Usnic acid inhibits growth and induces cell cycle arrest and apoptosis in human lung carcinoma A549 cells. Nutrition and Cancer, 65(sup1), 36-43.
  • Su, Z. Q., Mo, Z. Z., Liao, J. Bin, Feng, X. X., Liang, Y. Z., Zhang, X., Liu, Y. H., Chen, X. Y., Chen, Z. W., Su, Z. R., & Lai, X. P. (2014). Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress. International Immunopharmacology, 22(2), 371-378.
  • Suwalsky, M., Jemiola-Rzeminska, M., Astudillo, C., Gallardo, M. J., Staforelli, J. P., Villena, F., & Strzalka, K. (2015). An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane. Biochimica et Biophysica Acta-Biomembranes, 1848(11), 2829-2838.
  • Thakur, M., Kasi, I. K., Islary, P., & Bhatti, S. K. (2023). Nutritional and health-promoting effects of lichens used in food applications. Current Nutrition Reports, 12(4), 555-566.
  • Toksoz, O. (2023). Geçmişten günümüze potansiyel hammadde kaynağı: Likenler. Frontiers in Life Sciences and Related Technologies, 4(SI), 38-44.
  • Tripathi, A. H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L. M., Joshi, Y., Bajpai, R., Upreti, D. K., & Upadhyay, S. K. (2021). A review of anti-cancer and related properties of lichen-extracts and metabolites. Anti-Cancer Agents in Medicinal Chemistry, 22(1), 115-142.
  • Turkez, H., Aydin, E., & Aslan, A. (2014). Role of aqueous Bryoria capillaris (Ach.) extract as a genoprotective agent on imazalil-induced genotoxicity in vitro. Toxicology and Industrial Health, 30(1), 33-39.
  • Unver, H., Berber, B., Demirel, R., & Koparal, A. T. (2019). Design, synthesis, anti-proliferative, anti-microbial, anti-angiogenic activity and in silico analysis of novel hydrazone derivatives. Anti-Cancer Agents in Medicinal Chemistry, 19(13), 1658-1669.
  • Ureña-Vacas, I., González-Burgos, E., Divakar, P. K., & Gómez-Serranillos, M. P. (2023). Lichen depsides and tridepsides: progress in pharmacological approaches. Journal of Fungi, 9(1), 116.
  • Verma, N., Behera, B. C., & Sharma, B. O. (2012). Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid, sekikaic acid and usnic acid. Hacettepe Journal of Biology and Chemistry, 40(1), 7-21.
  • White, P. A. S., Oliveira, R. C. M., Oliveira, A. P., Serafini, M. R., Araújo, A. A. S., Gelain, D. P., Moreira, J. C. F., Almeida, J. R. G. S., Quintans, J. S. S., & Quintans-Junior, L. J. (2014). Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review. Molecules, 19(9), 14496-14527.
  • Wu, Y., Gan, D., Leng, X., He, W., Zhang, X., Li, C., Gu, X., Hu, Y., Du, S., & Han, Y. (2022). Anti-ageing and anti-lung carcinoma effects of vulpinic acid and usnic acid compounds and biological investigations with molecular modeling study. Journal of Oleo Science, 71(2), 247-255.
  • Xu, M., Heidmarsson, S., Olafsdottir, E. S., Buonfiglio, R., Kogej, T., & Omarsdottir, S. (2016). Secondary metabolites from cetrarioid lichens: chemotaxonomy, biological activities and pharmaceutical potential. Phytomedicine, 23(5), 441-459.
  • Yildirim, E., Aslan, A., Emsen, B., Cakir, A., & Ercisli, S. (2012b). Insecticidal effect of Usnea longissima (Parmeliaceae) extract against Sitophilus granarius (Coleoptera: Curculionidae). International Journal of Agriculture and Biology, 14(2), 303-306.
  • Yildirim, E., Emsen, B., Aslan, A., Bulak, Y., & Ercisli, S. (2012a). Insecticidal activity of lichens against the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egyptian Journal of Biological Pest Control, 22(2), 151-156.
  • Yousuf, S., & Choudhary, M. I. (2014). Lichens: chemistry and biological activities. Studies in Natural Products Chemistryroducts Chemistry, 43, 223-259.

Exploring the antioxidant and protective effects of usnic acid: Opportunities and challenges

Year 2025, Volume: 6 Issue: 1, 53 - 59, 30.04.2025
https://doi.org/10.51753/flsrt.1572004

Abstract

Lichens are symbiotic organisms that produce a variety of secondary metabolites, including the well-known usnic acid (C18H16O7), which has garnered attention for its diverse biological activities and potential applications. Usnic acid, primarily found in lichen species such as Usnea and Cladonia, is a yellowish-green compound with notable antimicrobial, antiviral, and anti-inflammatory properties. Its antioxidant activity is particularly significant, with the ability to neutralize free radicals, inhibit lipid peroxidation, and stabilize cell membranes. Usnic acid, a secondary metabolite found in various lichen species, is recognized for its potent antioxidant properties. Its structure, characterized by a dibenzofuran backbone and phenolic hydroxyl groups, allows it to neutralize free radicals and inhibit lipid peroxidation, protecting cells from oxidative stress. Usnic acid can also chelate metal ions like iron and copper, preventing them from catalyzing reactions that produce harmful reactive oxygen species. This antioxidant capacity is of interest in both pharmaceutical and cosmetic fields. Usnic acid’s ability to reduce oxidative damage makes it a promising ingredient in sunscreens and anti-aging products, where it protects the skin from ultraviolet (UV) radiation and environmental pollutants. Additionally, its potential to modulate antioxidant enzymes like superoxide dismutase (SOD) and catalase may further enhance its protective effects against oxidative stress-related damage, including inflammation and cell aging. Usnic acid effectively neutralizes free radicals, and its ability to prevent lipid peroxidation is comparable to that of vitamin E. However, this may vary depending on specific conditions. Vitamin C is particularly potent against ROS types in aqueous environments, but its ability to directly prevent lipid peroxidation is more limited compared to vitamin E or usnic acid. However, the practical use of usnic acid is limited by its potential hepatotoxicity at high concentrations, particularly in systemic applications. Despite these challenges, usnic acid remains a valuable compound for ongoing research, especially for topical products aimed at combating oxidative stress and protecting against skin damage.

References

  • Al Rihani, S. B., Elfakhri, K. H., Ebrahim, H. Y., Al-Ghraiybah, N. F., Alkhalifa, A. E., El Sayed, K. A., & Kaddoumi, A. (2024). The usnic acid analogue 4-FPBUA enhances the blood-brain barrier function and ınduces autophagy in Alzheimer’s disease mouse models. ACS Chemical Neuroscience, 15(17), 3152-3167.
  • Ananthi, R., Tinabaye, A., & Selvaraj, G. (2015). Antioxidant study of usnic acid and its derivative usnic acid diacetate. International Journal of Research in Engineering and Technology, 4(2), 356-366.
  • Antonenko, Y. N., Khailova, L. S., Rokitskaya, T. I., Nosikova, E. S., Nazarov, P. A., Luzina, O. A., Salakhutdinov, N. F., & Kotova, E. A. (2019). Mechanism of action of an old antibiotic revisited: Role of calcium ions in protonophoric activity of usnic acid. Biochimica et Biophysica Acta - Bioenergetics, 1860(4), 310-316.
  • Araújo, A. A. S., de Melo, M. G. D., Rabelo, T. K., Nunes, P. S., Santos, S. L., Serafini, M. R., Santos, M. R. V., Quintans-Júnior, L. J., & Gelain, D. P. (2015). Review of the biological properties and toxicity of usnic acid. Natural Product Research, 29(23), 2167-2180.
  • Armstrong, R., & Bradwell, T. (2010). Growth of crustose lichens: a review. Geografiska Annaler: Series A, Physical Geography, 92(1), 3-17.
  • Aslan Engin, T., Emsen, B., Yilmaz Ozturk, R., Cakir Koc, R., Inan, B., & Ozcimen, D. (2023). Cytotoxicity of Usnea longissima Ach. extracts and its secondary metabolite, usnic acid on different cells. Anatolian Journal of Botany, 7(2), 140-145.
  • Asplund, J., & Wardle, D. A. (2017). How lichens impact on terrestrial community and ecosystem properties. Biological Reviews, 92(3), 1720-1738.
  • Ayusman, S., Duraivadivel, P., Gowtham, H. G., Sharma, S., & Hariprasad, P. (2020). Bioactive constituents, vitamin analysis, antioxidant capacity and α-glucosidase inhibition of Canna indica L. rhizome extracts. Food Bioscience, 35, 100544.
  • Azhamuthu, T., Kathiresan, S., Senkuttuvan, I., Asath, N. A. A., Ravichandran, P., & Vasu, R. (2024). Usnic acid alleviates inflammatory responses and induces apoptotic signaling through inhibiting NF‐ĸB expressions in human oral carcinoma cells. Cell Biochemistry and Function, 42(4), e4074.
  • Balanco, J. M. F., Sussmann, R. A. C., Verdaguer, I. B., Gabriel, H. B., Kimura, E. A., & Katzin, A. M. (2019). Tocopherol biosynthesis in Leishmania (L.) amazonensis promastigotes. FEBS Open Bio, 9(4), 743-754.
  • Bangalore, P. K., Vagolu, S. K., Bollikanda, R. K., Veeragoni, D. K., Choudante, P. C., Misra, S., ... & Kantevari, S. (2019). Usnic acid enaminone-coupled 1, 2, 3-triazoles as antibacterial and antitubercular agents. Journal of Natural Products, 83(1), 26-35.
  • Beckett, R. P., Minibayeva, F., Solhaug, K. A., & Roach, T. (2021). Photoprotection in lichens: adaptations of photobionts to high light. The Lichenologist, 53(1), 21-33.
  • Bhagarathi, L. K., DaSilva, P. N. B., Subramanian, G., Maharaj, G., Kalika-Singh, S., Pestano, F., Phillips-Henry, Z., & Cossiah, C. (2023). An integrative review of the biology and chemistry of lichens and their ecological, ethnopharmacological, pharmaceutical and therapeutic potential. GSC Biological and Pharmaceutical Sciences, 23(3), 92-119.
  • Boustie, J., & Grube, M. (2005). Lichens-a promising source of bioactive secondary metabolites. Plant Genetic Resources, 3(2), 273-287.
  • Brugnoli, B., Perna, G., Alfano, S., Piozzi, A., Galantini, L., Axioti, E., Taresco, V., Mariano, A., Scotto d’Abusco, A., & Vecchio Ciprioti, S. (2024). Nanostructured poly-l-lactide and polyglycerol adipate carriers for the encapsulation of usnic acid: a promising approach for hepatoprotection. Polymers, 16(3), 427.
  • Cakmak, K. C., & Gulcin, I. (2019). Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicology Reports, 6, 1273-1280.
  • Cansaran, D., Kahya, D., Yurdakulol, E., & Atakol, O. (2006). Identification and quantitation of usnic acid from the lichen Usnea species of Anatolia and antimicrobial activity. Zeitschrift Für Naturforschung C, 61(11-12), 773-776.
  • Cazarin, C. A., Dalmagro, A. P., Gonçalves, A. E., Boeing, T., da Silva, L. M., Corrêa, R., Klein-Júnior, L. C., Pinto, B. C., Lorenzett, T. S., & da Costa Sobrinho, T. U. (2021). Usnic acid enantiomers restore cognitive deficits and neurochemical alterations induced by Aβ1-42 in mice. Behavioural Brain Research, 397, 112945.
  • Cocchietto, M., Skert, N., Nimis, P., & Sava, G. (2002). A review on usnic acid, an interesting natural compound. Naturwissenschaften, 89, 137-146.
  • Croce, N., Pitaro, M., Gallo, V., & Antonini, G. (2022). Toxicity of usnic acid: A narrative review. Journal of Toxicology, 2022(1), 8244340.
  • de Souza, J. B., de Lacerda Coriolano, D., dos Santos Silva, R. C., da Costa Júnior, S. D., de Almeida Campos, L. A., Cavalcanti, I. D. L., ... & Cavalcanti, I. M. F. (2024). Ceftazidime and Usnic acid encapsulated in chitosan-coated liposomes for oral administration against colorectal cancer-inducing Escherichia coli. Pharmaceuticals, 17(6), 802.
  • Demir, S., Alemdar, N. T., Yulug, E., Demir, E. A., Durmus, T. B., Mentese, A., & Aliyazicioglu, Y. (2025). Usnic acid suppresses inflammation and endoplasmic reticulum stress in a methotrexate-induced pulmonary toxicity model via modulating Nrf2 pathway. South African Journal of Botany, 177, 572-578.
  • Elkhateeb, W. A., El-Ghwas, D. E., & Daba, G. M. (2022). Lichens uses surprising uses of lichens that improve human life. Journal of Biomedical Research and Environmental Sciences, 3(2), 189-194.
  • Emsen, B., Aslan, A., Togar, B., & Turkez, H. (2016). In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharmaceutical Biology, 54(9), 1748-1762.
  • Emsen, B., Aslan, A., Turkez, H., Taghizadehghalehjoughi, A., & Kaya, A. (2018). The anti‑cancer efficacies of diffractaic, lobaric, and usnic acid: in vitro inhibition of glioma. Journal of Cancer Research and Therapeutics, 14(5), 941-951.
  • Emsen, B., Aslan, A., Yildirim, E., & Ercisli, S. (2013). Toxicity effects of some lichen species extracts against the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Egyptian Journal of Biological Pest Control, 23(2), 193-199.
  • Emsen, B., Turkez, H., Togar, B., & Aslan, A. (2017). Evaluation of antioxidant and cytotoxic effects of olivetoric and physodic acid in cultured human amnion fibroblasts. Human and Experimental Toxicology, 36(4), 376-385.
  • Emsen, B., Yildirim, E., & Aslan, A. (2015). Insecticidal activities of extracts of three lichen species on Sitophilus granarius (L.) (Coleoptera: Curculionidae). Plant Protection Science, 51(3), 156-161.
  • Erdogan, O., Abas, B. I., & Cevik, O. (2023). Usnic Acid Exerts Antiproliferative and Apoptotic Effects by Suppressing NF-B p50 in DU145 Cells. European Journal of Biology, 82(2), 251-257.
  • Fadhila, M., Effendy, S., & Siregar, S. H. (2024). Inclusion complexation of usnic acid-hydroxypropyl-β-cyclodextrin: physicochemical characterization and dissolution rate studies. Research Journal of Pharmacy and Technology, 17(5), 2206-2212.
  • Fernández-Moriano, C., Divakar, P. K., Crespo, A., & Gómez-Serranillos, M. P. (2017). Protective effects of lichen metabolites evernic and usnic acids against redox impairment-mediated cytotoxicity in central nervous system-like cells. Food and Chemical Toxicology, 105, 262-277. https://doi.org/10.1016/j.fct.2017.04.030
  • Furmanek, Ł., Czarnota, P., Tekiela, A., Kapusta, I., & Seaward, M. R. D. (2024). A spectrophotometric analysis of extracted water-soluble phenolic metabolites of lichens. Planta, 260(2), 40.
  • Galanty, A., Koczurkiewicz, P., Wnuk, D., Paw, M., Karnas, E., Podolak, I., Węgrzyn, M., Borusiewicz, M., Madeja, Z., Czyż, J., & Michalik, M. (2017). Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicology In Vitro, 40, 161-169.
  • Galanty, A., Popiół, J., Paczkowska-Walendowska, M., Studzińska-Sroka, E., Paśko, P., Cielecka-Piontek, J., Pękala, E., & Podolak, I. (2021). (+)-Usnic acid as a promising candidate for a safe and stable topical photoprotective agent. Molecules, 26(17), 5224.
  • Gao, X., Campasino, K., Yourick, M. R., Cao, Y., Yourick, J. J., & Sprando, R. L. (2024). Oxidative DNA damage contributes to usnic acid‐induced toxicity in human induced pluripotent stem cell‐derived hepatocytes. Journal of Applied Toxicology, 44(9), 1329-1346.
  • Garrido‐Benavent, I., & Pérez‐Ortega, S. (2017). Past, present, and future research in bipolar lichen‐forming fungi and their photobionts. American Journal of Botany, 104(11), 1660-1674.
  • Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 482(3), 419-425.
  • Gimła, M., & Herman-Antosiewicz, A. (2024). Multifaceted properties of usnic acid in disrupting cancer hallmarks. Biomedicines, 12(10), 2199.
  • Gokalsin, B., Berber, D., Hur, J. S., & Sesal, N. C. (2020). Quorum sensing inhibition properties of lichen forming fungi extracts from Cetrelia species against Pseudomonas aeruginosa. Frontiers in Life Sciences and Related Technologies, 1(1), 22-27.
  • Grube, M. (2024). Lichens. In Fungal Associations (pp. 145-179). Springer.
  • Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
  • Hassan, S. T. S., Šudomová, M., Berchová-Bímová, K., Šmejkal, K., & Echeverría, J. (2019). Psoromic acid, a lichen-derived molecule, inhibits the replication of HSV-1 and HSV-2, and inactivates HSV-1 DNA polymerase: shedding light on antiherpetic properties. Molecules, 24(16), 2912.
  • Honegger, R. (2009). Lichen-forming fungi and their photobionts. In Plant Relationships (pp. 307-333). Springer.
  • Ingólfsdóttir, K. (2002). Usnic acid. Phytochemistry, 61(7), 729-736.
  • Kocer, S., Urus, S., Cakir, A., Gulluce, M., Dıgrak, M., Alan, Y., Aslan, A., Tumer, M., Karadayı, M., Kazaz, C., & Dal, H. (2014). The synthesis, characterization, antimicrobial and antimutagenic activities of hydroxyphenylimino ligands and their metal complexes of usnic acid isolated from Usnea longissima. Dalton Transactions, 43(16), 6148-6164.
  • Kocovic, A., Jeremic, J., Bradic, J., Sovrlic, M., Tomovic, J., Vasiljevic, P., Andjic, M., Draginic, N., Grujovic, M., Mladenovic, K., Jakovljevic, V., & Manojlovic, N. (2022). Phytochemical analysis, antioxidant, antimicrobial, and cytotoxic activity of different extracts of Xanthoparmelia stenophylla lichen from Stara Planina, Serbia. Plants, 11(13), 1624.
  • Kováčik, J., Dresler, S., Peterková, V., and Babula, P. (2018). Metal-induced oxidative stress in terrestrial macrolichens. Chemosphere, 203, 402-409.
  • Kumar, K., Mishra, J. P. N., & Singh, R. P. (2020). Usnic acid induces apoptosis in human gastric cancer cells through ROS generation and DNA damage and causes up-regulation of DNA-PKcs and γ-H2A.X phosphorylation. Chemico-Biological Interactions, 315, 108898.
  • Kwong, S. P., & Wang, C. (2020). Usnic acid-induced hepatotoxicity and cell death. Environmental Toxicology and Pharmacology, 80, 103493.
  • Luzina, O. A., & Salakhutdinov, N. F. (2018). Usnic acid and its derivatives for pharmaceutical use: a patent review (2000-2017). Expert Opinion on Therapeutic Patents, 28(6), 477-491.
  • Martin-Cordero, C., Jose Leon-Gonzalez, A., Manuel Calderon-Montano, J., Burgos-Moron, E., & Lopez-Lazaro, M. (2012). Pro-oxidant natural products as anticancer agents. Current Drug Targets, 13(8), 1006-1028.
  • Millot, M., Dieu, A., & Tomasi, S. (2016). Dibenzofurans and derivatives from lichens and ascomycetes. Natural Product Reports, 33(6), 801-811.
  • Mittal, S., Ashhar, M. U., Ahuja, A., Ali, J., & Baboota, S. (2021). Role of natural bioactives and their nanocarriers for overcoming oxidative stress induced cancer. Current Medicinal Chemistry, 28(36), 7477-7512.
  • Morillas, L., Roales, J., Cruz, C., & Munzi, S. (2022). Lichen as multipartner symbiotic relationships. Encyclopedia, 2(3), 1421-1431.
  • Nie, W. Z., Shen, Q. K., Quan, Z. S., Guo, H. Y., & Li, Y. M. (2024). Bioactivities and Structure-Activity Relationships of Usnic Acid Derivatives: A Review. Mini Reviews in Medicinal Chemistry, 24(14), 1368-1384.
  • Ozben, R., & Cansaran-Duman, D. (2020). The expression profiles of apoptosis-related genes induced usnic acid in SK-BR-3 breast cancer cell. Human and Experimental Toxicology.
  • Pandit, S., Kim, M.-A., Jung, J.-E., Choi, H.-M., & Jeon, J.-G. (2024). Usnic acid brief exposure suppresses cariogenic properties and complexity of Streptococcus mutans biofilms. Biofilm, 8, 100241.
  • Paździora, W., Podolak, I., Grudzińska, M., Paśko, P., Grabowska, K., & Galanty, A. (2023). Critical assessment of the anti-Inflammatory potential of usnic acid and its derivatives—A review. Life, 13(4), 1046.
  • Piska, K., Galanty, A., Koczurkiewicz, P., Żmudzki, P., Potaczek, J., Podolak, I., & Pękala, E. (2018). Usnic acid reactive metabolites formation in human, rat, and mice microsomes. Implication for hepatotoxicity. Food and Chemical Toxicology, 120, 112-118.
  • Popovici, V., Bucur, L., Popescu, A., Caraiane, A., & Badea, V. (2018). Determination of the content in usnic acid and polyphenols from the extracts of Usnea barbata L. and the evaluation of their antioxidant activity. Farmacia, 66(2), 337-341.
  • Popovici, V., Matei, E., Cozaru, G. C., Aschie, M., Bucur, L., Rambu, D., Costache, T., Cucolea, I. E., Vochita, G., & Gherghel, D. (2021). Usnic acid and Usnea barbata (L.) FH wigg. dry extracts promote apoptosis and DNA damage in human blood cells through enhancing ROS levels. Antioxidants, 10(8), 1171.
  • Ramakrishnan, V., Aiswarya, P. S., Pallavi, K., Husain, R. S. A., & Ahmed, S. S. S. J. (2020). Photoaging and anti‐photoaging activity of compounds derived from marine origin. Encyclopedia of Marine Biotechnology, 3, 1641-1657.
  • Ramaraj, J. A., & Narayan, S. (2024). Anti-aging strategies and topical delivery of biopolymer-based nanocarriers for skin cancer treatment. Current Aging Science, 17(1), 31-48.
  • Rather, L. J., Jameel, S., Ganie, S. A., & Bhat, K. A. (2018). Lichen derived natural colorants: history, extraction, and applications. Handbook of Renewable Materials for Coloration and Finishing, 1, 103-114.
  • Recknagel, R. O., Glende, E. A., & Britton, R. S. (2020). Free radical damage and lipid peroxidation. In Hepatotoxicology (pp. 401-436). CRC press.
  • Reddy, R. G., Veeraval, L., Maitra, S., Chollet-Krugler, M., Tomasi, S., Dévéhat, F. L. Le, Boustie, J., & Chakravarty, S. (2016). Lichen-derived compounds show potential for central nervous system therapeutics. Phytomedicine, 23(12), 1527-1534.
  • Rojas, J., Londoño, C., & Ciro, Y. (2016). The health benefits of natural skin UVA photoprotective compounds found in botanical sources. International Journal of Pharmacy and Pharmaceutical Sciences, 8(3), 13-23.
  • Salian, A., Dutta, S., & Mandal, S. (2021). A roadmap to UV-protective natural resources: classification, characteristics, and applications. Materials Chemistry Frontiers, 5(21), 7696-7723.
  • Sanchez, W., Maple, J. T., Burgart, L. J., & Kamath, P. S. (2006). Severe hepatotoxicity associated with use of a dietary supplement containing usnic acid. Mayo Clinic Proceedings, 81(4), 541-544.
  • Sepahvand, A., Studzińska-Sroka, E., Ramak, P., & Karimian, V. (2021). Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. Journal of Ethnopharmacology, 268, 113656.
  • Shah, A. A., Badshah, L., Muhammad, M., Basit, A., Ullah, I., Mohamed, H. I., & Khan, A. (2024). Secondary metabolites of lichens and their application. In Fungal Secondary Metabolites (pp. 91-115). Elsevier.
  • Shcherbakova, A., Strömstedt, A. A., Göransson, U., Gnezdilov, O., Turanov, A., Boldbaatar, D., Kochkin, D., Ulrich-Merzenich, G., & Koptina, A. (2021). Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates. World Journal of Microbiology and Biotechnology, 37(8), 129.
  • Shukla, A. K., Yadav, V. K., Mishra, R. K., Kumar, M., Sharma, M., Dev, S. K., & Maurya, R. (2023). Role of Usnic acid and its derivatives in the management of cancer. Asian Journal of Pharmacy and Pharmacology, 9(1), 6-12.
  • Singh, N., Nambiar, D., Kale, R. K., & Singh, R. P. (2013). Usnic acid inhibits growth and induces cell cycle arrest and apoptosis in human lung carcinoma A549 cells. Nutrition and Cancer, 65(sup1), 36-43.
  • Su, Z. Q., Mo, Z. Z., Liao, J. Bin, Feng, X. X., Liang, Y. Z., Zhang, X., Liu, Y. H., Chen, X. Y., Chen, Z. W., Su, Z. R., & Lai, X. P. (2014). Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress. International Immunopharmacology, 22(2), 371-378.
  • Suwalsky, M., Jemiola-Rzeminska, M., Astudillo, C., Gallardo, M. J., Staforelli, J. P., Villena, F., & Strzalka, K. (2015). An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane. Biochimica et Biophysica Acta-Biomembranes, 1848(11), 2829-2838.
  • Thakur, M., Kasi, I. K., Islary, P., & Bhatti, S. K. (2023). Nutritional and health-promoting effects of lichens used in food applications. Current Nutrition Reports, 12(4), 555-566.
  • Toksoz, O. (2023). Geçmişten günümüze potansiyel hammadde kaynağı: Likenler. Frontiers in Life Sciences and Related Technologies, 4(SI), 38-44.
  • Tripathi, A. H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L. M., Joshi, Y., Bajpai, R., Upreti, D. K., & Upadhyay, S. K. (2021). A review of anti-cancer and related properties of lichen-extracts and metabolites. Anti-Cancer Agents in Medicinal Chemistry, 22(1), 115-142.
  • Turkez, H., Aydin, E., & Aslan, A. (2014). Role of aqueous Bryoria capillaris (Ach.) extract as a genoprotective agent on imazalil-induced genotoxicity in vitro. Toxicology and Industrial Health, 30(1), 33-39.
  • Unver, H., Berber, B., Demirel, R., & Koparal, A. T. (2019). Design, synthesis, anti-proliferative, anti-microbial, anti-angiogenic activity and in silico analysis of novel hydrazone derivatives. Anti-Cancer Agents in Medicinal Chemistry, 19(13), 1658-1669.
  • Ureña-Vacas, I., González-Burgos, E., Divakar, P. K., & Gómez-Serranillos, M. P. (2023). Lichen depsides and tridepsides: progress in pharmacological approaches. Journal of Fungi, 9(1), 116.
  • Verma, N., Behera, B. C., & Sharma, B. O. (2012). Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid, sekikaic acid and usnic acid. Hacettepe Journal of Biology and Chemistry, 40(1), 7-21.
  • White, P. A. S., Oliveira, R. C. M., Oliveira, A. P., Serafini, M. R., Araújo, A. A. S., Gelain, D. P., Moreira, J. C. F., Almeida, J. R. G. S., Quintans, J. S. S., & Quintans-Junior, L. J. (2014). Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review. Molecules, 19(9), 14496-14527.
  • Wu, Y., Gan, D., Leng, X., He, W., Zhang, X., Li, C., Gu, X., Hu, Y., Du, S., & Han, Y. (2022). Anti-ageing and anti-lung carcinoma effects of vulpinic acid and usnic acid compounds and biological investigations with molecular modeling study. Journal of Oleo Science, 71(2), 247-255.
  • Xu, M., Heidmarsson, S., Olafsdottir, E. S., Buonfiglio, R., Kogej, T., & Omarsdottir, S. (2016). Secondary metabolites from cetrarioid lichens: chemotaxonomy, biological activities and pharmaceutical potential. Phytomedicine, 23(5), 441-459.
  • Yildirim, E., Aslan, A., Emsen, B., Cakir, A., & Ercisli, S. (2012b). Insecticidal effect of Usnea longissima (Parmeliaceae) extract against Sitophilus granarius (Coleoptera: Curculionidae). International Journal of Agriculture and Biology, 14(2), 303-306.
  • Yildirim, E., Emsen, B., Aslan, A., Bulak, Y., & Ercisli, S. (2012a). Insecticidal activity of lichens against the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egyptian Journal of Biological Pest Control, 22(2), 151-156.
  • Yousuf, S., & Choudhary, M. I. (2014). Lichens: chemistry and biological activities. Studies in Natural Products Chemistryroducts Chemistry, 43, 223-259.
There are 89 citations in total.

Details

Primary Language English
Subjects Enzymes
Journal Section Review
Authors

Tubanur Aslan Engin 0000-0003-2885-8829

Publication Date April 30, 2025
Submission Date October 22, 2024
Acceptance Date January 20, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Aslan Engin, T. (2025). Exploring the antioxidant and protective effects of usnic acid: Opportunities and challenges. Frontiers in Life Sciences and Related Technologies, 6(1), 53-59. https://doi.org/10.51753/flsrt.1572004

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.