Research Article
BibTex RIS Cite

Global Behavior of a Nonlinear System of Difference Equations

Year 2025, Volume: 8 Issue: 1, 43 - 54, 31.03.2025

Abstract

In this paper, we study the admissible solutions of the nonlinear system of difference equations $$x_{n+1}=\dfrac{y_{n}}{x_{n}},\quad y_{n+1}=\dfrac{y_{n} }{\check{a}x_{n}+\check{b}y_{n}},\quad n=0,1,\ldots,$$ where $\check{a}$, $\check{b}$ are real numbers and the initial values $x_{0},y_{0}$ are nonzero real numbers. In case $\check{b}<0$ and ${\check{a}}^2<-4\check{b}$, we show that there are eventually periodic solutions when either $tan^{-1}\frac{\sqrt{-4\check{b}-{\check{a}}^2}}{\check{a}} \in]\dfrac{\pi}{2},\pi[$ (with $\check{a}<0$) is a rational multiple of $\pi$ or $tan^{-1}\frac{\sqrt{-4\check{b}-{\check{a}}^2}}{\check{a}} \in]0,\dfrac{\pi}{2}[$ (with $\check{a}>0$) as well.

References

  • [1] Z. Kudlak and R. Vernon, Unbounded rational systems with nonconstant coefficients, Nonauton. Dyn. Syst., 9(1) (2022), 307–316. $ \href{https://doi.org/10.1515/msds-2022-0160}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85148907779&origin=recordpage}{\mbox{[Scopus]}} $
  • [2] E. Camouzis, G. Ladas and L. Wu, On the global character of the system $x_{n+1}=\frac{\alpha_1+\gamma_1y_n}{x_n}$ and $ y_{n+1}=\frac{\beta_2x_n+\gamma_2y_n}{B_2x_n+C_2y_n}$, Int. J. Pure Appl. Math., 53(1) (2009), 21-36. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-77956800594&origin=recordpage}{\mbox{[Scopus]}} $
  • [3] E. Camouzis, C.M. Kent, G. Ladas and C.D. Lynd, On the global character of solutions of the system $x_{n+1}=\frac{\alpha_1+y_n}{x_n}$ and $ y_{n+1}=\frac{\alpha_2+\beta_2x_n+\gamma_2y_n}{A_2+B_2x_n+C_2y_n}$, J. Differ. Equ. Appl., 18(7) (2012), 1205-1252. $ \href{http://doi.org/10.1080/10236198.2011.555406}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84863461232&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000305571000006}{\mbox{[Web of Science]}} $
  • [4] C. C¸ ınar, On the positive solutions of the difference equation system $x_{n+1}=\frac{1}{y_n},\ y_{n+1}=\frac{y_n}{x_{n-1}y_{n-1}}$, Appl. Math. Comput., 158(2) (2004), 303–305. $\href{http://doi.org/10.1016/j.amc.2003.08.073}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-4744370435&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000224594700001}{\mbox{[Web of Science]}} $
  • [5] D. Clark and M.R.S. Kulenovic, A coupled system of rational difference equations, Comp. Math. Appl., 43(6-7) (2002), 849–867. $ \href{http://doi.org/10.1016/S0898-1221(01)00326-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0036498930&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000174062900019}{\mbox{[Web of Science]}} $
  • [6] M. Berkal and R. Abo-Zeid, On a rational (P+1)th order difference equation with quadratic term, Univ. J. Math. Appl., 5(4) (2022), 136-144. $ \href{https://doi.org/10.32323/ujma.198471}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85148641960&origin=recordpage}{\mbox{[Scopus]}} $
  • [7] E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations: With Open Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, (2008). $ \href{https://www.routledge.com/Dynamics-of-Third-Order-Rational-Difference-Equations-with-Open-Problems-and-Conjectures/Camouzis-Ladas/p/book/9780367388294#:~:text=Dynamics%20of%20Third%20Order%20Rational,solutions%2C%20including%20their%20periodic%20trichotomies.}{\mbox{[Web]}} $
  • [8] R. Abo-Zeid, Global behavior and oscillation of a third order difference equation, Quaest. Math., 44(9) (2021), 1261-1280. $ \href{https://doi.org/10.2989/16073606.2020.1787537}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85087820294&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Global+behavior+and+oscillation+of+a+third+order+difference+equation%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000547420700001}{\mbox{[Web of Science]}} $
  • [9] R. Abo-Zeid, On the solutions of a fourth order difference equation, Univ. J. Math. Appl., 4(2) (2021), 76-81. $ \href{https://doi.org/10.32323/ujma.917838}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85132971470&origin=recordpage}{\mbox{[Scopus]}} $
  • [10] R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69(1) (2019), 147–158. $ \href{https://doi.org/10.1515/ms-2017-0210}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85060872887&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000456480400013}{\mbox{[Web of Science]}} $
  • [11] R. Abo-Zeid, Forbidden sets and stability in some rational difference equations, J. Differ. Equ. Appl., 24(2) (2018), 220-239. $ \href{http://doi.org/10.1080/10236198.2017.1400023}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85033730089&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000423516500004}{\mbox{[Web of Science]}} $
  • [12] R. Abo-Zeid, Forbidden set and solutions of a higher order difference equation, Dyn. Contin. Discrete Impuls. Syst. B: Appl. Algorithms, 25(2) (2018), 75-84. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85043268411&origin=recordpage}{\mbox{[Scopus]}} $
  • [13] R. Abo-Zeid, Global behavior of a higher order rational difference equation, Filomat, 30(12) (2016), 3265-3276. $ \href{http://doi.org/10.2298/FIL1612265A}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85008423178&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000393218000015}{\mbox{[Web of Science]}} $
  • [14] M.B. Almatrafi, E.M. Elsayed and F. Alzahrani, Qualitative behavior of two rational difference equations, Fundam. J. Math. Appl., 1(2) (2018), 194-204. $\href{https://doi.org/10.33401/fujma.454999}{\mbox{[CrossRef]}} $
  • [15] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 2, Int. J. Differ. Equ., 3(2) (2008), 195-225. $ \href{https://campus.mst.edu/ijde/contents/v3n2p1.pdf}{\mbox{[Web]}} $
  • [16] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 1, Int. J. Differ. Equ., 3(1) (2008), 1-35. $ \href{https://campus.mst.edu/ijde/contents/v3n1p1.pdf}{\mbox{[Web]}} $
  • [17] M. Berkal and R. Abo-zeıd, Solvability of a second-order rational system of difference equations, Fundam. J. Math. Appl., 6(4) (2023), 232-242. $ \href{https://doi.org/10.33401/fujma.1383434}{\mbox{[CrossRef]}} $
  • [18] M. Berkal, K.Berehal and N. Rezaiki, Representation of solutions of a system of five-order nonlinear difference equations, J. Appl. Math. Inform., 40(3-4) (2022), 409-431. $\href{http://doi.org/10.14317/jami.2022.409}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85134405847&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22REPRESENTATION+OF+SOLUTIONS+OF+A+SYSTEM+OF+FIVE-ORDER+NONLINEAR+DIFFERENCE+EQUATIONS%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000888562900002}{\mbox{[Web of Science]}} $
  • [19] E.M. Elsayed, Solution for systems of difference equations of rational form of order two, Comput. Appl. Math., 33(3) (2014), 751-765. $ \href{http://doi.org/10.1007/s40314-013-0092-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84908510243&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solution+for+systems+of+difference+equations+of+rational+form+of+order+two%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000346924600015}{\mbox{[Web of Science]}} $
  • [20] M. Gümüş R. Abo-Zeid and K. Türk, Global behavior of solutions of a two-dimensional system of difference equations, Ikonion J. Math., 6(2) (2024), 13-29. $ \href{https://doi.org/10.54286/ikjm.1457991}{\mbox{[CrossRef]}} $
  • [21] M. Gümüş and R. Abo-Zeid, Qualitative study of a third order rational system of difference equations, Math. Moravica, 25(1) (2021), 81-97. $ \href{https://doi.org/10.5937/MatMor2101081G}{\mbox{[CrossRef]}} $
  • [22] M. Gümüş and R. Abo-Zeid, Global behavior of a rational second order difference equation, J. Appl. Math. Comput., 62(1-2) (2020), 119-133. $ \href{https://doi.org/10.1007/s12190-019-01276-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85070403576&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000526175300007}{\mbox{[Web of Science]}} $
  • [23] Y. Halim, A. Khelifa and M. Berkal, Representation of solutions of a two-dimensional system of difference equations, Miskolc Math. Notes, 21(1) (2020), 203-218. $ \href{https://doi.org/10.18514/MMN.2020.3204}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85089501773&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000541509200013}{\mbox{[Web of Science]}} $
  • [24] V.L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, (1993). $ \href{https://doi.org/10.1007/978-94-017-1703-8}{\mbox{[CrossRef]}} $
  • [25] M.R.S. Kulenovi´c and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman and Hall/HRC, Boca Raton, (2002). $\href{https://doi.org/10.1201/9781420035384}{\mbox{[CrossRef]}} $
  • [26] H. Sedaghat, Open problems and conjectures, J. Differ. Equ. Appl., 14(8) (2008), 889-897. $ \href{https://doi.org/10.1080/10236190802054118}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-45849114414&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Open+problems+and+conjectures%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc&relpos=126}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000256766900007}{\mbox{[Web of Science]}} $
  • [27] S. Stevic, Solvability and representations of the general solutions to some nonlinear difference equations of second order, AIMS Math., 8(7) (2023), 15148–15165. $\href{https://doi.org/10.3934/math.2023773}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85153083795&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000977144800010}{\mbox{[Web of Science]}} $
  • [28] S. Stevic and D.T. Tollu, Solvability of eight classes of nonlinear systems of difference equations, Math. Methods Appl. Sci., 42(12) (2019), 4065–4112. $ \href{https://doi.org/10.1002/mma.5625}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85065967332&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000474636900001}{\mbox{[Web of Science]}} $
  • [29] S. Stevic, Representations of solutions to linear and bilinear difference equations and systems of bilinear difference equations, Adv. Differ. Equ., 2018(1) (2018), 474. $ \href{https://doi.org/10.1186/s13662-018-1930-2}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85059342263&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000454601700001}{\mbox{[Web of Science]}} $
  • [30] S. Stevic, Solvable product-type system of difference equations whose associated polynomial is of the fourth order, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 13. $ \href{https://doi.org/10.14232/ejqtde.2017.1.13}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85015745604&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000399306400001}{\mbox{[Web of Science]}} $
  • [31] S. Stevic, B. Iricanin and Z. Smarda, Solvability of a close to symmetric system of difference equations, Electron. J. Differ. Equ. 2016 (2016), 159. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84976590278&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000378500400001}{\mbox{[Web of Science]}} $
  • [32] S. Stevic, Product-type system of difference equations of second-order solvable in closed form, Electron. J. Qual. Theory Differ. Equ. 2015 (2015), 56. $ \href{https://doi.org/10.14232/ejqtde.2015.1.56}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84941362331&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000365261500001}{\mbox{[Web of Science]}} $
  • [33] S. Stevic, B. Iricanin and Z. Smarda, On a product-type system of difference equations of second order solvable in closed form, J. Inequal. Appl. 2015 (2015), 327. $ \href{https://doi.org/10.1186/s13660-015-0835-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84945186853&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000376607400001}{\mbox{[Web of Science]}} $
Year 2025, Volume: 8 Issue: 1, 43 - 54, 31.03.2025

Abstract

References

  • [1] Z. Kudlak and R. Vernon, Unbounded rational systems with nonconstant coefficients, Nonauton. Dyn. Syst., 9(1) (2022), 307–316. $ \href{https://doi.org/10.1515/msds-2022-0160}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85148907779&origin=recordpage}{\mbox{[Scopus]}} $
  • [2] E. Camouzis, G. Ladas and L. Wu, On the global character of the system $x_{n+1}=\frac{\alpha_1+\gamma_1y_n}{x_n}$ and $ y_{n+1}=\frac{\beta_2x_n+\gamma_2y_n}{B_2x_n+C_2y_n}$, Int. J. Pure Appl. Math., 53(1) (2009), 21-36. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-77956800594&origin=recordpage}{\mbox{[Scopus]}} $
  • [3] E. Camouzis, C.M. Kent, G. Ladas and C.D. Lynd, On the global character of solutions of the system $x_{n+1}=\frac{\alpha_1+y_n}{x_n}$ and $ y_{n+1}=\frac{\alpha_2+\beta_2x_n+\gamma_2y_n}{A_2+B_2x_n+C_2y_n}$, J. Differ. Equ. Appl., 18(7) (2012), 1205-1252. $ \href{http://doi.org/10.1080/10236198.2011.555406}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84863461232&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000305571000006}{\mbox{[Web of Science]}} $
  • [4] C. C¸ ınar, On the positive solutions of the difference equation system $x_{n+1}=\frac{1}{y_n},\ y_{n+1}=\frac{y_n}{x_{n-1}y_{n-1}}$, Appl. Math. Comput., 158(2) (2004), 303–305. $\href{http://doi.org/10.1016/j.amc.2003.08.073}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-4744370435&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000224594700001}{\mbox{[Web of Science]}} $
  • [5] D. Clark and M.R.S. Kulenovic, A coupled system of rational difference equations, Comp. Math. Appl., 43(6-7) (2002), 849–867. $ \href{http://doi.org/10.1016/S0898-1221(01)00326-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0036498930&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000174062900019}{\mbox{[Web of Science]}} $
  • [6] M. Berkal and R. Abo-Zeid, On a rational (P+1)th order difference equation with quadratic term, Univ. J. Math. Appl., 5(4) (2022), 136-144. $ \href{https://doi.org/10.32323/ujma.198471}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85148641960&origin=recordpage}{\mbox{[Scopus]}} $
  • [7] E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations: With Open Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, (2008). $ \href{https://www.routledge.com/Dynamics-of-Third-Order-Rational-Difference-Equations-with-Open-Problems-and-Conjectures/Camouzis-Ladas/p/book/9780367388294#:~:text=Dynamics%20of%20Third%20Order%20Rational,solutions%2C%20including%20their%20periodic%20trichotomies.}{\mbox{[Web]}} $
  • [8] R. Abo-Zeid, Global behavior and oscillation of a third order difference equation, Quaest. Math., 44(9) (2021), 1261-1280. $ \href{https://doi.org/10.2989/16073606.2020.1787537}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85087820294&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Global+behavior+and+oscillation+of+a+third+order+difference+equation%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000547420700001}{\mbox{[Web of Science]}} $
  • [9] R. Abo-Zeid, On the solutions of a fourth order difference equation, Univ. J. Math. Appl., 4(2) (2021), 76-81. $ \href{https://doi.org/10.32323/ujma.917838}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85132971470&origin=recordpage}{\mbox{[Scopus]}} $
  • [10] R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69(1) (2019), 147–158. $ \href{https://doi.org/10.1515/ms-2017-0210}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85060872887&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000456480400013}{\mbox{[Web of Science]}} $
  • [11] R. Abo-Zeid, Forbidden sets and stability in some rational difference equations, J. Differ. Equ. Appl., 24(2) (2018), 220-239. $ \href{http://doi.org/10.1080/10236198.2017.1400023}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85033730089&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000423516500004}{\mbox{[Web of Science]}} $
  • [12] R. Abo-Zeid, Forbidden set and solutions of a higher order difference equation, Dyn. Contin. Discrete Impuls. Syst. B: Appl. Algorithms, 25(2) (2018), 75-84. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85043268411&origin=recordpage}{\mbox{[Scopus]}} $
  • [13] R. Abo-Zeid, Global behavior of a higher order rational difference equation, Filomat, 30(12) (2016), 3265-3276. $ \href{http://doi.org/10.2298/FIL1612265A}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85008423178&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000393218000015}{\mbox{[Web of Science]}} $
  • [14] M.B. Almatrafi, E.M. Elsayed and F. Alzahrani, Qualitative behavior of two rational difference equations, Fundam. J. Math. Appl., 1(2) (2018), 194-204. $\href{https://doi.org/10.33401/fujma.454999}{\mbox{[CrossRef]}} $
  • [15] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 2, Int. J. Differ. Equ., 3(2) (2008), 195-225. $ \href{https://campus.mst.edu/ijde/contents/v3n2p1.pdf}{\mbox{[Web]}} $
  • [16] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 1, Int. J. Differ. Equ., 3(1) (2008), 1-35. $ \href{https://campus.mst.edu/ijde/contents/v3n1p1.pdf}{\mbox{[Web]}} $
  • [17] M. Berkal and R. Abo-zeıd, Solvability of a second-order rational system of difference equations, Fundam. J. Math. Appl., 6(4) (2023), 232-242. $ \href{https://doi.org/10.33401/fujma.1383434}{\mbox{[CrossRef]}} $
  • [18] M. Berkal, K.Berehal and N. Rezaiki, Representation of solutions of a system of five-order nonlinear difference equations, J. Appl. Math. Inform., 40(3-4) (2022), 409-431. $\href{http://doi.org/10.14317/jami.2022.409}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85134405847&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22REPRESENTATION+OF+SOLUTIONS+OF+A+SYSTEM+OF+FIVE-ORDER+NONLINEAR+DIFFERENCE+EQUATIONS%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000888562900002}{\mbox{[Web of Science]}} $
  • [19] E.M. Elsayed, Solution for systems of difference equations of rational form of order two, Comput. Appl. Math., 33(3) (2014), 751-765. $ \href{http://doi.org/10.1007/s40314-013-0092-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84908510243&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solution+for+systems+of+difference+equations+of+rational+form+of+order+two%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000346924600015}{\mbox{[Web of Science]}} $
  • [20] M. Gümüş R. Abo-Zeid and K. Türk, Global behavior of solutions of a two-dimensional system of difference equations, Ikonion J. Math., 6(2) (2024), 13-29. $ \href{https://doi.org/10.54286/ikjm.1457991}{\mbox{[CrossRef]}} $
  • [21] M. Gümüş and R. Abo-Zeid, Qualitative study of a third order rational system of difference equations, Math. Moravica, 25(1) (2021), 81-97. $ \href{https://doi.org/10.5937/MatMor2101081G}{\mbox{[CrossRef]}} $
  • [22] M. Gümüş and R. Abo-Zeid, Global behavior of a rational second order difference equation, J. Appl. Math. Comput., 62(1-2) (2020), 119-133. $ \href{https://doi.org/10.1007/s12190-019-01276-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85070403576&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000526175300007}{\mbox{[Web of Science]}} $
  • [23] Y. Halim, A. Khelifa and M. Berkal, Representation of solutions of a two-dimensional system of difference equations, Miskolc Math. Notes, 21(1) (2020), 203-218. $ \href{https://doi.org/10.18514/MMN.2020.3204}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85089501773&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000541509200013}{\mbox{[Web of Science]}} $
  • [24] V.L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, (1993). $ \href{https://doi.org/10.1007/978-94-017-1703-8}{\mbox{[CrossRef]}} $
  • [25] M.R.S. Kulenovi´c and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman and Hall/HRC, Boca Raton, (2002). $\href{https://doi.org/10.1201/9781420035384}{\mbox{[CrossRef]}} $
  • [26] H. Sedaghat, Open problems and conjectures, J. Differ. Equ. Appl., 14(8) (2008), 889-897. $ \href{https://doi.org/10.1080/10236190802054118}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-45849114414&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Open+problems+and+conjectures%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc&relpos=126}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000256766900007}{\mbox{[Web of Science]}} $
  • [27] S. Stevic, Solvability and representations of the general solutions to some nonlinear difference equations of second order, AIMS Math., 8(7) (2023), 15148–15165. $\href{https://doi.org/10.3934/math.2023773}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85153083795&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000977144800010}{\mbox{[Web of Science]}} $
  • [28] S. Stevic and D.T. Tollu, Solvability of eight classes of nonlinear systems of difference equations, Math. Methods Appl. Sci., 42(12) (2019), 4065–4112. $ \href{https://doi.org/10.1002/mma.5625}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85065967332&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000474636900001}{\mbox{[Web of Science]}} $
  • [29] S. Stevic, Representations of solutions to linear and bilinear difference equations and systems of bilinear difference equations, Adv. Differ. Equ., 2018(1) (2018), 474. $ \href{https://doi.org/10.1186/s13662-018-1930-2}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85059342263&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000454601700001}{\mbox{[Web of Science]}} $
  • [30] S. Stevic, Solvable product-type system of difference equations whose associated polynomial is of the fourth order, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 13. $ \href{https://doi.org/10.14232/ejqtde.2017.1.13}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85015745604&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000399306400001}{\mbox{[Web of Science]}} $
  • [31] S. Stevic, B. Iricanin and Z. Smarda, Solvability of a close to symmetric system of difference equations, Electron. J. Differ. Equ. 2016 (2016), 159. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84976590278&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000378500400001}{\mbox{[Web of Science]}} $
  • [32] S. Stevic, Product-type system of difference equations of second-order solvable in closed form, Electron. J. Qual. Theory Differ. Equ. 2015 (2015), 56. $ \href{https://doi.org/10.14232/ejqtde.2015.1.56}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84941362331&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000365261500001}{\mbox{[Web of Science]}} $
  • [33] S. Stevic, B. Iricanin and Z. Smarda, On a product-type system of difference equations of second order solvable in closed form, J. Inequal. Appl. 2015 (2015), 327. $ \href{https://doi.org/10.1186/s13660-015-0835-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84945186853&origin=recordpage}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000376607400001}{\mbox{[Web of Science]}} $
There are 33 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems
Journal Section Articles
Authors

Fatma Hilal Gümüş 0000-0002-6329-7142

Raafat Abo-zeid 0000-0002-1858-5583

Early Pub Date March 29, 2025
Publication Date March 31, 2025
Submission Date July 22, 2024
Acceptance Date January 29, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Gümüş, F. H., & Abo-zeid, R. (2025). Global Behavior of a Nonlinear System of Difference Equations. Fundamental Journal of Mathematics and Applications, 8(1), 43-54.
AMA Gümüş FH, Abo-zeid R. Global Behavior of a Nonlinear System of Difference Equations. Fundam. J. Math. Appl. March 2025;8(1):43-54.
Chicago Gümüş, Fatma Hilal, and Raafat Abo-zeid. “Global Behavior of a Nonlinear System of Difference Equations”. Fundamental Journal of Mathematics and Applications 8, no. 1 (March 2025): 43-54.
EndNote Gümüş FH, Abo-zeid R (March 1, 2025) Global Behavior of a Nonlinear System of Difference Equations. Fundamental Journal of Mathematics and Applications 8 1 43–54.
IEEE F. H. Gümüş and R. Abo-zeid, “Global Behavior of a Nonlinear System of Difference Equations”, Fundam. J. Math. Appl., vol. 8, no. 1, pp. 43–54, 2025.
ISNAD Gümüş, Fatma Hilal - Abo-zeid, Raafat. “Global Behavior of a Nonlinear System of Difference Equations”. Fundamental Journal of Mathematics and Applications 8/1 (March 2025), 43-54.
JAMA Gümüş FH, Abo-zeid R. Global Behavior of a Nonlinear System of Difference Equations. Fundam. J. Math. Appl. 2025;8:43–54.
MLA Gümüş, Fatma Hilal and Raafat Abo-zeid. “Global Behavior of a Nonlinear System of Difference Equations”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 1, 2025, pp. 43-54.
Vancouver Gümüş FH, Abo-zeid R. Global Behavior of a Nonlinear System of Difference Equations. Fundam. J. Math. Appl. 2025;8(1):43-54.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a