Research Article
BibTex RIS Cite
Year 2018, Volume: 30 Issue: 3, 189 - 196, 20.09.2018

Abstract

References

  • 1. Nishiyama, Z., 1978, Martensitic Transformations, Academic Press, N.Y., 240s. 2. Nieh TG, Wadsworth J., 1991. Hall-Petch relation in nanocrystalline solids, Scripta Metall Mater., 25, 955–958. 3.Adnyana, D.N., 1986, Effect of grain size on transformation temperatures in grain-refined copper-based shape memory alloy, Metallography, 19(2), 187-196 4. Jani, J.M. and Leary, M., 2014. A review of shape memory alloy research, applications and opportunities, Materials and Design, 56, 1078–1113. 5. Waitz, T., Antretter T., Fischer, F.D., Karnthaler, H.P., 2008, Size effects on martensitic phase transformation in nanocrystalline NiTi shape memory alloys, Materials Science and Technology, 24(8), 934-940. 6. Sutou, Y., Omori, T., Kainuma, R., Ishida,K., 2013, Grain size dependence of pseudoelasticity in polycrystalline Cu-Al-Mn based shape memory sheets, Acta Materialia, 61, 3842-3850. 7. Morrison, K.R., Cherukara, M.J., Guda Vishnu, K., Strachan, A., 2014. Role of atomic variability and mechanical constraints on the martensitic phase transformation of a model disordered shape memory alloy via molecular dynamics, Acta Mater., 69, 30. 8. Morrison, K.R., Cherukara, M.J., Kim, H., Strachan, A., 2015, Role of grain size on the martensitic transformation and ultra-fast superelasticity in shape memory alloys, Acta Materialia, 95, 37-43. 9. Chen, Z., Qin, S., Shang, J., Wang, F., Chen, Y., 2018, Size effets of NiTi nanoparticle on thermally induced martensitic phase transformation, Intermetallics, 94, 47-54. 10. M. Daw, S. Foiles, M. Baskes., 1993, The embedded-atom method: a review of theory and applications, Materials Science Reports,9,251-310. 11. PurjaPan, G.P., and Mishin, Y., 2009, Development of an interatomic potential for the Ni-Al system, Philosophical Magazine, 34-36, 3245–3267. 12. Morsi, K., 2001. Review: reaction synthesis processing of Ni-Al intermetallic materials, Materials Science and Engineering A, 299, 1-15. 13. S. Plimpton, 1995,Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 14. S. Nose, J. 1984, A unified formulation of the constant temperature molecular dynamics methods Chem. Phys. 81 511. 15. W.G. Hoover, 1985, Canonical dynamics: Equilibrium phase-space distributions Phys. Rev. A 31, 1695-1697 16. M. Parrinello, 1981, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52 7182. 17. A. Stukowski, 2010, Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 , 015012 18. Larsen ,P.M., Schmidt,S., Schiøtz, J., 2016, Robust structural identification via polyhedral template matching, Modelling Simul. Mater. Sci. Eng. 24 055007. 19. Celik, F.A., Yildiz., A.K., Ozgen, S., 2011. A Molecular dynamics study to investigate the local atomic arrangement during martensitic phase transformation, Molecular Simulation, 37(5), 421-429. 20. Pérez-Reche, F.J., Vives, E., Mañosa, L., Planes, A., 2001, Athermal Character of Structural Phase Transitions, Phys. Rev. Lett. 87, 195701. 21. Potapov,P.L., Song, S.Y., Udovenko, V.A., Prokoshkin, S.D.,1997, X-ray Study of phase transformation in martensitic Ni-Al alloys, Metallurgical and Materials Transactions A, 28a, 1133-1142. 22. Orhan O., 2017, Polikristal Şekil Hafızalı NiAl Alaşımlarının Modellenmesi Ve Yapısal Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, 46s. 23. Watanabe, T., 2011. Grain Boundary Engineering: Historical Perspective and Future Prospects, J. Mater Sci., 46, 4095-4115. 24. Chakravorty, S., Wayman, C.M., 1976, The thermoelastic martensitic transformation in β’ Ni-Al alloys: I. Crystallography and morphology .

BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ

Year 2018, Volume: 30 Issue: 3, 189 - 196, 20.09.2018

Abstract

Şekil hafızalı alaşımların
nano-elektronik sistemlerde (NEMS) kullanılabilmesi için numune boyutunun faz
dönüşümü karakteristiği üzerine etkisinin belirlenmesi önemlidir. Bu çalışmada
Ni-at.%25Al şekil hafızalı alaşımının 5.76 nm den 20.1 nm ye kadar 6 farklı
boyutta modellenmiştir. Soğutma ve ısıtma işlemleri sonucunda meydana gelen
mastensit ve austenit faz dönüşümleri moleküler dinamik simülasyonları ile
incelenmiştir. Atomlararası fiziksel etkileşmelerin gömülü atom metodu (EAM)
ile temsil edildiği simülasyon çalışmaları LAMMPS yazılımı ile
gerçekleştirilmiştir. Model sistemlerde ortaya çıkan faz dönüşüm sıcaklıkları
termal analizler ile bulunmuştur. Model sistemlerin yapısal analizleri için
polihedral şablon eşleştirme (PTM) analizi kullanılmıştır. Faz dönüşümü
neticesinde ortaya çıkan martensit plakaların yönelimleri ve atomik dönmeler
rodrigues vektörleri ile elde edilmiştir. Sonuç olarak model boyutunun artması
ile martensit faz geçiş sıcaklığının üssel olarak azaldığı, austenit fazın
başlangıç değeri ve martensit plakaların yönelimlerinin boyuttan etkilendiği
gözlenmiştir.

References

  • 1. Nishiyama, Z., 1978, Martensitic Transformations, Academic Press, N.Y., 240s. 2. Nieh TG, Wadsworth J., 1991. Hall-Petch relation in nanocrystalline solids, Scripta Metall Mater., 25, 955–958. 3.Adnyana, D.N., 1986, Effect of grain size on transformation temperatures in grain-refined copper-based shape memory alloy, Metallography, 19(2), 187-196 4. Jani, J.M. and Leary, M., 2014. A review of shape memory alloy research, applications and opportunities, Materials and Design, 56, 1078–1113. 5. Waitz, T., Antretter T., Fischer, F.D., Karnthaler, H.P., 2008, Size effects on martensitic phase transformation in nanocrystalline NiTi shape memory alloys, Materials Science and Technology, 24(8), 934-940. 6. Sutou, Y., Omori, T., Kainuma, R., Ishida,K., 2013, Grain size dependence of pseudoelasticity in polycrystalline Cu-Al-Mn based shape memory sheets, Acta Materialia, 61, 3842-3850. 7. Morrison, K.R., Cherukara, M.J., Guda Vishnu, K., Strachan, A., 2014. Role of atomic variability and mechanical constraints on the martensitic phase transformation of a model disordered shape memory alloy via molecular dynamics, Acta Mater., 69, 30. 8. Morrison, K.R., Cherukara, M.J., Kim, H., Strachan, A., 2015, Role of grain size on the martensitic transformation and ultra-fast superelasticity in shape memory alloys, Acta Materialia, 95, 37-43. 9. Chen, Z., Qin, S., Shang, J., Wang, F., Chen, Y., 2018, Size effets of NiTi nanoparticle on thermally induced martensitic phase transformation, Intermetallics, 94, 47-54. 10. M. Daw, S. Foiles, M. Baskes., 1993, The embedded-atom method: a review of theory and applications, Materials Science Reports,9,251-310. 11. PurjaPan, G.P., and Mishin, Y., 2009, Development of an interatomic potential for the Ni-Al system, Philosophical Magazine, 34-36, 3245–3267. 12. Morsi, K., 2001. Review: reaction synthesis processing of Ni-Al intermetallic materials, Materials Science and Engineering A, 299, 1-15. 13. S. Plimpton, 1995,Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 14. S. Nose, J. 1984, A unified formulation of the constant temperature molecular dynamics methods Chem. Phys. 81 511. 15. W.G. Hoover, 1985, Canonical dynamics: Equilibrium phase-space distributions Phys. Rev. A 31, 1695-1697 16. M. Parrinello, 1981, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52 7182. 17. A. Stukowski, 2010, Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 , 015012 18. Larsen ,P.M., Schmidt,S., Schiøtz, J., 2016, Robust structural identification via polyhedral template matching, Modelling Simul. Mater. Sci. Eng. 24 055007. 19. Celik, F.A., Yildiz., A.K., Ozgen, S., 2011. A Molecular dynamics study to investigate the local atomic arrangement during martensitic phase transformation, Molecular Simulation, 37(5), 421-429. 20. Pérez-Reche, F.J., Vives, E., Mañosa, L., Planes, A., 2001, Athermal Character of Structural Phase Transitions, Phys. Rev. Lett. 87, 195701. 21. Potapov,P.L., Song, S.Y., Udovenko, V.A., Prokoshkin, S.D.,1997, X-ray Study of phase transformation in martensitic Ni-Al alloys, Metallurgical and Materials Transactions A, 28a, 1133-1142. 22. Orhan O., 2017, Polikristal Şekil Hafızalı NiAl Alaşımlarının Modellenmesi Ve Yapısal Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, 46s. 23. Watanabe, T., 2011. Grain Boundary Engineering: Historical Perspective and Future Prospects, J. Mater Sci., 46, 4095-4115. 24. Chakravorty, S., Wayman, C.M., 1976, The thermoelastic martensitic transformation in β’ Ni-Al alloys: I. Crystallography and morphology .
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section MBD
Authors

Oğuzhan Orhan

Soner Özgen

Publication Date September 20, 2018
Submission Date March 23, 2018
Published in Issue Year 2018 Volume: 30 Issue: 3

Cite

APA Orhan, O., & Özgen, S. (2018). BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 189-196.
AMA Orhan O, Özgen S. BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2018;30(3):189-196.
Chicago Orhan, Oğuzhan, and Soner Özgen. “BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 3 (September 2018): 189-96.
EndNote Orhan O, Özgen S (September 1, 2018) BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30 3 189–196.
IEEE O. Orhan and S. Özgen, “BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, pp. 189–196, 2018.
ISNAD Orhan, Oğuzhan - Özgen, Soner. “BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30/3 (September 2018), 189-196.
JAMA Orhan O, Özgen S. BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30:189–196.
MLA Orhan, Oğuzhan and Soner Özgen. “BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, 2018, pp. 189-96.
Vancouver Orhan O, Özgen S. BOYUT ETKİSİNİN MARTENSİT FAZ DÖNÜŞÜMÜNDEKİ ROLÜNÜN MOLEKÜLER DİNAMİK SİMÜLASYON YÖNTEMİ İLE İNCELENMESİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30(3):189-96.