Research Article
BibTex RIS Cite

Zamana bağlı akış alanının açık kaynak programlar ile aerodinamik incelemesi

Year 2025, Volume: 40 Issue: 2, 1299 - 1310, 03.02.2025
https://doi.org/10.17341/gazimmfd.1156600

Abstract

Bu çalışmada, son yıllarda sıklıkla araştırma konusu olmuş rüzgâr türbini kanat profili NREL S826’ nın açık kaynak kodlu hesaplamalı akışkanlar dinamiği (HAD) yazılımı OpenFOAM ile aerodinamik incelemesi yapılmıştır. İki boyutlu akış alanının çözümünde k-ω SST ve Langtry-Menter’ in Transitional SST (γ-〖R ̃e〗_θt) modeli kullanılırken, üç boyutlu analizlerde Transition SST (γ-〖R ̃e〗_θt) türbülans modeli kullanılmıştır. Yapılan bütün analizler zamana bağlı olup basınca dayalı yarı kapalı hibrit bir çözücü olan pimpleCentralFoam ile çözülmüştür. Elde edilen veriler deneysel çalışmalarla karşılaştırılarak detaylı bir şekilde incelenmiştir.

References

  • 1. Ledo, L., Kosasih, P. B., Cooper, P., Roof mounting site analysis for micro-wind turbines, Renewable Energy, 36 (5), 1379-1391, 2011.
  • 2. Herbert, G. J., Iniyan, S., Sreevalsan, E., Rajapandian, S., A review of wind energy Technologies, Renewable and Sustainable Energy Reviews, 11 (6), 1117-1145, 2007.
  • 3. Eriksson, S., Bernhoff, H., Leijon, M., Evaluation of different turbine concepts for wind power, Renewable and Sustainable Energy reviews, 12 (5), 1419-1434, 2008.
  • 4. Schreck, S. J., Robinson, M. C., Horizontal axis wind turbine blade aerodynamics in experiments and modeling, IEEE Transactions on Energy Conversion, 22 (1), 61-70, 2007.
  • 5. Karthikeyan, N., Murugavel, K. K., Kumar, S. A., Rajakumar, S., Review of aerodynamic developments on small horizontal axis wind turbine blade, Renewable and Sustainable Energy Reviews, 42, 801-822, 2015.
  • 6. Lissaman, P. B. S., Low-Reynolds-number airfoils, Annual Review of Fluid Mechanics, 15 (1), 223-239, 1983.
  • 7. Canlioglu I.E., Kara E., Computational fluid dynamics study of lift enhancement on a NACA0012 airfoil using a synthetic jet actuator, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1821-1838, 2023.
  • 8. Zafer B., Coşgun F., Aeroacoustics investigation of unsteady incompressible cavity flow, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 665-675, 2016.
  • 9. Göv İ., Doğru M. H., Korkmaz Ü., Improvement of the aerodynamic performance of NACA 4412 using the adjustable airfoil profile during the flight, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 1109-1126, 2019.
  • 10. Zafer B., Haskaraman F., Numerical investigation of headwind and crosswind conditions of Ahmed body, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 215-230, 2017.
  • 11. Tangler, J. L., Somers, D. M., NREL airfoil families for HAWTs (No. NREL/TP-442-7109), National Renewable Energy Lab., Golden, CO (United States), 1995.
  • 12. Somers, D. M., The S825 and S826 Airfoils NREL, SR-500-36344, 2005.
  • 13. Sarlak, H., Mikkelsen, R., Sarmast, S., Sørensen, J. N., Aerodynamic behaviour of NREL S826 airfoil at Re= 100,000, In Journal of Physics: Conference Series, IOP Publishing, 524 (1), 012027, 2014.
  • 14. Sarmast, S., Numerical study on instability and interaction of wind turbine wakes Doctoral dissertation, KTH Royal Institute of Technology, 2014.
  • 15. Ostovan, Y., Amiri, H., Uzol, O., Aerodynamic Characterization of NREL S826 Airfoil at Low Reynolds Numbers, In RUZGEM Conference on Wind Energy Science and Technology, METU Ankara Campus, 3-4, 2013.
  • 16. Bartl, J., Sagmo, K. F., Bracchi, T., Sætran, L., Performance of the NREL S826 airfoil at low to moderate Reynolds numbers—A reference experiment for CFD models, European Journal of Mechanics-B/Fluids, 75, 180-192, 2019.
  • 17. Yalçın, Ö., Cengiz, K., Özyörük, Y., High-order detached eddy simulation of unsteady flow around NREL S826 airfoil, Journal of Wind Engineering and Industrial Aerodynamics, 179, 125-134, 2018.
  • 18. Cakmakcioglu, S. C., Sert, I. O., Tugluk, O., Sezer-Uzol, N., 2-D and 3-D CFD investigation of NREL S826 airfoil at low Reynolds numbers, In Journal of Physics: Conference Series, IOP Publishing, 524 (1), 012028, 2014.
  • 19. Liu, Y., Li, P., Jiang, K., Comparative assessment of transitional turbulence models for airfoil aerodynamics in the low Reynolds number range, Journal of Wind Engineering and Industrial Aerodynamics, 217, 104726, 2021.
  • 20. Fernández F. J. F., CFD simulations of a pitching aerofoil for the study of dynamic stall, 2022.
  • 21. Kraposhin, M. V., Banholzer, M., Pfitzner, M., Marchevsky, I. K., A hybrid pressure‐based solver for nonideal single‐phase fluid flows at all speeds, International Journal for Numerical Methods in Fluids, 88 (2), 79-99, 2018.
  • 22. Kurganov, A., Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations, Journal of Computational Physics, 160 (1), 241-282, 2000.
  • 23. Kurganov, A., Noelle, S., Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton--Jacobi equations, SIAM Journal on Scientific Computing, 23 (3), 707-740, 2001.
  • 24. Menter, F. R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, 32 (8), 1598-1605, 1994.
  • 25. Langtry, R. B., Menter, F. R., Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA journal, 47 (12), 2894-2906, 2009.
  • 26. Courant, R., Friedrichs, K., Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische annalen, 100 (1), 32-74, 1928.
Year 2025, Volume: 40 Issue: 2, 1299 - 1310, 03.02.2025
https://doi.org/10.17341/gazimmfd.1156600

Abstract

References

  • 1. Ledo, L., Kosasih, P. B., Cooper, P., Roof mounting site analysis for micro-wind turbines, Renewable Energy, 36 (5), 1379-1391, 2011.
  • 2. Herbert, G. J., Iniyan, S., Sreevalsan, E., Rajapandian, S., A review of wind energy Technologies, Renewable and Sustainable Energy Reviews, 11 (6), 1117-1145, 2007.
  • 3. Eriksson, S., Bernhoff, H., Leijon, M., Evaluation of different turbine concepts for wind power, Renewable and Sustainable Energy reviews, 12 (5), 1419-1434, 2008.
  • 4. Schreck, S. J., Robinson, M. C., Horizontal axis wind turbine blade aerodynamics in experiments and modeling, IEEE Transactions on Energy Conversion, 22 (1), 61-70, 2007.
  • 5. Karthikeyan, N., Murugavel, K. K., Kumar, S. A., Rajakumar, S., Review of aerodynamic developments on small horizontal axis wind turbine blade, Renewable and Sustainable Energy Reviews, 42, 801-822, 2015.
  • 6. Lissaman, P. B. S., Low-Reynolds-number airfoils, Annual Review of Fluid Mechanics, 15 (1), 223-239, 1983.
  • 7. Canlioglu I.E., Kara E., Computational fluid dynamics study of lift enhancement on a NACA0012 airfoil using a synthetic jet actuator, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1821-1838, 2023.
  • 8. Zafer B., Coşgun F., Aeroacoustics investigation of unsteady incompressible cavity flow, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 665-675, 2016.
  • 9. Göv İ., Doğru M. H., Korkmaz Ü., Improvement of the aerodynamic performance of NACA 4412 using the adjustable airfoil profile during the flight, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 1109-1126, 2019.
  • 10. Zafer B., Haskaraman F., Numerical investigation of headwind and crosswind conditions of Ahmed body, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 215-230, 2017.
  • 11. Tangler, J. L., Somers, D. M., NREL airfoil families for HAWTs (No. NREL/TP-442-7109), National Renewable Energy Lab., Golden, CO (United States), 1995.
  • 12. Somers, D. M., The S825 and S826 Airfoils NREL, SR-500-36344, 2005.
  • 13. Sarlak, H., Mikkelsen, R., Sarmast, S., Sørensen, J. N., Aerodynamic behaviour of NREL S826 airfoil at Re= 100,000, In Journal of Physics: Conference Series, IOP Publishing, 524 (1), 012027, 2014.
  • 14. Sarmast, S., Numerical study on instability and interaction of wind turbine wakes Doctoral dissertation, KTH Royal Institute of Technology, 2014.
  • 15. Ostovan, Y., Amiri, H., Uzol, O., Aerodynamic Characterization of NREL S826 Airfoil at Low Reynolds Numbers, In RUZGEM Conference on Wind Energy Science and Technology, METU Ankara Campus, 3-4, 2013.
  • 16. Bartl, J., Sagmo, K. F., Bracchi, T., Sætran, L., Performance of the NREL S826 airfoil at low to moderate Reynolds numbers—A reference experiment for CFD models, European Journal of Mechanics-B/Fluids, 75, 180-192, 2019.
  • 17. Yalçın, Ö., Cengiz, K., Özyörük, Y., High-order detached eddy simulation of unsteady flow around NREL S826 airfoil, Journal of Wind Engineering and Industrial Aerodynamics, 179, 125-134, 2018.
  • 18. Cakmakcioglu, S. C., Sert, I. O., Tugluk, O., Sezer-Uzol, N., 2-D and 3-D CFD investigation of NREL S826 airfoil at low Reynolds numbers, In Journal of Physics: Conference Series, IOP Publishing, 524 (1), 012028, 2014.
  • 19. Liu, Y., Li, P., Jiang, K., Comparative assessment of transitional turbulence models for airfoil aerodynamics in the low Reynolds number range, Journal of Wind Engineering and Industrial Aerodynamics, 217, 104726, 2021.
  • 20. Fernández F. J. F., CFD simulations of a pitching aerofoil for the study of dynamic stall, 2022.
  • 21. Kraposhin, M. V., Banholzer, M., Pfitzner, M., Marchevsky, I. K., A hybrid pressure‐based solver for nonideal single‐phase fluid flows at all speeds, International Journal for Numerical Methods in Fluids, 88 (2), 79-99, 2018.
  • 22. Kurganov, A., Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations, Journal of Computational Physics, 160 (1), 241-282, 2000.
  • 23. Kurganov, A., Noelle, S., Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton--Jacobi equations, SIAM Journal on Scientific Computing, 23 (3), 707-740, 2001.
  • 24. Menter, F. R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, 32 (8), 1598-1605, 1994.
  • 25. Langtry, R. B., Menter, F. R., Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA journal, 47 (12), 2894-2906, 2009.
  • 26. Courant, R., Friedrichs, K., Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische annalen, 100 (1), 32-74, 1928.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Baha Zafer 0000-0003-0763-9766

Mehmet Fatih Ekinci 0000-0001-9153-0135

Early Pub Date February 3, 2025
Publication Date February 3, 2025
Submission Date August 8, 2022
Acceptance Date November 23, 2024
Published in Issue Year 2025 Volume: 40 Issue: 2

Cite

APA Zafer, B., & Ekinci, M. F. (2025). Zamana bağlı akış alanının açık kaynak programlar ile aerodinamik incelemesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(2), 1299-1310. https://doi.org/10.17341/gazimmfd.1156600
AMA Zafer B, Ekinci MF. Zamana bağlı akış alanının açık kaynak programlar ile aerodinamik incelemesi. GUMMFD. February 2025;40(2):1299-1310. doi:10.17341/gazimmfd.1156600
Chicago Zafer, Baha, and Mehmet Fatih Ekinci. “Zamana bağlı akış alanının açık Kaynak Programlar Ile Aerodinamik Incelemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, no. 2 (February 2025): 1299-1310. https://doi.org/10.17341/gazimmfd.1156600.
EndNote Zafer B, Ekinci MF (February 1, 2025) Zamana bağlı akış alanının açık kaynak programlar ile aerodinamik incelemesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 2 1299–1310.
IEEE B. Zafer and M. F. Ekinci, “Zamana bağlı akış alanının açık kaynak programlar ile aerodinamik incelemesi”, GUMMFD, vol. 40, no. 2, pp. 1299–1310, 2025, doi: 10.17341/gazimmfd.1156600.
ISNAD Zafer, Baha - Ekinci, Mehmet Fatih. “Zamana bağlı akış alanının açık Kaynak Programlar Ile Aerodinamik Incelemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/2 (February 2025), 1299-1310. https://doi.org/10.17341/gazimmfd.1156600.
JAMA Zafer B, Ekinci MF. Zamana bağlı akış alanının açık kaynak programlar ile aerodinamik incelemesi. GUMMFD. 2025;40:1299–1310.
MLA Zafer, Baha and Mehmet Fatih Ekinci. “Zamana bağlı akış alanının açık Kaynak Programlar Ile Aerodinamik Incelemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 40, no. 2, 2025, pp. 1299-10, doi:10.17341/gazimmfd.1156600.
Vancouver Zafer B, Ekinci MF. Zamana bağlı akış alanının açık kaynak programlar ile aerodinamik incelemesi. GUMMFD. 2025;40(2):1299-310.