Yüksek sıcaklığa maruz kalan çimento esaslı lifli kompozitlerde karışım parametrelerinin etkisi
Year 2025,
Volume: 40 Issue: 3, 1797 - 1812
Muhammed Yusuf Gözkeser
,
Serhat Demirhan
,
Berfin Ramazanoğlu
,
Necim Kaya
Abstract
Yüksek sıcaklık etkisi altında karışım parametrelerine bağlı olarak çimento esaslı lif donatılı kompozitlerin temel mühendislik özelliklerinin incelenmesi mevcut çalışmanın temel amacını teşkil etmektedir. Bu amaç doğrultusunda, 36 farklı karışım tasarlanmıştır. Bu karışımlarda pirinç kaplı çelik lif ve polipropilen lifi kullanılmıştır. Üretilen numuneler, su, hava ve poşette kür olmak üzere üç farklı kür rejiminde test yaşına kadar bekletilmiştir. 7, 28 ve 90 günlük kür yaşları için numuneler 250 °C sıcaklığa maruz bırakılıp, öncesi ve sonrası şartlar için mikroyapısal özelliklere ilave olarak basınç dayanımı ve ultrases dalgası geçiş hızı gibi temel mühendislik özellikleri incelenmiştir. Tasarımda, tüm karışımlar için hava sürükleyici katkı oranı, su/bağlayıcı oranı ve agrega/bağlayıcı oranı sırasıyla %0,6, 0,3 ve 1,5 olarak sabit seçilmiştir. Deney sonuçları, polipropilen liflerin çimento esaslı matrislerde kullanılmasının, yüksek sıcaklık etkisi altında basınç dayanımı gibi temel mekanik özellikleri üzerine çok az bir etkiye sahip olduğunu ve polipropilen liflere kıyasen çelik lif kullanımında artık mekanik özelliklerin geliştiğini göstermiştir. Hibrit lif kullanılarak üretilen numunelerin performans özellikleri PP lif içeren lif donatılı kompozitlere göre daha iyi gözlemlenirken, pirinç kaplı çelik lif içeren numunelere göre daha kötü olduğu tespit edilmiştir.
Supporting Institution
Batman Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Project Number
BTÜBAP-2022-YL-17
Thanks
Mevcut deneysel araştırma, Batman Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (BTÜBAP) tarafından BTÜBAP-2022-YL-17 proje kimliği ile finansal olarak desteklenmiştir. Yazarlar, mali desteğinden dolayı BTÜBAP'a teşekkür etmektedir.
References
- 1. Topal Ö., Karakoç M. B., Özcan A., Effects of elevated temperatures on the properties of ground granulated blast furnace slag (GGBFS) based geopolymer concretes containing recycled concrete aggregate, European Journal of Environmental and Civil Engineering, 26 (10), 4847-4862, 2022.
- 2. Durmuş G., Arslan M., Physıcal properties of cement mortars exposed to high temperature in various cooling conditions, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (3), 541-548, 2010.
- 3. Durmuş G., Bekem İ., Investigation of the effect of high temperatures and different cooling conditions on the concrete with calcerous aggregates, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (4), 741-748, 2010.
- 4. Sancak E., Şimşek O., Effects of high temperature on the lightweight concrete with silica fume and superplasticizer, Journal of the Faculty of Engineering and Architecture of Gazi University, 21 (3), 443-450, 2006.
- 5. Shah S. N. R., Akashah F. W., Shafigh P., Performance of high strength concrete subjected to elevated temperatures: a review, Fire Technology, 55, 1571-1597, 2019.
- 6. Derinpinar A. N., Karakoç M. B., Özcan A., Performance of glass powder substituted slag based geopolymer concretes under high temperature, Construction and Building Materials, 331, 127318, 2022.
- 7. Memon S. A., Shah S. F. A., Khushnood R. A., Baloch W. L., Durability of sustainable concrete subjected to elevated temperature–a review, Construction and Building Materials, 199, 435-455, 2019.
- 8. Zhang P., Kang L., Wang J., Guo J., Hu S., Ling Y., Mechanical properties and explosive spalling behavior of steel-fiber-reinforced concrete exposed to high temperature—a review, Applied Sciences, 10 (7), 2324, 2020.
- 9. Krishna A., Kaliyaperumal S. R. M., Kathirvel P., Compressive strength and impact resistance of hybrid fiber reinforced concrete exposed to elevated temperatures, Structural Concrete, 23 (3), 1611-1624, 2022.
- 10. Tawfik M., El-said A., Deifalla A., Awad A., Mechanical properties of hybrid steel-polypropylene fiber reinforced high strength concrete exposed to various temperatures, Fibers, 10 (6), 53, 2022.
- 11. Alhamad A., Yehia S., Lublóy É., Elchalakani M., Performance of different concrete types exposed to elevated temperatures: a review, Materials, 15 (14), 5032, 2022.
- 12. Ashkezari G. D., Razmara M., Thermal and mechanical evaluation of ultra-high performance fiber-reinforced concrete and conventional concrete subjected to high temperatures, Journal of Building Engineering, 32, 101621, 2020.
- 13. Cao K., Liu G., Li H., Huang Z., Wu G., Correlation between macroscopic properties and microscopic pore structure in steel-basalt hybrid fibers reinforced cementitious composites subjected to elevated temperatures, Construction and Building Materials, 365, 129988, 2023.
- 14. Wu H., Lin X., Zhou A., A review of mechanical properties of fibre reinforced concrete at elevated temperatures, Cement and Concrete Research, 135, 106117, 2020.
- 15. Pasztetnik M., Wróblewski R., A literature review of concrete ability to sustain strength after fire exposure based on the heat accumulation factor, Materials, 14 (16), 4719, 2021.
- 16. Shen L., Yao X., Di Luzio G., Jiang M., Han Y., Mix optimization of hybrid steel and polypropylene fiber-reinforced concrete for anti-thermal spalling, Journal of Building Engineering, 63, 105409, 2023.
- 17. Szeląg M., Evaluation of cracking patterns of cement paste containing polypropylene fibers, Composite Structures, 220, 402-411, 2019.
- 18. Chen G. M., He Y. H., Yang H., Chen J. F., Guo Y. C., Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures, Construction and Building Materials, 71, 1-15, 2014.
- 19. Guo Y. C., Zhang J. H., Chen G. M., Xie Z. H., Compressive behaviour of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fibre, subjected to elevated temperatures, Journal of Cleaner Production, 72, 193-203, 2014.
- 20. Xie J., Zhang Z., Lu Z., Sun M., Coupling effects of silica fume and steel-fiber on the compressive behaviour of recycled aggregate concrete after exposure to elevated temperature, Construction and Building Materials, 184, 752-764, 2018.
- 21. Zheng W., Li H., Wang Y., Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature, Materials & Design, 41, 403-409, 2012.
- 22. Eidan J., Rasoolan I., Rezaeian A., Poorveis D., Residual mechanical properties of polypropylene fiber-reinforced concrete after heating, Construction and Building Materials, 198, 195-206, 2019.
- 23. Aslani F., Kelin J., Assessment and development of high-performance fibre-reinforced lightweight self-compacting concrete including recycled crumb rubber aggregates exposed to elevated temperatures, Journal of Cleaner Production, 200, 1009-1025, 2018.
- 24. Czoboly O., Lublóy É., Hlavička V., Balázs G. L., Kéri O., Szilágyi I. M., Fibers and fiber cocktails to improve fire resistance of concrete, Journal of Thermal Analysis and Calorimetry, 128, 1453-1461, 2017.
- 25. Holan J., Novak J., Müller P., Štefan R., Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures, Construction and Building Materials, 248, 118662, 2020.
- 26. Li L., Shi L., Wang Q., Liu Y., Dong J., Zhang H., Zhang G., A review on the recovery of fire-damaged concrete with post-fire-curing, Construction and Building Materials, 237, 117564, 2020.
- 27. Demirel Ö., Demirhan S., Investigation of microstryctural properties of high-volume flay ash blended cement mortars including micronized calcite, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 2255-2270, 2021.
- 28. Demirhan S., Combined effects of nano-sized calcite and fly ash on hydration and microstructural properties of mortars, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20 (6), 1051-1067, 2020.
- 29. Van Der Heijden G. H. A., Van Bijnen R. M. W., Pel L., Huinink H. P., Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling, Cement and Concrete Research, 37 (6), 894-901, 2007.
- 30. Ding Y., Zhang C., Cao M., Zhang Y., Azevedo C., Influence of different fibers on the change of pore pressure of self-consolidating concrete exposed to fire, Construction and Building Materials, 113, 456-469, 2016.
- 31. Malik M., Bhattacharyya S. K., Barai S. V., Thermal and mechanical properties of concrete and its constituents at elevated temperatures: a review, Construction and Building Materials, 270, 121398, 2021.
- 32. Zhang W., Min H., Gu X., Xi Y., Xing Y., Mesoscale model for thermal conductivity of concrete, Construction and Building Materials, 98, 8-16, 2015.
- 33. Duran-Herrera A., Campos-Dimas J. K., Valdez-Tamez P. L., Bentz D. P., Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars, Journal of Building Physics, 40 (1), 3-16, 2016.
- 34. Khaliq W., Waheed F., Mechanical response and spalling sensitivity of air entrained high-strength concrete at elevated temperatures, Construction and Building Materials, 150, 747-757, 2017.
- 35. Khaliq W., Kodur V., Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures, Cement and Concrete Research, 41 (11), 1112-1122, 2011.
- 36. Li Y., Tan K. H., Yang E. H., Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature, Cement and Concrete Composites, 96, 174-181, 2019.
- 37. ASTM C1723, Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy, 2016.
- 38. Zhang Y., Ju J. W., Zhu H., Yan Z., A novel multi-scale model for predicting the thermal damage of hybrid fiber-reinforced concrete, International Journal of Damage Mechanics, 29 (1), 19-44, 2020.
- 39. Zhang Y., Zhang S., Jiang X., Zhao W., Wang Y., Zhu P., Yan Z., Zhu H., Uniaxial tensile properties of multi-scale fiber reinforced rubberized concrete after exposure to elevated temperatures, Journal of Cleaner Production, 389, 136068, 2023.
- 40. Kevinly C., Du P., Tan K. H., Local bond-slip behaviour of reinforcing bars in fibre reinforced lightweight aggregate concrete at ambient and elevated temperatures, Construction and Building Materials, 377, 131010, 2023.
- 41. Saif M. S., Shanour A. S., Abdelaziz G. E., Elsayad H. I., Shaaban I. G., Tayeh B. A., Hammad M. S., Influence of blended powders on properties of ultra-high strength fibre reinforced self compacting concrete subjected to elevated temperatures, Case Studies in Construction Materials, 18, e01793, 2023.
- 42. Hosseinzadeh H., Salehi A. M., Mehraein M., Asadollahfardi G., The effects of steel, polypropylene, and high-performance macro polypropylene fibers on mechanical properties and durability of high-strength concrete, Construction and Building Materials, 386, 131589, 2023.
- 43. Yuan Z., Jia Y., Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: an experimental study, Construction and Building Materials, 266, 121048, 2021.
- 44. Zhou W., Mo J., Xiang S., Zeng L., Impact of elevated temperatures on the mechanical properties and microstructure of waste rubber powder modified polypropylene fiber reinforced concrete, Construction and Building Materials, 392, 131982, 2023.
- 45. Cao M., Li L., Yin H., Ming X., Microstructure and strength of calcium carbonate (CaCO3) whisker reinforced cement paste after exposed to high temperatures, Fire Technology, 55, 1983-2003, 2019.
Year 2025,
Volume: 40 Issue: 3, 1797 - 1812
Muhammed Yusuf Gözkeser
,
Serhat Demirhan
,
Berfin Ramazanoğlu
,
Necim Kaya
Project Number
BTÜBAP-2022-YL-17
References
- 1. Topal Ö., Karakoç M. B., Özcan A., Effects of elevated temperatures on the properties of ground granulated blast furnace slag (GGBFS) based geopolymer concretes containing recycled concrete aggregate, European Journal of Environmental and Civil Engineering, 26 (10), 4847-4862, 2022.
- 2. Durmuş G., Arslan M., Physıcal properties of cement mortars exposed to high temperature in various cooling conditions, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (3), 541-548, 2010.
- 3. Durmuş G., Bekem İ., Investigation of the effect of high temperatures and different cooling conditions on the concrete with calcerous aggregates, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (4), 741-748, 2010.
- 4. Sancak E., Şimşek O., Effects of high temperature on the lightweight concrete with silica fume and superplasticizer, Journal of the Faculty of Engineering and Architecture of Gazi University, 21 (3), 443-450, 2006.
- 5. Shah S. N. R., Akashah F. W., Shafigh P., Performance of high strength concrete subjected to elevated temperatures: a review, Fire Technology, 55, 1571-1597, 2019.
- 6. Derinpinar A. N., Karakoç M. B., Özcan A., Performance of glass powder substituted slag based geopolymer concretes under high temperature, Construction and Building Materials, 331, 127318, 2022.
- 7. Memon S. A., Shah S. F. A., Khushnood R. A., Baloch W. L., Durability of sustainable concrete subjected to elevated temperature–a review, Construction and Building Materials, 199, 435-455, 2019.
- 8. Zhang P., Kang L., Wang J., Guo J., Hu S., Ling Y., Mechanical properties and explosive spalling behavior of steel-fiber-reinforced concrete exposed to high temperature—a review, Applied Sciences, 10 (7), 2324, 2020.
- 9. Krishna A., Kaliyaperumal S. R. M., Kathirvel P., Compressive strength and impact resistance of hybrid fiber reinforced concrete exposed to elevated temperatures, Structural Concrete, 23 (3), 1611-1624, 2022.
- 10. Tawfik M., El-said A., Deifalla A., Awad A., Mechanical properties of hybrid steel-polypropylene fiber reinforced high strength concrete exposed to various temperatures, Fibers, 10 (6), 53, 2022.
- 11. Alhamad A., Yehia S., Lublóy É., Elchalakani M., Performance of different concrete types exposed to elevated temperatures: a review, Materials, 15 (14), 5032, 2022.
- 12. Ashkezari G. D., Razmara M., Thermal and mechanical evaluation of ultra-high performance fiber-reinforced concrete and conventional concrete subjected to high temperatures, Journal of Building Engineering, 32, 101621, 2020.
- 13. Cao K., Liu G., Li H., Huang Z., Wu G., Correlation between macroscopic properties and microscopic pore structure in steel-basalt hybrid fibers reinforced cementitious composites subjected to elevated temperatures, Construction and Building Materials, 365, 129988, 2023.
- 14. Wu H., Lin X., Zhou A., A review of mechanical properties of fibre reinforced concrete at elevated temperatures, Cement and Concrete Research, 135, 106117, 2020.
- 15. Pasztetnik M., Wróblewski R., A literature review of concrete ability to sustain strength after fire exposure based on the heat accumulation factor, Materials, 14 (16), 4719, 2021.
- 16. Shen L., Yao X., Di Luzio G., Jiang M., Han Y., Mix optimization of hybrid steel and polypropylene fiber-reinforced concrete for anti-thermal spalling, Journal of Building Engineering, 63, 105409, 2023.
- 17. Szeląg M., Evaluation of cracking patterns of cement paste containing polypropylene fibers, Composite Structures, 220, 402-411, 2019.
- 18. Chen G. M., He Y. H., Yang H., Chen J. F., Guo Y. C., Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures, Construction and Building Materials, 71, 1-15, 2014.
- 19. Guo Y. C., Zhang J. H., Chen G. M., Xie Z. H., Compressive behaviour of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fibre, subjected to elevated temperatures, Journal of Cleaner Production, 72, 193-203, 2014.
- 20. Xie J., Zhang Z., Lu Z., Sun M., Coupling effects of silica fume and steel-fiber on the compressive behaviour of recycled aggregate concrete after exposure to elevated temperature, Construction and Building Materials, 184, 752-764, 2018.
- 21. Zheng W., Li H., Wang Y., Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature, Materials & Design, 41, 403-409, 2012.
- 22. Eidan J., Rasoolan I., Rezaeian A., Poorveis D., Residual mechanical properties of polypropylene fiber-reinforced concrete after heating, Construction and Building Materials, 198, 195-206, 2019.
- 23. Aslani F., Kelin J., Assessment and development of high-performance fibre-reinforced lightweight self-compacting concrete including recycled crumb rubber aggregates exposed to elevated temperatures, Journal of Cleaner Production, 200, 1009-1025, 2018.
- 24. Czoboly O., Lublóy É., Hlavička V., Balázs G. L., Kéri O., Szilágyi I. M., Fibers and fiber cocktails to improve fire resistance of concrete, Journal of Thermal Analysis and Calorimetry, 128, 1453-1461, 2017.
- 25. Holan J., Novak J., Müller P., Štefan R., Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures, Construction and Building Materials, 248, 118662, 2020.
- 26. Li L., Shi L., Wang Q., Liu Y., Dong J., Zhang H., Zhang G., A review on the recovery of fire-damaged concrete with post-fire-curing, Construction and Building Materials, 237, 117564, 2020.
- 27. Demirel Ö., Demirhan S., Investigation of microstryctural properties of high-volume flay ash blended cement mortars including micronized calcite, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 2255-2270, 2021.
- 28. Demirhan S., Combined effects of nano-sized calcite and fly ash on hydration and microstructural properties of mortars, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20 (6), 1051-1067, 2020.
- 29. Van Der Heijden G. H. A., Van Bijnen R. M. W., Pel L., Huinink H. P., Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling, Cement and Concrete Research, 37 (6), 894-901, 2007.
- 30. Ding Y., Zhang C., Cao M., Zhang Y., Azevedo C., Influence of different fibers on the change of pore pressure of self-consolidating concrete exposed to fire, Construction and Building Materials, 113, 456-469, 2016.
- 31. Malik M., Bhattacharyya S. K., Barai S. V., Thermal and mechanical properties of concrete and its constituents at elevated temperatures: a review, Construction and Building Materials, 270, 121398, 2021.
- 32. Zhang W., Min H., Gu X., Xi Y., Xing Y., Mesoscale model for thermal conductivity of concrete, Construction and Building Materials, 98, 8-16, 2015.
- 33. Duran-Herrera A., Campos-Dimas J. K., Valdez-Tamez P. L., Bentz D. P., Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars, Journal of Building Physics, 40 (1), 3-16, 2016.
- 34. Khaliq W., Waheed F., Mechanical response and spalling sensitivity of air entrained high-strength concrete at elevated temperatures, Construction and Building Materials, 150, 747-757, 2017.
- 35. Khaliq W., Kodur V., Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures, Cement and Concrete Research, 41 (11), 1112-1122, 2011.
- 36. Li Y., Tan K. H., Yang E. H., Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature, Cement and Concrete Composites, 96, 174-181, 2019.
- 37. ASTM C1723, Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy, 2016.
- 38. Zhang Y., Ju J. W., Zhu H., Yan Z., A novel multi-scale model for predicting the thermal damage of hybrid fiber-reinforced concrete, International Journal of Damage Mechanics, 29 (1), 19-44, 2020.
- 39. Zhang Y., Zhang S., Jiang X., Zhao W., Wang Y., Zhu P., Yan Z., Zhu H., Uniaxial tensile properties of multi-scale fiber reinforced rubberized concrete after exposure to elevated temperatures, Journal of Cleaner Production, 389, 136068, 2023.
- 40. Kevinly C., Du P., Tan K. H., Local bond-slip behaviour of reinforcing bars in fibre reinforced lightweight aggregate concrete at ambient and elevated temperatures, Construction and Building Materials, 377, 131010, 2023.
- 41. Saif M. S., Shanour A. S., Abdelaziz G. E., Elsayad H. I., Shaaban I. G., Tayeh B. A., Hammad M. S., Influence of blended powders on properties of ultra-high strength fibre reinforced self compacting concrete subjected to elevated temperatures, Case Studies in Construction Materials, 18, e01793, 2023.
- 42. Hosseinzadeh H., Salehi A. M., Mehraein M., Asadollahfardi G., The effects of steel, polypropylene, and high-performance macro polypropylene fibers on mechanical properties and durability of high-strength concrete, Construction and Building Materials, 386, 131589, 2023.
- 43. Yuan Z., Jia Y., Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: an experimental study, Construction and Building Materials, 266, 121048, 2021.
- 44. Zhou W., Mo J., Xiang S., Zeng L., Impact of elevated temperatures on the mechanical properties and microstructure of waste rubber powder modified polypropylene fiber reinforced concrete, Construction and Building Materials, 392, 131982, 2023.
- 45. Cao M., Li L., Yin H., Ming X., Microstructure and strength of calcium carbonate (CaCO3) whisker reinforced cement paste after exposed to high temperatures, Fire Technology, 55, 1983-2003, 2019.