Research Article
BibTex RIS Cite

Mg esaslı tek ve çok katlı ince filmlerin davranış farklılıkları

Year 2025, Volume: 40 Issue: 3, 1625 - 1636
https://doi.org/10.17341/gazimmfd.1418882

Abstract

Literatürdeki çalışmalarda, tek katlılarla kıyaslanan çok katlı filmler, tek katlıları oluşturan elementlere ilave elementlerle oluşturulurlar. Aynı elementlerle çeşitli sıçratma güçlerinde oluşturulmuş tek ve çok katlı filmlere nadiren rastlanılmakta, dolayısıyla özellik değişimlerini araştırmak adına önem arz etmektedirler. Genelde kristal tek ve çok katlı kıyaslamasına odaklanılmış, fakat amorf ilaveli çalışmalara yeterince rastlanılmamıştır. Mg ve Mg esaslı alaşımlar havacılıktan biyomalzemelere kadar olan uygulamalarda elverişli olan hafif mühendislik malzemeleridir. Bu çalışmanın kapsamı, biyouygulamalar için temel bir çalışma olarak magnetron sıçratmalı tek-Mg-Al ve çok katlı-Mg-Al(M) filmlerin yapısal, hidrofobiklik, tribolojik, adezyon ve elektrokimyasal özellik farklılıklarını keşfetmektir. Analizler için SEM, XRD, XPS, tribometre, tansiyometre ve üç elektrotlu hücre metotları uygulanmıştır. Mg-Al(M), PBS’de (Phosphate Buffered Saline) Mg-Al’dan daha düşük aşınma oranı ve sürtünme katsayısı göstermiştir. Mg-Al adezyon olarak 10.7 N’da hasara uğrarken, Mg-Al(M)’un kritik yükü kaplamanın taban üzerine yapışması ve gömülmesinden dolayı tespit edilememiştir. Her iki film ayrı ayrı olarak PBS ve damıtılmış su ile hidrofobiktirler. Mg-Al(M), 10 katlı yapıdan dolayı daha iyi bir korozyon potansiyeli ve özellikle yaklaşık olarak %35 daha yavaş bir korozyon hızı sergilemiştir.

Ethical Statement

Bu makalede sunulan veriler, bilgiler ve dokümanlar etik kurallar çerçevesinde elde edilmiş, tüm bilgi, belge, değerlendirme ve sonuçları bilimsel, etik ve ahlak kurallarına uygun olarak sunulmuş, atıfta bulunulan eserlerin tümü kaynak olarak gösterilmiş, verilerde herhangi bir değişiklik yapılmamıştır. Dolayısıyla bu çalışmanın özgün olduğunu bildiririz.

Supporting Institution

Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)

Project Number

FDK-2020–8550

Thanks

Bu çalışma, finansal olarak Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP) tarafından desteklenmiştir [proje numarası: FDK-2020–8550].

References

  • 1. Staiger M.P., Pietak A.M., Huadmai J., Dias G., Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27 (9), 1728-1734, 2006.
  • 2. Chen H.S., Turnbull D., Evidence of a glass–liquid transition in a gold–germanium–silicon alloy, J. Chem. Phys., 48, 2560-2571, 1968.
  • 3. Wang W.H., Dong C., Shek C.H., Bulk metallic glasses, Mater. Sci. and Eng.: R. Rep., 44 (2-3), 45-89, 2004.
  • 4. Lin H.K., Chung B.F., Effects of thermal treatment on optoelectrical properties of AZO/Ag-Mg-Al thin films, Appl. Surf. Sci., 467-468, 249-254, 2019.
  • 5. Lin Y.T., Chung Y.L., Wang Z.K., Huang J.C., AgMgAl metallic glassy and intermetallic thin films for electric contact applications, Intermet., 57, 133-138, 2015.
  • 6. Wang W.H., Hsu J.H., Huang J.C., Optical reflectivity improvement by upgrading metallic glass film quality, Appl. Phys. Lett., 103 (161906),1-4, 2013.
  • 7. Hu T.T., Hsu J.H., Huang J.C., Kuan S.Y., Lee C.J., Nieh T.G., Correlation between reflectivity and resistivity in multi-component metallic systems, Appl. Phys. Lett., 101 (011902), 1-4, 2012.
  • 8. Makuch N., The importance of phase composition for corrosion resistance of borided layers produced on nickel alloys, Mater., 13 (5131), 1-16, 2020.
  • 9. [9] Wenzel R.N., Resistance of solid surfaces to wetting by water, Ind. and Eng. Chem., 28 (8), 998-994, 1936.
  • 10. Subramanian B., In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels, Mater. Sci. and Eng. C., 47, 48–56, 2015.
  • 11. Lai J.J., Lin Y.S., Chang C.H., Wei T.Y., Huang J.C., Liao Z.X., Lin C.H., Chen C.H., Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications, Appl. Surf. Sci., 427, 485–495, 2018.
  • 12. Wang W., Wang K., Zhang Z., Chen J., Mou T., Michel F.M., Xin H., Cai W., Ultrahigh tribocorrosion resistance of metals enabled by nano-layering, Acta Mater., 206 (116609), 1-12, 2021.
  • 13. Li A., Chen Q., Wu G., Wang Y., Lu Z., Zhang G., Probing the lubrication mechanism of multilayered Si-DLC coatings in water and air environments, Diamond Relat. Mater., 105 (107772), 1-10, 2020.
  • 14. Zhang X., Zhao Y., Gao W., Ren L., Yang K., Study of TiCuN/ZrN multilayer coatings with adjustable combination properties deposited on TiCu alloy, Vacuum, 202 (111202), 2-16, 2022.
  • 15. Khan M.M., Deen K.M., Haider W., Combinatorial development and assessment of a Zr-based metallic glass for prospective biomedical applications, J. of Non-Cryst. Solids, 523 (119544), 1-15, 2019.
  • 16. Kuan S.Y., Du X.H., Chou H.S., Huang J.C., Mechanical response of amorphous ZrCuTi/PdCuSi nanolaminates under nanoindentation, Surf. Coat. Technol., 206, 1116-1119, 2011.
  • 17. Liu Z.X., Li Y., Xie X.H., Qin J., Wang Y., The tribo-corrosion behavior of monolayer VN and multilayer VN/C hard coatings under simulated seawater, Ceram. Int., 47, 25655-25663, 2021.
  • 18. Cai F., Zhou Q., Chen J., Zhang S., Effect of inserting the Zr layers on the tribo-corrosion behavior of Zr/ZrN multilayer coatings on titanium alloys, Corros. Sci., 213 (111002), 1-14, 2023.
  • 19. Xia B., Zhou S., Wang Y., Chen H., Zhang J., Qi B., Multilayer architecture design to enhance load-bearing capacity and tribological behavior of CrAlN coatings in seawater, Ceram. Int., 47, 27430-27440, 2021.
  • 20. Lee J., Liou M-L., Duh J-G., The development of a Zr-Cu-Al-Ag-N thin film metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application, Surf. & Coat. Technol., 310, 214–222, 2017.
  • 21. Cai C-N., Zhang C., Sun Y-S., Huang H-H., Yang C., Liu L., ZrCuFeAlAg thin film metallic glass for potential dental applications, Intermet., 86, 80-87, 2017.
  • 22. Shuai J., Zuo X., Wang Z., Guo P., Xu B., Zhou J., Wang A., Ke P., Comparative study on crack resistance of TiAlN monolithic and Ti/TiAlN multilayer coatings, Ceram. Int., 46, 6672–6681, 2020.
  • 23. Rajan S.T., Karthika M., Bendavid A., Subramanian B., Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications, Appl. Surf. Sci., 369, 501–509, 2016.
  • 24. Zhou Q., Du Y., Ren Y., Kuang W., Han W., Wang H., Huang P., Wang F., Wang J., Investigation into nanoscratching mechanical performance of metallic glass multilayers with improved nano-tribological properties, J. of Alloy. and Compd., 776, 447-459, 2019.
  • 25. Lenis J.A., Romero E.C., Macias A.H., Rico P., Ribelles J.L.G., Pacha-Olivenza M.A., Gonzalez-Martin M.L., Bolivar F.J., Mechanical, structural, and biological evaluation of multilayer HA-Ag/TiO2/TiN/Ti coatings on Ti6Al4V obtained by magnetron sputtering for implant applications, Surf. Coat. Technol., 449 (128925), 1-10, 2022.
  • 26. Romero E.C., Osorio J.C., Soto R.T., Macias A.H., Botero M.G., Microstructure, mechanical and tribological performance of nanostructured TiAlTaN-(TiAlN/TaN)n coatings: Understanding the effect of quaternary/multilayer volume fraction, Surf. Coat. Technol., 377 (124875), 1-11, 2019.
  • 27. Jabed A., Khan M.M., Camiller J., Greenlee-Wacker M., Haider W., Shabib I., Property optimization of Zr-Ti-X (X=Ag, Al) metallic glass via combinatorial development aimed at prospective biomedical application, Surf. Coat. Technol., 372, 278–287, 2019.
  • 28. Xie W., Zhao Y., Chen S., Liao B., Zhang S., Hua Q., He G., Corrosion resistance of AlN monolayer and Al/AlN multilayer deposited by filtered cathodic vacuum arc, Thin Solid Films, 772 (139762), 1-11, 2023.
  • 29. Inoue A., Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48, 279-306, 2000.
  • 30. Guo S., Liu C.T., Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. in Nat. Sci.: Mater. Int., 2, 433-446, 2011.
  • 31. Takeuchi A., Inoue A., Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Transactions, 46 (12), 2817-2829, 2005.
  • 32. Kumar P. , Avasthi S. , Diffusion barrier with 30-fold improved performance using AlCrTaTiZrN high-entropy alloy, J. of Alloy. and Compd., 814 (151755), 1-5, 2020.
  • 33. Zhao Y., Xu F., Zhang D., Xu J., Shi X., Sun S., Zhao W., Gao C., Zuo D., Enhanced tribological and corrosion properties of DLC/CrN multilayer films deposited by HPPMS, Ceram. Int., 48, 25569–25577, 2022.
  • 34. Thornton J.A., High rate thick film growth, Annu. Rev. Mater. Sci., 7, 139-260, 1977.
  • 35. Khamseh S., Alibakhshi E., Ramezanzadeh B., Lecomte J-S., Laheurte P., Noirefalize X., Laoutid F., Vahabi H., Tailoring hardness and electrochemical performance of TC4 coated Cu/a-C thin coating with introducing second metal Zr, Corros. Sci., 172 (108713), 1-12, 2020.
  • 36. Obeydavi A., Shafyei A., Rezaeian A., Kameli P., Lee J-W., Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering, J. of Non-Cryst. Solids., 527 (119718), 1-17, 2020.
  • 37. Mani S.P., Agilan P., Kalaiarasan M., Ravichandran K., Rajendran N., Meng Y., Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell, J. Mater. Sci. Technol., 97, 134–146, 2022.
  • 38. Mohri M., Wang D., Ivanisenko J., Gleiter H., Hahn H., Investigation of the deposition conditions on the microstructure of TiZrCuPd nano-glass thin films, Mater. Charact., 131, 140-147, 2017.
  • 39. Thornton J.A., Sputter coating-Its principles and potential, SAE Trans. 82, 1787-1805, 1973.
  • 40. Ketov S.V., Joksimovic R., Xie G., Trifonov A., Kurihara K., Louzguine-Luzgin D.V., Formation of nanostructured metallic glass thin films upon sputtering, Heliyon. 3 (1),1-16, 2017.
  • 41. Bönninghoff N. , Diyatmika W. , Chu J.P. , Mráz S. , Schneider J.M., Lin C L., Eriksson F., Greczynski G., ZrCuAlNi thin film metallic glass grown by high power impulse and direct current magnetron sputtering, Surf. & Coat. Technol., 412 (127029), 1-9, 2021.
  • 42. Wang Y.X., Zhang S., Lee J-W., Lew W.S., Li B., Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering, Surf. & Coat. Technol., 206, 5103–5107, 2012.
  • 43. Wang M., Zhang K., Zhang Y., Qi J., Huang H., Zhang S., Wang M., Wang X., Wen M., Self-assembly of nanocrystalline@amorphous core-shell nanostructure in the TA19 alloy film to achieve high strength, J. of Alloy. and Compd., 819 (153039), 1-10, 2020.
Year 2025, Volume: 40 Issue: 3, 1625 - 1636
https://doi.org/10.17341/gazimmfd.1418882

Abstract

Project Number

FDK-2020–8550

References

  • 1. Staiger M.P., Pietak A.M., Huadmai J., Dias G., Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27 (9), 1728-1734, 2006.
  • 2. Chen H.S., Turnbull D., Evidence of a glass–liquid transition in a gold–germanium–silicon alloy, J. Chem. Phys., 48, 2560-2571, 1968.
  • 3. Wang W.H., Dong C., Shek C.H., Bulk metallic glasses, Mater. Sci. and Eng.: R. Rep., 44 (2-3), 45-89, 2004.
  • 4. Lin H.K., Chung B.F., Effects of thermal treatment on optoelectrical properties of AZO/Ag-Mg-Al thin films, Appl. Surf. Sci., 467-468, 249-254, 2019.
  • 5. Lin Y.T., Chung Y.L., Wang Z.K., Huang J.C., AgMgAl metallic glassy and intermetallic thin films for electric contact applications, Intermet., 57, 133-138, 2015.
  • 6. Wang W.H., Hsu J.H., Huang J.C., Optical reflectivity improvement by upgrading metallic glass film quality, Appl. Phys. Lett., 103 (161906),1-4, 2013.
  • 7. Hu T.T., Hsu J.H., Huang J.C., Kuan S.Y., Lee C.J., Nieh T.G., Correlation between reflectivity and resistivity in multi-component metallic systems, Appl. Phys. Lett., 101 (011902), 1-4, 2012.
  • 8. Makuch N., The importance of phase composition for corrosion resistance of borided layers produced on nickel alloys, Mater., 13 (5131), 1-16, 2020.
  • 9. [9] Wenzel R.N., Resistance of solid surfaces to wetting by water, Ind. and Eng. Chem., 28 (8), 998-994, 1936.
  • 10. Subramanian B., In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels, Mater. Sci. and Eng. C., 47, 48–56, 2015.
  • 11. Lai J.J., Lin Y.S., Chang C.H., Wei T.Y., Huang J.C., Liao Z.X., Lin C.H., Chen C.H., Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications, Appl. Surf. Sci., 427, 485–495, 2018.
  • 12. Wang W., Wang K., Zhang Z., Chen J., Mou T., Michel F.M., Xin H., Cai W., Ultrahigh tribocorrosion resistance of metals enabled by nano-layering, Acta Mater., 206 (116609), 1-12, 2021.
  • 13. Li A., Chen Q., Wu G., Wang Y., Lu Z., Zhang G., Probing the lubrication mechanism of multilayered Si-DLC coatings in water and air environments, Diamond Relat. Mater., 105 (107772), 1-10, 2020.
  • 14. Zhang X., Zhao Y., Gao W., Ren L., Yang K., Study of TiCuN/ZrN multilayer coatings with adjustable combination properties deposited on TiCu alloy, Vacuum, 202 (111202), 2-16, 2022.
  • 15. Khan M.M., Deen K.M., Haider W., Combinatorial development and assessment of a Zr-based metallic glass for prospective biomedical applications, J. of Non-Cryst. Solids, 523 (119544), 1-15, 2019.
  • 16. Kuan S.Y., Du X.H., Chou H.S., Huang J.C., Mechanical response of amorphous ZrCuTi/PdCuSi nanolaminates under nanoindentation, Surf. Coat. Technol., 206, 1116-1119, 2011.
  • 17. Liu Z.X., Li Y., Xie X.H., Qin J., Wang Y., The tribo-corrosion behavior of monolayer VN and multilayer VN/C hard coatings under simulated seawater, Ceram. Int., 47, 25655-25663, 2021.
  • 18. Cai F., Zhou Q., Chen J., Zhang S., Effect of inserting the Zr layers on the tribo-corrosion behavior of Zr/ZrN multilayer coatings on titanium alloys, Corros. Sci., 213 (111002), 1-14, 2023.
  • 19. Xia B., Zhou S., Wang Y., Chen H., Zhang J., Qi B., Multilayer architecture design to enhance load-bearing capacity and tribological behavior of CrAlN coatings in seawater, Ceram. Int., 47, 27430-27440, 2021.
  • 20. Lee J., Liou M-L., Duh J-G., The development of a Zr-Cu-Al-Ag-N thin film metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application, Surf. & Coat. Technol., 310, 214–222, 2017.
  • 21. Cai C-N., Zhang C., Sun Y-S., Huang H-H., Yang C., Liu L., ZrCuFeAlAg thin film metallic glass for potential dental applications, Intermet., 86, 80-87, 2017.
  • 22. Shuai J., Zuo X., Wang Z., Guo P., Xu B., Zhou J., Wang A., Ke P., Comparative study on crack resistance of TiAlN monolithic and Ti/TiAlN multilayer coatings, Ceram. Int., 46, 6672–6681, 2020.
  • 23. Rajan S.T., Karthika M., Bendavid A., Subramanian B., Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications, Appl. Surf. Sci., 369, 501–509, 2016.
  • 24. Zhou Q., Du Y., Ren Y., Kuang W., Han W., Wang H., Huang P., Wang F., Wang J., Investigation into nanoscratching mechanical performance of metallic glass multilayers with improved nano-tribological properties, J. of Alloy. and Compd., 776, 447-459, 2019.
  • 25. Lenis J.A., Romero E.C., Macias A.H., Rico P., Ribelles J.L.G., Pacha-Olivenza M.A., Gonzalez-Martin M.L., Bolivar F.J., Mechanical, structural, and biological evaluation of multilayer HA-Ag/TiO2/TiN/Ti coatings on Ti6Al4V obtained by magnetron sputtering for implant applications, Surf. Coat. Technol., 449 (128925), 1-10, 2022.
  • 26. Romero E.C., Osorio J.C., Soto R.T., Macias A.H., Botero M.G., Microstructure, mechanical and tribological performance of nanostructured TiAlTaN-(TiAlN/TaN)n coatings: Understanding the effect of quaternary/multilayer volume fraction, Surf. Coat. Technol., 377 (124875), 1-11, 2019.
  • 27. Jabed A., Khan M.M., Camiller J., Greenlee-Wacker M., Haider W., Shabib I., Property optimization of Zr-Ti-X (X=Ag, Al) metallic glass via combinatorial development aimed at prospective biomedical application, Surf. Coat. Technol., 372, 278–287, 2019.
  • 28. Xie W., Zhao Y., Chen S., Liao B., Zhang S., Hua Q., He G., Corrosion resistance of AlN monolayer and Al/AlN multilayer deposited by filtered cathodic vacuum arc, Thin Solid Films, 772 (139762), 1-11, 2023.
  • 29. Inoue A., Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48, 279-306, 2000.
  • 30. Guo S., Liu C.T., Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. in Nat. Sci.: Mater. Int., 2, 433-446, 2011.
  • 31. Takeuchi A., Inoue A., Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Transactions, 46 (12), 2817-2829, 2005.
  • 32. Kumar P. , Avasthi S. , Diffusion barrier with 30-fold improved performance using AlCrTaTiZrN high-entropy alloy, J. of Alloy. and Compd., 814 (151755), 1-5, 2020.
  • 33. Zhao Y., Xu F., Zhang D., Xu J., Shi X., Sun S., Zhao W., Gao C., Zuo D., Enhanced tribological and corrosion properties of DLC/CrN multilayer films deposited by HPPMS, Ceram. Int., 48, 25569–25577, 2022.
  • 34. Thornton J.A., High rate thick film growth, Annu. Rev. Mater. Sci., 7, 139-260, 1977.
  • 35. Khamseh S., Alibakhshi E., Ramezanzadeh B., Lecomte J-S., Laheurte P., Noirefalize X., Laoutid F., Vahabi H., Tailoring hardness and electrochemical performance of TC4 coated Cu/a-C thin coating with introducing second metal Zr, Corros. Sci., 172 (108713), 1-12, 2020.
  • 36. Obeydavi A., Shafyei A., Rezaeian A., Kameli P., Lee J-W., Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering, J. of Non-Cryst. Solids., 527 (119718), 1-17, 2020.
  • 37. Mani S.P., Agilan P., Kalaiarasan M., Ravichandran K., Rajendran N., Meng Y., Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell, J. Mater. Sci. Technol., 97, 134–146, 2022.
  • 38. Mohri M., Wang D., Ivanisenko J., Gleiter H., Hahn H., Investigation of the deposition conditions on the microstructure of TiZrCuPd nano-glass thin films, Mater. Charact., 131, 140-147, 2017.
  • 39. Thornton J.A., Sputter coating-Its principles and potential, SAE Trans. 82, 1787-1805, 1973.
  • 40. Ketov S.V., Joksimovic R., Xie G., Trifonov A., Kurihara K., Louzguine-Luzgin D.V., Formation of nanostructured metallic glass thin films upon sputtering, Heliyon. 3 (1),1-16, 2017.
  • 41. Bönninghoff N. , Diyatmika W. , Chu J.P. , Mráz S. , Schneider J.M., Lin C L., Eriksson F., Greczynski G., ZrCuAlNi thin film metallic glass grown by high power impulse and direct current magnetron sputtering, Surf. & Coat. Technol., 412 (127029), 1-9, 2021.
  • 42. Wang Y.X., Zhang S., Lee J-W., Lew W.S., Li B., Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering, Surf. & Coat. Technol., 206, 5103–5107, 2012.
  • 43. Wang M., Zhang K., Zhang Y., Qi J., Huang H., Zhang S., Wang M., Wang X., Wen M., Self-assembly of nanocrystalline@amorphous core-shell nanostructure in the TA19 alloy film to achieve high strength, J. of Alloy. and Compd., 819 (153039), 1-10, 2020.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Plating Technology, Corrosion
Journal Section Makaleler
Authors

Murat Akbulut 0000-0001-7521-7130

Mehmet Karakan 0000-0002-6491-4667

Project Number FDK-2020–8550
Early Pub Date May 13, 2025
Publication Date
Submission Date January 13, 2024
Acceptance Date January 6, 2025
Published in Issue Year 2025 Volume: 40 Issue: 3

Cite

APA Akbulut, M., & Karakan, M. (2025). Mg esaslı tek ve çok katlı ince filmlerin davranış farklılıkları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(3), 1625-1636. https://doi.org/10.17341/gazimmfd.1418882
AMA Akbulut M, Karakan M. Mg esaslı tek ve çok katlı ince filmlerin davranış farklılıkları. GUMMFD. May 2025;40(3):1625-1636. doi:10.17341/gazimmfd.1418882
Chicago Akbulut, Murat, and Mehmet Karakan. “Mg Esaslı Tek Ve çok Katlı Ince Filmlerin davranış farklılıkları”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, no. 3 (May 2025): 1625-36. https://doi.org/10.17341/gazimmfd.1418882.
EndNote Akbulut M, Karakan M (May 1, 2025) Mg esaslı tek ve çok katlı ince filmlerin davranış farklılıkları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 3 1625–1636.
IEEE M. Akbulut and M. Karakan, “Mg esaslı tek ve çok katlı ince filmlerin davranış farklılıkları”, GUMMFD, vol. 40, no. 3, pp. 1625–1636, 2025, doi: 10.17341/gazimmfd.1418882.
ISNAD Akbulut, Murat - Karakan, Mehmet. “Mg Esaslı Tek Ve çok Katlı Ince Filmlerin davranış farklılıkları”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/3 (May 2025), 1625-1636. https://doi.org/10.17341/gazimmfd.1418882.
JAMA Akbulut M, Karakan M. Mg esaslı tek ve çok katlı ince filmlerin davranış farklılıkları. GUMMFD. 2025;40:1625–1636.
MLA Akbulut, Murat and Mehmet Karakan. “Mg Esaslı Tek Ve çok Katlı Ince Filmlerin davranış farklılıkları”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 40, no. 3, 2025, pp. 1625-36, doi:10.17341/gazimmfd.1418882.
Vancouver Akbulut M, Karakan M. Mg esaslı tek ve çok katlı ince filmlerin davranış farklılıkları. GUMMFD. 2025;40(3):1625-36.