Research Article
BibTex RIS Cite

The Role of Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging in the Evaluation of Active and Inactive Demyelinating Plaques in Multiple Sclerosis

Year 2025, Volume: 35 Issue: 3, 442 - 446, 30.06.2025
https://doi.org/10.54005/geneltip.1599021

Abstract

Background
Our goal in this study was to find out if active plaques that exhibit enhancement and inactive plaques that do not differ in DSC-PWI measures in MS patients.
Material and Methods:
In our study, Dynamic susceptibility contrast perfusion-weighted MRI (DSC-PI) examinations of 30 patients diagnosed with Multiple Sclerosis were retrospectively analyzed. A region of interest (ROI) was manually drawn on DSC-PI between active plaques that showed enhancement on conventional MRI sequences and inactive plaques that did not show enhancement. Cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and time to peak (TTP) in this ROI were also recorded. These measurements were also normalized to apparently unaffected contralateral white matter hemisphere measurements. These normalized values were named rCBV, rCBF, rMTT and rTTP.
Results:
Both rCBV and rCBF were significantly higher in active demyelinating plaques compared to chronic demyelinating plaques (p<0.001). Mean rCBV and rCBF values in active plaques were 1.61 ± 0.66 and 1.44 ± 0.59, respectively. In chronic plaques, mean rCBV was 0.91 ± 0.32 and mean rCBF was 0.81 ± 0.26. The mean rMTT was 0.98 ± 0.53 in active demyelinating plaques and 1.30 ± 0.44 in chronic demyelinating plaques and there was a significant difference between the two groups (p=0.004). Mean rTTP was also significantly prolonged in active demyelinating plaques compared to chronic plaques (p<0.001). Mean rTTP was 0.93 ± 0.14 and 1.06 ± 0.21 in active and chronic demyelinating plaques, respectively
Conclusions:
In conclusion, DSC-PI examination may provide reliable information in the evaluation of active and inactive demyelinating plaques in MS.

References

  • 1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502-17.
  • 2. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278-86.
  • 3. Soheila R, Arezoo B, Galavani H, Saber R. Comments on "Genetic characterization and phylogenetic analysis of Fasciola species based on ITS2 gene sequence, with first molecular evidence of intermediate Fasciola from water buffaloes in Aswan, Egypt". Ann Parasitol. 2021;67(2):351-2.
  • 4. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-73.
  • 5. Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging: A new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol. 2008;65(6):812-6.
  • 6. Stadelmann C, Wegner C, Brück W. Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim Biophys Acta. 2011;1812(2):275-82.
  • 7. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(Pt 11):2705-12.
  • 8. Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn). 2013;19(4 Multiple Sclerosis):901-21.
  • 9. Lassmann H. Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J Neurol Sci. 2003;206(2):187-91.
  • 10. Adams CW, Poston RN, Buk SJ. Pathology, histochemistry and immunocytochemistry of lesions in acute multiple sclerosis. J Neurol Sci. 1989;92(2-3):291-306.
  • 11. Sowa P, Nygaard GO, Bjørnerud A, Celius EG, Harbo HF, Beyer MK. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis. Neuroradiology. 2017;59(7):655-64.
  • 12. Cramer SP, Simonsen H, Frederiksen JL, Rostrup E, Larsson HB. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin. 2014;4:182-9.
  • 13. Sowa P, Bjørnerud A, Nygaard GO, Damangir S, Spulber G, Celius EG, et al. Reduced perfusion in white matter lesions in multiple sclerosis. Eur J Radiol. 2015;84(12):2605-12.
  • 14. Bae J, Zhang J, Wadghiri YZ, Minhas AS, Poptani H, Ge Y, et al. Measurement of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging with reduced scan time. Magn Reson Med. 2018;80(4):1686-96.
  • 15. Oghabian MA, Fatemidokht A, Haririchian MH. Quantification of Blood-Brain-Barrier Permeability Dysregulation and Inflammatory Activity in MS Lesions by Dynamic-Contrast Enhanced MR Imaging. Basic Clin Neurosci. 2022;13(1):117-28.
  • 16. Ingrisch M, Sourbron S, Morhard D, Ertl-Wagner B, Kümpfel T, Hohlfeld R, et al. Quantification of perfusion and permeability in multiple sclerosis: dynamic contrast-enhanced MRI in 3D at 3T. Invest Radiol. 2012;47(4):252-8.
  • 17. Taheri S, Rosenberg GA, Ford C. Quantification of blood-to-brain transfer rate in multiple sclerosis. Mult Scler Relat Disord. 2013;2(2):124-32.
  • 18. Ortiz GG, Pacheco-Moisés FP, Macías-Islas M, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, et al. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014;45(8):687-97.
  • 19. Lycke J, Wikkelsö C, Bergh AC, Jacobsson L, Andersen O. Regional cerebral blood flow in multiple sclerosis measured by single photon emission tomography with technetium-99m hexamethylpropyleneamine oxime. Eur Neurol. 1993;33(2):163-7.
  • 20. Sun X, Tanaka M, Kondo S, Okamoto K, Hirai S. Clinical significance of reduced cerebral metabolism in multiple sclerosis: a combined PET and MRI study. Ann Nucl Med. 1998;12(2):89-94.
  • 21. Law M, Saindane AM, Ge Y, Babb JS, Johnson G, Mannon LJ, et al. Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology. 2004;231(3):645-52.
  • 22. Inglese M, Adhya S, Johnson G, Babb JS, Miles L, Jaggi H, et al. Perfusion magnetic resonance imaging correlates with neuropsychological impairment in multiple sclerosis. J Cereb Blood Flow Metab. 2008;28(1):164-71.
  • 23. Ge Y, Law M, Johnson G, Herbert J, Babb JS, Mannon LJ, et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol. 2005;26(6):1539-47.
  • 24. Ingrisch M, Sourbron S, Herberich S, Schneider MJ, Kümpfel T, Hohlfeld R, et al. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Suggests Normal Perfusion in Normal-Appearing White Matter in Multiple Sclerosis. Invest Radiol. 2017;52(3):135-41.
  • 25. Ciccarelli O, Werring DJ, Barker GJ, Griffin CM, Wheeler-Kingshott CA, Miller DH, et al. A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging--evidence of Wallerian degeneration. J Neurol. 2003;250(3):287-92.

Multipl Sklerozda Aktif ve İnaktif Demiyelinizan Plakların Değerlendirilmesinde Dinamik Duyarlılık Kontrastlı Perfüzyon Manyetik Rezonans Görüntülemenin Rolü

Year 2025, Volume: 35 Issue: 3, 442 - 446, 30.06.2025
https://doi.org/10.54005/geneltip.1599021

Abstract

Amaç:
Bu çalışmadaki amacımız, MS hastalarında kontrastlanma gösteren aktif plakların ve göstermeyen inaktif plakların DSC-PWI ölçümlerinde farklılık olup olmadığını bulmaktı.
Gereç ve Yöntemler:
Çalışmamızda, Multipl Skleroz tanısı konmuş 30 hastanın Dinamik susceptibilite kontrastlı perfüzyon ağırlıklı MRG incelemeleri retrospektif olarak analiz edildi. Konvansiyonel MRG sekanslarında kontrastlanma gösteren aktif plaklar ile kontrastlanma göstermeyen inaktif plaklar arasında DSC-PI üzerinde manuel olarak bir ilgi bölgesi (ROI) çizildi. Bu ROI'deki serebral kan hacmi (CBV), serebral kan akışı (CBF), ortalama geçiş süresi (MTT) ve zirveye ulaşma süresi (TTP) de kaydedildi. Bu ölçümler ayrıca görünüşte etkilenmemiş kontralateral beyaz cevher hemisfer ölçümleri ile normalize edildi. Bu normalize edilen değerler rCBV, rCBF, rMTT ve rTTP olarak adlandırıldı.
Bulgular:
Hem rCBV hem de rCBF, aktif demiyelinizan plaklarda kronik demiyelinizan plaklara kıyasla anlamlı derecede yüksekti (p<0.001). Aktif plaklarda ortalama rCBV ve rCBF değerleri sırasıyla 1.61 ± 0.66 ve 1.44 ± 0.59 idi. Kronik plaklarda ortalama rCBV 0.91 ± 0.32 ve ortalama rCBF 0.81 ± 0.26 idi. Ortalama rMTT aktif demiyelinizan plaklarda 0.98 ± 0.53 ve kronik demiyelinizan plaklarda 1.30 ± 0.44 idi ve iki grup arasında anlamlı bir fark vardı (p=0.004). Ortalama rTTP de aktif demiyelinizan plaklarda kronik plaklara kıyasla anlamlı derecede uzamıştır (p<0.001). Ortalama rTTP aktif ve kronik demiyelinizan plaklarda sırasıyla 0.93 ± 0.14 ve 1.06 ± 0.21 idi
Sonuçlar:
Sonuç olarak, DSC-PI incelemesi MS'de aktif ve inaktif demiyelinizan plakların değerlendirilmesinde güvenilir bilgi sağlayabilir.

References

  • 1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502-17.
  • 2. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278-86.
  • 3. Soheila R, Arezoo B, Galavani H, Saber R. Comments on "Genetic characterization and phylogenetic analysis of Fasciola species based on ITS2 gene sequence, with first molecular evidence of intermediate Fasciola from water buffaloes in Aswan, Egypt". Ann Parasitol. 2021;67(2):351-2.
  • 4. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-73.
  • 5. Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging: A new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol. 2008;65(6):812-6.
  • 6. Stadelmann C, Wegner C, Brück W. Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim Biophys Acta. 2011;1812(2):275-82.
  • 7. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(Pt 11):2705-12.
  • 8. Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn). 2013;19(4 Multiple Sclerosis):901-21.
  • 9. Lassmann H. Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J Neurol Sci. 2003;206(2):187-91.
  • 10. Adams CW, Poston RN, Buk SJ. Pathology, histochemistry and immunocytochemistry of lesions in acute multiple sclerosis. J Neurol Sci. 1989;92(2-3):291-306.
  • 11. Sowa P, Nygaard GO, Bjørnerud A, Celius EG, Harbo HF, Beyer MK. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis. Neuroradiology. 2017;59(7):655-64.
  • 12. Cramer SP, Simonsen H, Frederiksen JL, Rostrup E, Larsson HB. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin. 2014;4:182-9.
  • 13. Sowa P, Bjørnerud A, Nygaard GO, Damangir S, Spulber G, Celius EG, et al. Reduced perfusion in white matter lesions in multiple sclerosis. Eur J Radiol. 2015;84(12):2605-12.
  • 14. Bae J, Zhang J, Wadghiri YZ, Minhas AS, Poptani H, Ge Y, et al. Measurement of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging with reduced scan time. Magn Reson Med. 2018;80(4):1686-96.
  • 15. Oghabian MA, Fatemidokht A, Haririchian MH. Quantification of Blood-Brain-Barrier Permeability Dysregulation and Inflammatory Activity in MS Lesions by Dynamic-Contrast Enhanced MR Imaging. Basic Clin Neurosci. 2022;13(1):117-28.
  • 16. Ingrisch M, Sourbron S, Morhard D, Ertl-Wagner B, Kümpfel T, Hohlfeld R, et al. Quantification of perfusion and permeability in multiple sclerosis: dynamic contrast-enhanced MRI in 3D at 3T. Invest Radiol. 2012;47(4):252-8.
  • 17. Taheri S, Rosenberg GA, Ford C. Quantification of blood-to-brain transfer rate in multiple sclerosis. Mult Scler Relat Disord. 2013;2(2):124-32.
  • 18. Ortiz GG, Pacheco-Moisés FP, Macías-Islas M, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, et al. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014;45(8):687-97.
  • 19. Lycke J, Wikkelsö C, Bergh AC, Jacobsson L, Andersen O. Regional cerebral blood flow in multiple sclerosis measured by single photon emission tomography with technetium-99m hexamethylpropyleneamine oxime. Eur Neurol. 1993;33(2):163-7.
  • 20. Sun X, Tanaka M, Kondo S, Okamoto K, Hirai S. Clinical significance of reduced cerebral metabolism in multiple sclerosis: a combined PET and MRI study. Ann Nucl Med. 1998;12(2):89-94.
  • 21. Law M, Saindane AM, Ge Y, Babb JS, Johnson G, Mannon LJ, et al. Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology. 2004;231(3):645-52.
  • 22. Inglese M, Adhya S, Johnson G, Babb JS, Miles L, Jaggi H, et al. Perfusion magnetic resonance imaging correlates with neuropsychological impairment in multiple sclerosis. J Cereb Blood Flow Metab. 2008;28(1):164-71.
  • 23. Ge Y, Law M, Johnson G, Herbert J, Babb JS, Mannon LJ, et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol. 2005;26(6):1539-47.
  • 24. Ingrisch M, Sourbron S, Herberich S, Schneider MJ, Kümpfel T, Hohlfeld R, et al. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Suggests Normal Perfusion in Normal-Appearing White Matter in Multiple Sclerosis. Invest Radiol. 2017;52(3):135-41.
  • 25. Ciccarelli O, Werring DJ, Barker GJ, Griffin CM, Wheeler-Kingshott CA, Miller DH, et al. A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging--evidence of Wallerian degeneration. J Neurol. 2003;250(3):287-92.
There are 25 citations in total.

Details

Primary Language English
Subjects Radiology and Organ Imaging
Journal Section Original Article
Authors

Seyit Erol 0000-0002-0547-872X

Hakan Cebeci 0000-0002-2017-3166

Publication Date June 30, 2025
Submission Date December 10, 2024
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 35 Issue: 3

Cite

Vancouver Erol S, Cebeci H. The Role of Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging in the Evaluation of Active and Inactive Demyelinating Plaques in Multiple Sclerosis. Genel Tıp Derg. 2025;35(3):442-6.

The Journal of General Medicine is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).