Review
BibTex RIS Cite

Bitkilerden biyoaktif bileşiklerin ultrases destekli ekstraksiyonu

Year 2026, Issue: 35, 1 - 12
https://doi.org/10.56833/gidaveyem.1713475

Abstract

Amaç: Bu çalışma, ultrases destekli ekstraksiyonun mekanizması, avantajları ve dezavantajları, biyoaktif bileşiklerin ultrases destekli ekstraksiyonunu etkileyen önemli faktörler ve bitkilerden fenolik ve flavonoidlerin ekstraksiyonunda ultrases destekli ekstraksiyonun mevcut uygulamaları hakkında kapsamlı bir değerlendirme sunmaktadır. Bu derleme çalışmasının temel amacı, bitkilerden fenolik ve flavonoidlerin elde edilmesinde ultrases destekli ekstraksiyonun prensipleri, faydaları ve etkisi hakkında kapsamlı bilgiler vermek, ultrases destekli ekstraksiyonda kullanılan ekipmanları (ultrasonik prob ve ultrasonik banyo) incelemek, bitkilerden fenolik ve flavonoid bileşiklerin geri kazanılmasında ultrases destekli ekstraksiyon hakkında bir bakış açısı sunmaktır. Bu derleme, ultrases destekli ekstraksiyonun kullanım kolaylığı, artan verimlilik ve tekrarlanabilirlik, azaltılmış solvent kullanımı, enerji tüketimi, işletme maliyetleri ve işlem süresi, iyileştirilmiş ürün saflığı, ısıya duyarlı bileşiklerin biyoaktivitesinin daha iyi korunması ile oda sıcaklığında ve atmosferik basınçta çalıştırılabilir olması gibi çok sayıda avantaj sağladığını ortaya koymaktadır. Sıcaklık, temas süresi, çözücü tipi, katı-çözücü oranı, ultrasonik güç ve ultrasonik frekans biyoaktif bileşiklerin ultrason destekli ekstraksiyonunu etkileyen başlıca faktörlerdir. Ultrases destekli ekstraksiyon sırasındaki kavitasyon, bitki hücrelerinden biyoaktif bileşiklerin salınımını hızlandırmakta ve böylece daha verimli bir ekstraksiyon sağlamaktadır.

Sonuç: Ultrases destekli ekstraksiyonun bitkilerden biyoaktif bileşiklerin ekstraksiyonu için yenilikçi bir yöntem ve etkili bir yol olduğu görülmektedir. Sonuç olarak, bitkilerden fenolik ve flavonoid bileşiklerin ekstraksiyonuna ilişkin uygulamalar, ultrases destekli ekstraksiyonun çevre dostu bir yöntem olduğunu ve bu nedenle yeşil ekstraksiyon olarak bilindiğini göstermektedir.

References

  • Aekthammarat, D., Tangsucharit, P., Pannangpetch, P., Sriwantana, T., and Sibmooh, N. (2020). Moringa oleifera leaf extract enhances endothelial nitric oxide production leading to relaxation of resistance artery and lowering of arterial blood pressure. Biomedicine and Pharmacotherapy, 130, 110605. https://doi.org/10.1016/j.biopha.2020.110605
  • Agregán, R., Munekata, P.E., Feng, X., Astray, G., Gullón, B., and Lorenzo, J.M. (2021). Recent advances in the extraction of polyphenols from eggplant and their application in foods. LWT-Food Science and Technology, 146, 111381. https://doi.org/10.1016/j.lwt.2021.111381
  • Alara, O.R., Abdurahman, N.H., and Ukaegbu, C.I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
  • Ashokkumar, M. (2015). Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry, 25, 17-23. https://doi.org/10.1016/j.ultsonch.2014.08.012
  • Bi, Y., Lu, Y., Yu, H., and Luo, L. (2019). Optimization of ultrasonic-assisted extraction of bioactive compounds from Sargassum henslowianum using response surface methodology. Pharmacognosy Magazine, 15(60), 156-163. https://doi.org/10.4103/pm.pm_347_18
  • Bouafia, M., Colak, N., Ayaz, F.A., Benarfa, A., Harrat, M., Gourine, N., and Yousfi, M. (2021). The optimization of ultrasonic-assisted extraction of Centaurea sp. antioxidative phenolic compounds using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100330. https://doi.org/10.1016/j.jarmap.2021.100330
  • Brahmi, F., Blando, F., Sellami, R., Mehdi, S., De Bellis, L., Negro, C., Haddadi-Guemghar, H., Madani, K., and Makhlouf-Boulekbache, L. (2022). Optimization of the conditions for ultrasound-assisted extraction of phenolic compounds from Opuntia ficus-indica [L.] Mill. flowers and comparison with conventional procedures. Industrial Crops and Products, 184, 114977. https://doi.org/10.1016/j.indcrop.2022.114977
  • Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.S., and Abert-Vian, M. (2017a). Review of green food processing techniques: Preservation, transformation, and extraction. Innovative Food Science and Emerging Technologies, 41, 357-377. https://doi.org/10.1016/j.ifset.2017.04.016
  • Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., and Abert-Vian, M. (2017b). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols, and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
  • Chen, F.Y., Yu, W.W., Lin, F.X., Huang, J.W., Huang, W.M., Shuang, P.C., Bian, Y.T., and Luo, Y.M. (2021). Sesquiterpenoids with neuroprotective activities from the Chloranthaceae plant Chloranthus henryi. Fitoterapia, 151, 104871. https://doi.org/10.1016/j.fitote.2021.104871
  • Chen, Y., Li, M., Dharmasiri, T.S.K., Song, X., Liu, F., and Wang, X. (2020). Novel ultrasonic-assisted vacuum drying technique for dehydrating garlic slices and predicting the quality properties by low field nuclear magnetic resonance. Food Chemistry, 306, 125625. https://doi.org/10.1016/j.foodchem.2019.125625
  • Clodoveo, M.L., Crupi, P., Muraglia, M., and Corbo, F. (2022). Ultrasound assisted extraction of polyphenols from ripe carob pods (Ceratonia siliqua L.): combined designs for screening and optimizing the processing parameters. Foods, 11(3), 284. https://doi.org/10.3390/foods11030284
  • Coelho, J.M.P., Johann, G., da Silva, E.A., Palú, F., and Vieira, M.G.A. (2021). Extraction of natural antioxidants from strawberry guava leaf by conventional and non-conventional techniques. Chemical Engineering Communications, 208(8), 1131-1142. https://doi.org/10.1080/00986445.2020.1755658
  • Dias, M.C., Pinto, D.C.G.A., and Silva, A.M.S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), 5377. https://doi.org/10.3390/molecules26175377
  • Freitas de Oliveira, C., Giordani, D., Lutckemier, R., Gurak, P.D., Cladera-Olivera, F., and Ferreira Marczak, L.D. (2016). Extraction of pectin from passion fruit peel assisted by ultrasound. LWT-Food Science and Technology, 71, 110-115. https://doi.org/10.1016/j.lwt.2016.03.027
  • Fu, X., Wang, D., Belwal, T., Xie, J., Xu, Y., Li, L., Zou, L., Zhang, L., and Luo, Z. (2021). Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. LWT-Food Science and Technology, 144, 111220. https://doi.org/10.1016/j.lwt.2021.111220
  • Kopustinskiene, D.M., Jakstas, V., Savickas, A., and Bernatoniene, J. (2020). Flavonoids as anti-cancer agents. Nutrients, 12(2), 457. https://doi.org/10.3390/nu12020457
  • Lama-Muñoz, A., and Contreras, M.D.M. (2022). Extraction systems and analytical techniques for food phenolic compounds: A review. Foods, 11(22), 3671. https://doi.org/10.3390/foods11223671
  • Liao, J., Guo, Z., and Yu, G. (2021). Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells. Ultrasonics Sonochemistry, 76, 105661. https://doi.org/10.1016/j.ultsonch.2021.105661
  • Liga, S., Paul, C., and Péter, F. (2023). Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants, 12(14), 2732. https://doi.org/10.3390/plants12142732
  • Lin, X., Wu, L., Wang, X., Yao, L., and Wang, L. (2021). Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants, 20, 100284. https://doi.org/10.1016/j.jarmap.2020.100284
  • Mahindrakar, K.V., and Rathod, V.K. (2020). Ultrasonic assisted aqueous extraction of catechin and gallic acid from Syzygium cumini seed kernel and evaluation of total phenolic, flavonoid contents and antioxidant activity. Chemical Engineering and Processing-Process Intensification, 149, 107841. https://doi.org/10.1016/j.cep.2020.107841
  • Mai, X., Liu, Y., Tang, X., Wang, L., Lin, Y., Zeng, H., Luo, L., Fan, H., and Li, P. (2020). Sequential extraction and enrichment of flavonoids from Euonymus alatus by ultrasonic-assisted polyethylene glycol-based extraction coupled to temperature-induced cloud point extraction. Ultrasonics Sonochemistry, 66, 105073. https://doi.org/10.1016/j.ultsonch.2020.105073
  • Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., and Pacheco, N. (2017). Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(3), 47. https://doi.org/10.3390/agronomy7030047
  • Mehta, D., Yadav, K., Chaturvedi, K., Shivhare, U.S., and Yadav, S.K. (2022). Impact of cold plasma on extraction of polyphenol from de-oiled rice and corn bran: Improvement in extraction efficiency, in vitro digestibility, antioxidant activity, cytotoxicity and anti-inflammatory responses. Food and Bioprocess Technology, 15(5), 1142-1156. https://doi.org/10.1007/s11947-022-02801-8
  • Mehta, N., Jeyapriya, S., Kumar, P., Verma, A.K., Umaraw, P., Khatkar, S.K., Khatkar, A.B., Pathak, D., Kaka, U., and Sazili, A.Q. (2022). Ultrasound-assisted extraction and the encapsulation of bioactive components for food applications. Foods, 11(19), 2973. https://doi.org/10.3390/foods11192973
  • Muñiz-Márquez, D.B., Martínez-Ávila, G.C., Wong-Paz, J.E., Belmares-Cerda, R., Rodríguez-Herrera, R., and Aguilar, C.N. (2013). Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrasonics Sonochemistry, 20(5), 1149-1154. https://doi.org/10.1016/j.ultsonch.2013.02.008
  • Ozdemir, M., Gungor, V., Melikoglu, M., and Aydiner, C. (2024). Solvent selection and effect of extraction conditions on ultrasound-assisted extraction of phenolic compounds from galangal (Alpinia officinarum). Journal of Applied Research on Medicinal and Aromatic Plants, 38, 100525. https://doi.org/10.1016/j.jarmap.2023.100525
  • Pagano, I., Campone, L., Celano, R., Piccinelli, A.L., and Rastrelli, L. (2021). Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. Journal of Chromatography A, 1651, 462295. https://doi.org/10.1016/j.chroma.2021.462295
  • Pham, D.Q., Pham, H.T., Han, J.W., Nguyen, T.H., Nguyen, H.T., Nguyen, T.D., Nguyen, T.T.T., Ho, C.T., Pham, H.M., Vu, H.D., Choi, G.J., and Dang, Q.L. (2021). Extracts and metabolites derived from the leaves of Cassia alata L. exhibit in vitro and in vivo antimicrobial activities against fungal and bacterial plant pathogens. Industrial Crops and Products, 166, 113465. https://doi.org/10.1016/j.indcrop.2021.113465
  • Qian, J., Li, Y., Gao, J., He, Z., and Yi, S. (2020). The effect of ultrasound intensity on physicochemical properties of Chinese fir. Ultrasonics Sonochemistry, 64, 104985. https://doi.org/10.1016/j.ultsonch.2020.104985
  • Rao, M.V., Sengar, A.S., Sunil, C.K., and Rawson, A. (2021). Ultrasonication-A green technology extraction technique for spices: A review. Trends in Food Science and Technology, 116, 975-991. https://doi.org/10.1016/j.tifs.2021.09.006
  • Rodríguez De Luna, S.L., Ramírez-Garza, R.E., and Serna Saldívar, S.O. (2020). Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. The Scientific World Journal, 2020, 6792069. https://doi.org/10.1155/2020/6792069
  • Sentkowska, A., Ivanova-Petropulos, V., and Pyrzynska, K. (2024). What can be done to get more-Extraction of phenolic compounds from plant materials. Food Analytical Methods, 17(4), 594-610. https://doi.org/10.1007/s12161-024-02594-w
  • Sim, Y.Y., Ong, W.T.J., and Nyam, K.L. (2019). Effect of various solvents on the pulsed ultrasonic assisted extraction of phenolic compounds from Hibiscus cannabinus L. leaves. Industrial Crops and Products, 140, 111708. https://doi.org/10.1016/j.indcrop.2019.111708
  • Sridhar, A., Ponnuchamy, M., Kumar, P.S., Kapoor, A., Vo, D.V.N., and Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: A review. Environmental Chemistry Letters, 19, 3409-3443. https://doi.org/10.1007/s10311-021-01217-8
  • Stagos, D. (2020). Antioxidant activity of polyphenolic plant extracts. Antioxidants, 9(1), 19. https://doi.org/10.3390/antiox9010019
  • Tanase, C., Domokos, E., Coșarcă, S., Miklos, A., Imre, S., Domokos, J., and Dehelean, C.A. (2018). Study of the ultrasound-assisted extraction of polyphenols from beech (Fagus sylvatica L.) bark. BioResources, 13(2), 2247-2267. https://doi.org/10.15376/biores.13.2.2247-2267
  • Tiwari, B.K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109. https://doi.org/10.1016/j.trac.2015.04.013
  • Turker, I., and Isleroglu, H. (2021). Optimization of extraction conditions of bioactive compounds by ultrasonic-assisted extraction from artichoke wastes. Acta Chimica Slovenica, 68(3), 658-666. https://doi.org/10.17344/acsi.2021.6679
  • Wani, K.M., and Uppaluri, R.V. (2022). Efficacy of ultrasound-assisted extraction of bioactive constituents from Psidium guajava leaves. Applied Food Research, 2(1), 100096. https://doi.org/10.1016/j.afres.2022.100096
  • Wen, C., Zhang, J., Zhang, H., Dzah, C.S., Zandile, M., Duan, Y., Ma, H., and Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops–A review. Ultrasonics Sonochemistry, 48, 538-549. https://doi.org/10.1016/j.ultsonch.2018.07.018
  • Yang, Q.Q., Gan, R.Y., Ge, Y.Y., Zhang, D., and Corke, H. (2019). Ultrasonic treatment increases extraction rate of common bean (Phaseolus vulgaris L.) antioxidants. Antioxidants, 8(4), 83. https://doi.org/10.3390/antiox8040083
  • Yu, M., Wang, B., Qi, Z., Xin, G., and Li, W. (2019). Response surface method was used to optimize the ultrasonic assisted extraction of flavonoids from Crinum asiaticum. Saudi Journal of Biological Sciences, 26(8), 2079-2084. https://doi.org/10.1016/j.sjbs.2019.09.018
  • Yusoff, I.M., Taher, Z.M., Rahmat, Z., and Chua, L.S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157, 111268. https://doi.org/10.1016/j.foodres.2022.111268
  • Zahari, N.A.A.R., Chong, G.H., Abdullah, L.C., and Chua, B.L. (2020). Ultrasound-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: Kinetic modeling and optimization. Processes, 8(3), 322. https://doi.org/10.3390/pr8030322
  • Zhang, X., Zuo, Z., Yu, P., Li, T., Guang, M., Chen, Z., and Wang, L. (2021). Rice peptide nanoparticle as a bifunctional food-grade Pickering stabilizer prepared by ultrasonication: Structural characteristics, antioxidant activity, and emulsifying properties. Food Chemistry, 343, 128545. https://doi.org/10.1016/j.foodchem.2020.128545

Ultrasound-assisted extraction of bioactive compounds from plants

Year 2026, Issue: 35, 1 - 12
https://doi.org/10.56833/gidaveyem.1713475

Abstract

Objective: This study gives a comprehensive review of the mechanism, advantages and disadvantages of ultrasound-assisted extraction, important factors affecting the ultrasound-assisted extraction of bioactive compounds, and current applications of ultrasound-assisted extraction in extraction of phenolics and flavonoids from plant materials. The primary goal of this review is to gain a thorough understanding of the principles, benefits and impact of ultrasound-assisted extraction on phenolics and flavonoids from plants, investigate the equipment (ultrasonic probe and ultrasonic bath) used in ultrasound-assisted extraction, and provide an overview of ultrasound-assisted extraction in the recovery of phenolic and flavonoid compounds from plants. This review reveals that ultrasound-assisted extraction provides numerous advantages, including its ease of use, increased efficiency and reproducibility, reduced solvent usage, energy consumption, operating costs and processing time, improved product purity, better protection of bioactivity of thermosensitive compounds, and operable at room temperature and atmospheric pressure. Temperature, contact time, solvent type and solvent concentration, solid to solvent ratio, ultrasonic power and ultrasonic frequency are the primary factors affecting ultrasound-assisted extraction of bioactive compounds. Cavitation during ultrasound-assisted extraction accelerates the release of bioactive compounds from plant cells, thus resulting in more efficient extraction.

Conclusion: It is considered that ultrasound-assisted extraction is an innovative method and efficient way to extract bioactive compounds from plants. In conclusion, applications regarding the extraction of phenolic and flavonoid compounds from plants show that ultrasound-assisted extraction is an environmentally friendly method, which is why it is known as green extraction.

References

  • Aekthammarat, D., Tangsucharit, P., Pannangpetch, P., Sriwantana, T., and Sibmooh, N. (2020). Moringa oleifera leaf extract enhances endothelial nitric oxide production leading to relaxation of resistance artery and lowering of arterial blood pressure. Biomedicine and Pharmacotherapy, 130, 110605. https://doi.org/10.1016/j.biopha.2020.110605
  • Agregán, R., Munekata, P.E., Feng, X., Astray, G., Gullón, B., and Lorenzo, J.M. (2021). Recent advances in the extraction of polyphenols from eggplant and their application in foods. LWT-Food Science and Technology, 146, 111381. https://doi.org/10.1016/j.lwt.2021.111381
  • Alara, O.R., Abdurahman, N.H., and Ukaegbu, C.I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
  • Ashokkumar, M. (2015). Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry, 25, 17-23. https://doi.org/10.1016/j.ultsonch.2014.08.012
  • Bi, Y., Lu, Y., Yu, H., and Luo, L. (2019). Optimization of ultrasonic-assisted extraction of bioactive compounds from Sargassum henslowianum using response surface methodology. Pharmacognosy Magazine, 15(60), 156-163. https://doi.org/10.4103/pm.pm_347_18
  • Bouafia, M., Colak, N., Ayaz, F.A., Benarfa, A., Harrat, M., Gourine, N., and Yousfi, M. (2021). The optimization of ultrasonic-assisted extraction of Centaurea sp. antioxidative phenolic compounds using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100330. https://doi.org/10.1016/j.jarmap.2021.100330
  • Brahmi, F., Blando, F., Sellami, R., Mehdi, S., De Bellis, L., Negro, C., Haddadi-Guemghar, H., Madani, K., and Makhlouf-Boulekbache, L. (2022). Optimization of the conditions for ultrasound-assisted extraction of phenolic compounds from Opuntia ficus-indica [L.] Mill. flowers and comparison with conventional procedures. Industrial Crops and Products, 184, 114977. https://doi.org/10.1016/j.indcrop.2022.114977
  • Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.S., and Abert-Vian, M. (2017a). Review of green food processing techniques: Preservation, transformation, and extraction. Innovative Food Science and Emerging Technologies, 41, 357-377. https://doi.org/10.1016/j.ifset.2017.04.016
  • Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., and Abert-Vian, M. (2017b). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols, and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
  • Chen, F.Y., Yu, W.W., Lin, F.X., Huang, J.W., Huang, W.M., Shuang, P.C., Bian, Y.T., and Luo, Y.M. (2021). Sesquiterpenoids with neuroprotective activities from the Chloranthaceae plant Chloranthus henryi. Fitoterapia, 151, 104871. https://doi.org/10.1016/j.fitote.2021.104871
  • Chen, Y., Li, M., Dharmasiri, T.S.K., Song, X., Liu, F., and Wang, X. (2020). Novel ultrasonic-assisted vacuum drying technique for dehydrating garlic slices and predicting the quality properties by low field nuclear magnetic resonance. Food Chemistry, 306, 125625. https://doi.org/10.1016/j.foodchem.2019.125625
  • Clodoveo, M.L., Crupi, P., Muraglia, M., and Corbo, F. (2022). Ultrasound assisted extraction of polyphenols from ripe carob pods (Ceratonia siliqua L.): combined designs for screening and optimizing the processing parameters. Foods, 11(3), 284. https://doi.org/10.3390/foods11030284
  • Coelho, J.M.P., Johann, G., da Silva, E.A., Palú, F., and Vieira, M.G.A. (2021). Extraction of natural antioxidants from strawberry guava leaf by conventional and non-conventional techniques. Chemical Engineering Communications, 208(8), 1131-1142. https://doi.org/10.1080/00986445.2020.1755658
  • Dias, M.C., Pinto, D.C.G.A., and Silva, A.M.S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), 5377. https://doi.org/10.3390/molecules26175377
  • Freitas de Oliveira, C., Giordani, D., Lutckemier, R., Gurak, P.D., Cladera-Olivera, F., and Ferreira Marczak, L.D. (2016). Extraction of pectin from passion fruit peel assisted by ultrasound. LWT-Food Science and Technology, 71, 110-115. https://doi.org/10.1016/j.lwt.2016.03.027
  • Fu, X., Wang, D., Belwal, T., Xie, J., Xu, Y., Li, L., Zou, L., Zhang, L., and Luo, Z. (2021). Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. LWT-Food Science and Technology, 144, 111220. https://doi.org/10.1016/j.lwt.2021.111220
  • Kopustinskiene, D.M., Jakstas, V., Savickas, A., and Bernatoniene, J. (2020). Flavonoids as anti-cancer agents. Nutrients, 12(2), 457. https://doi.org/10.3390/nu12020457
  • Lama-Muñoz, A., and Contreras, M.D.M. (2022). Extraction systems and analytical techniques for food phenolic compounds: A review. Foods, 11(22), 3671. https://doi.org/10.3390/foods11223671
  • Liao, J., Guo, Z., and Yu, G. (2021). Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells. Ultrasonics Sonochemistry, 76, 105661. https://doi.org/10.1016/j.ultsonch.2021.105661
  • Liga, S., Paul, C., and Péter, F. (2023). Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants, 12(14), 2732. https://doi.org/10.3390/plants12142732
  • Lin, X., Wu, L., Wang, X., Yao, L., and Wang, L. (2021). Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants, 20, 100284. https://doi.org/10.1016/j.jarmap.2020.100284
  • Mahindrakar, K.V., and Rathod, V.K. (2020). Ultrasonic assisted aqueous extraction of catechin and gallic acid from Syzygium cumini seed kernel and evaluation of total phenolic, flavonoid contents and antioxidant activity. Chemical Engineering and Processing-Process Intensification, 149, 107841. https://doi.org/10.1016/j.cep.2020.107841
  • Mai, X., Liu, Y., Tang, X., Wang, L., Lin, Y., Zeng, H., Luo, L., Fan, H., and Li, P. (2020). Sequential extraction and enrichment of flavonoids from Euonymus alatus by ultrasonic-assisted polyethylene glycol-based extraction coupled to temperature-induced cloud point extraction. Ultrasonics Sonochemistry, 66, 105073. https://doi.org/10.1016/j.ultsonch.2020.105073
  • Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., and Pacheco, N. (2017). Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(3), 47. https://doi.org/10.3390/agronomy7030047
  • Mehta, D., Yadav, K., Chaturvedi, K., Shivhare, U.S., and Yadav, S.K. (2022). Impact of cold plasma on extraction of polyphenol from de-oiled rice and corn bran: Improvement in extraction efficiency, in vitro digestibility, antioxidant activity, cytotoxicity and anti-inflammatory responses. Food and Bioprocess Technology, 15(5), 1142-1156. https://doi.org/10.1007/s11947-022-02801-8
  • Mehta, N., Jeyapriya, S., Kumar, P., Verma, A.K., Umaraw, P., Khatkar, S.K., Khatkar, A.B., Pathak, D., Kaka, U., and Sazili, A.Q. (2022). Ultrasound-assisted extraction and the encapsulation of bioactive components for food applications. Foods, 11(19), 2973. https://doi.org/10.3390/foods11192973
  • Muñiz-Márquez, D.B., Martínez-Ávila, G.C., Wong-Paz, J.E., Belmares-Cerda, R., Rodríguez-Herrera, R., and Aguilar, C.N. (2013). Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrasonics Sonochemistry, 20(5), 1149-1154. https://doi.org/10.1016/j.ultsonch.2013.02.008
  • Ozdemir, M., Gungor, V., Melikoglu, M., and Aydiner, C. (2024). Solvent selection and effect of extraction conditions on ultrasound-assisted extraction of phenolic compounds from galangal (Alpinia officinarum). Journal of Applied Research on Medicinal and Aromatic Plants, 38, 100525. https://doi.org/10.1016/j.jarmap.2023.100525
  • Pagano, I., Campone, L., Celano, R., Piccinelli, A.L., and Rastrelli, L. (2021). Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. Journal of Chromatography A, 1651, 462295. https://doi.org/10.1016/j.chroma.2021.462295
  • Pham, D.Q., Pham, H.T., Han, J.W., Nguyen, T.H., Nguyen, H.T., Nguyen, T.D., Nguyen, T.T.T., Ho, C.T., Pham, H.M., Vu, H.D., Choi, G.J., and Dang, Q.L. (2021). Extracts and metabolites derived from the leaves of Cassia alata L. exhibit in vitro and in vivo antimicrobial activities against fungal and bacterial plant pathogens. Industrial Crops and Products, 166, 113465. https://doi.org/10.1016/j.indcrop.2021.113465
  • Qian, J., Li, Y., Gao, J., He, Z., and Yi, S. (2020). The effect of ultrasound intensity on physicochemical properties of Chinese fir. Ultrasonics Sonochemistry, 64, 104985. https://doi.org/10.1016/j.ultsonch.2020.104985
  • Rao, M.V., Sengar, A.S., Sunil, C.K., and Rawson, A. (2021). Ultrasonication-A green technology extraction technique for spices: A review. Trends in Food Science and Technology, 116, 975-991. https://doi.org/10.1016/j.tifs.2021.09.006
  • Rodríguez De Luna, S.L., Ramírez-Garza, R.E., and Serna Saldívar, S.O. (2020). Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. The Scientific World Journal, 2020, 6792069. https://doi.org/10.1155/2020/6792069
  • Sentkowska, A., Ivanova-Petropulos, V., and Pyrzynska, K. (2024). What can be done to get more-Extraction of phenolic compounds from plant materials. Food Analytical Methods, 17(4), 594-610. https://doi.org/10.1007/s12161-024-02594-w
  • Sim, Y.Y., Ong, W.T.J., and Nyam, K.L. (2019). Effect of various solvents on the pulsed ultrasonic assisted extraction of phenolic compounds from Hibiscus cannabinus L. leaves. Industrial Crops and Products, 140, 111708. https://doi.org/10.1016/j.indcrop.2019.111708
  • Sridhar, A., Ponnuchamy, M., Kumar, P.S., Kapoor, A., Vo, D.V.N., and Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: A review. Environmental Chemistry Letters, 19, 3409-3443. https://doi.org/10.1007/s10311-021-01217-8
  • Stagos, D. (2020). Antioxidant activity of polyphenolic plant extracts. Antioxidants, 9(1), 19. https://doi.org/10.3390/antiox9010019
  • Tanase, C., Domokos, E., Coșarcă, S., Miklos, A., Imre, S., Domokos, J., and Dehelean, C.A. (2018). Study of the ultrasound-assisted extraction of polyphenols from beech (Fagus sylvatica L.) bark. BioResources, 13(2), 2247-2267. https://doi.org/10.15376/biores.13.2.2247-2267
  • Tiwari, B.K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109. https://doi.org/10.1016/j.trac.2015.04.013
  • Turker, I., and Isleroglu, H. (2021). Optimization of extraction conditions of bioactive compounds by ultrasonic-assisted extraction from artichoke wastes. Acta Chimica Slovenica, 68(3), 658-666. https://doi.org/10.17344/acsi.2021.6679
  • Wani, K.M., and Uppaluri, R.V. (2022). Efficacy of ultrasound-assisted extraction of bioactive constituents from Psidium guajava leaves. Applied Food Research, 2(1), 100096. https://doi.org/10.1016/j.afres.2022.100096
  • Wen, C., Zhang, J., Zhang, H., Dzah, C.S., Zandile, M., Duan, Y., Ma, H., and Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops–A review. Ultrasonics Sonochemistry, 48, 538-549. https://doi.org/10.1016/j.ultsonch.2018.07.018
  • Yang, Q.Q., Gan, R.Y., Ge, Y.Y., Zhang, D., and Corke, H. (2019). Ultrasonic treatment increases extraction rate of common bean (Phaseolus vulgaris L.) antioxidants. Antioxidants, 8(4), 83. https://doi.org/10.3390/antiox8040083
  • Yu, M., Wang, B., Qi, Z., Xin, G., and Li, W. (2019). Response surface method was used to optimize the ultrasonic assisted extraction of flavonoids from Crinum asiaticum. Saudi Journal of Biological Sciences, 26(8), 2079-2084. https://doi.org/10.1016/j.sjbs.2019.09.018
  • Yusoff, I.M., Taher, Z.M., Rahmat, Z., and Chua, L.S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157, 111268. https://doi.org/10.1016/j.foodres.2022.111268
  • Zahari, N.A.A.R., Chong, G.H., Abdullah, L.C., and Chua, B.L. (2020). Ultrasound-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: Kinetic modeling and optimization. Processes, 8(3), 322. https://doi.org/10.3390/pr8030322
  • Zhang, X., Zuo, Z., Yu, P., Li, T., Guang, M., Chen, Z., and Wang, L. (2021). Rice peptide nanoparticle as a bifunctional food-grade Pickering stabilizer prepared by ultrasonication: Structural characteristics, antioxidant activity, and emulsifying properties. Food Chemistry, 343, 128545. https://doi.org/10.1016/j.foodchem.2020.128545
There are 47 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Review Papers
Authors

Murat Özdemir 0000-0001-9025-3068

İrem Ak 0009-0007-8919-572X

Seray Coşkun 0009-0009-3164-5008

Nursima Ünverdi 0009-0006-4376-407X

Early Pub Date June 3, 2025
Publication Date
Submission Date August 10, 2024
Acceptance Date February 3, 2025
Published in Issue Year 2026 Issue: 35

Cite

APA Özdemir, M., Ak, İ., Coşkun, S., Ünverdi, N. (2025). Ultrasound-assisted extraction of bioactive compounds from plants. Gıda Ve Yem Bilimi Teknolojisi Dergisi(35), 1-12. https://doi.org/10.56833/gidaveyem.1713475

by-nc-nd.png?resize=300%2C105&ssl=1
Gıda ve Yem Bilimi-Teknolojisi Dergisi  CC BY-NC-ND 4.0 lisansı altında lisanslanmıştır
 Journal of Food and Feed Science-Technology is licensed under CC BY-NC-ND 4.0