Conference Paper
BibTex RIS Cite

Application of Nanoparticle-Doped MOF Composite-Embedded Mixed Matrix Membranes in Carbon Capture

Year 2025, Issue: Erken Görünüm, 1 - 12

Abstract

Carbon dioxide (CO2) is released into the atmosphere from both natural sources and human activities. In Turkey, the largest source of CO2 emissions from human activities is energy, industrial processes and product use, agriculture, and waste. According to the National greenhouse gas (GHG) Emission Inventory Report, which covers the years 1990-2020 submitted under the United Nations Framework Convention on Climate Change, the energy sector accounted for 85.4% of total CO2 emissions in 2020. Total CO2 emissions from all sectors have increased by approximately 173% in 30 years. Thus, CO2 constitutes 86% of total GHG emissions in Türkiye. This situation shows that capturing CO2, which is a major contributor to large-scale GHG emissions, requires new technologies and resources that can operate in an economically viable manner. In this context, carbon capture technologies, which are categorized as pre-combustion, post-combustion, oxyfuel combustion, and direct air capture, have been intensively studied by researchers in recent years. According to current studies, post-combustion capture technologies, which involve the separation, capture, and storage of CO2 from flue gas after combustion, have been an approach explored more. However, it is also unsurprising that the CO2 capture process, which is complex and energy-intensive, varies depending on specific emission sources. The most common post-combustion capture approaches are cryogenic separation of CO2 from other gases, the use of selective membranes, electrochemical separation, physical and chemical absorption in liquid solvents, and adsorption on solids. Among these technologies, membrane-based CO2 separation processes stand out and new studies are required to develop membranes with high CO2 selectivity and permeability. In this context, metal-organic frameworks (MOFs) are candidates to meet the need for an effective CO2 capture material due to their superior properties. The mixed matrix membranes (MMM), which will be developed by incorporating nanoparticle-doped MOFs into conventional membranes, will provide CO2 selectivity in a gas mixture. Thus, an MMM with high porosity, high CO2 selectivity, economic feasibility, and thermal and water stability can be obtained by incorporating a MOF composite.

Project Number

No

References

  • [1] A. Raihan and A. Tuspekova, “Dynamic impacts of economic growth, energy use, urbanization, agricultural productivity, and forested area on carbon emissions: New insights from Kazakhstan,” World Development Sustainability, vol. 1, 100019, 2022. doi: 10.1016/j.wds.2022.100019
  • [2] S. Bolan, L. P. Padhye, T. Jasemizad, M. Govarthanan, N. Karmegam, H. Wijesekara, D. Amarasiri, D. Hou, P. Zhou, B. Kumar Biswal, R. Balasubramanian, H. Wang, K. H. M. Siddique, J. Rinklebe, M. B. Kirkham, and N. Bolan, “Impacts of climate change on the fate of contaminants through extreme weather events,” Science of The Total Environment, vol. 909, 168388, 2024. doi: 10.1016/j.scitotenv.2023.168388
  • [3] M. Filonchyk, M. P. Peterson, H. Yan, A. Gusev, L. Zhang, Y. He and S. Yang, “Greenhouse gas emissions and reduction strategies for the world's largest greenhouse gas emitters,” Science of The Total Environment, vol. 944, 173895, 2024. doi: 10.1016/j.scitotenv.2024.173895
  • [4] International Energy Agency, “CO2 Emissions in 2023,” iea.org, March 2024. [online]. Available: https://www.iea.org/reports/co2-emissions-in-2023, [Accessed: Oct. 28, 2024].
  • [5] A. Jahanger, I. Ozturk, J. C. Onwe, T. E. Joseph and M. R. Hossain, “Do technology and renewable energy contribute to energy efficiency and carbon neutrality? Evidence from top ten manufacturing countries,” Sustainable Energy Technologies and Assessments, vol. 56, 103084, 2023. doi: 10.1016/j.seta.2023.103084
  • [6] B. Dziejarski, R. Krzyżyńska and K. Andersson, “Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment,” Fuel, vol. 342, 127776, 2023. doi: 10.1016/j.fuel.2023.127776
  • [7] Y. Cheng, S. J. Datta, S. Zhou, J. Jia, O. Shekhah and M. Eddaoudi, “Advances in metal–organic framework-based membranes,” Chemical Society Reviews, vol. 51, pp. 8300-8350, 2022. doi: 10.1039/D2CS00031H
  • [8] R. Chen, M. Chai and J. Hou, “Metal-organic framework-based mixed matrix membranes for gas separation: Recent advances and opportunities,” Carbon Capture Science & Technology, vol. 8, 100130, 2023. doi: 10.1016/j.ccst.2023.100130
  • [9] Z. Liu, Z. Deng, S. Davis and P. Ciais, “Monitoring global carbon emissions in 2022,” Nature Reviews Earth & Environment, vol. 4, pp. 205–206, 2023. doi: 10.1038/s43017-023-00406-z
  • [10] L. Wang, “Assessment of land use change and carbon emission: A Log Mean Divisa (LMDI) approach,” Heliyon, vol. 10, no 3, e25669, 2024. doi: 10.1016/j.heliyon.2024.e25669
  • [11] European Environment Agency, “Greenhouse gas emissions from land use, land use change and forestry in Europe,” eea.europa.eu, Oct. 31, 2024. [Online]. Available: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-land?activeAccordion=546a7c35-9188-4d23-94ee-005d97c26f2b, [Accessed: Nov. 5, 2024].
  • [12] United Nations Climate Change, “Turkey. 2022 National Inventory Report (NIR),” unfccc.int, Apr. 14, 2022. [Online]. Available: https://unfccc.int/documents/461926, [Accessed: Oct. 18, 2024]
  • [13] K. Psistaki, G. Tsantopoulos and A. K. Paschalidou, “An Overview of the Role of Forests in Climate Change Mitigation,” Sustainability, vol. 16, 6089, 2024. doi: 10.3390/su16146089
  • [14] C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono, and A. F. Rios “The Oceanic Sink for Anthropogenic CO2,” Science, vol. 305, pp. 367-371, 2004. doi: 10.1126/science.1097403
  • [15] C. I. D. Rodrigues, L. M. Brito and L. J. R. Nunes, “Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review,” Soil Systems, vol. 7, no 3, pp. 64, 2023. doi: 10.3390/soilsystems7030064
  • [16] M. Ozkan, S. P. Nayak, A. D. Ruiz and W. Jiang, “Current status and pillars of direct air capture technologies,” iScience, vol. 25, no 4, 103990, 2022. doi: 10.1016/j.isci.2022.103990
  • [17] B. Dziejarski, R. Krzyżyńska and K. Andersson, “Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment,” Fuel, vol. 342, 127776, 2023. doi: 10.1016/j.fuel.2023.127776
  • [18] T. M. Gür, “Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies,” Progress in Energy and Combustion Science, vol. 89, 100965, 2022. doi: 10.1016/j.pecs.2021.100965
  • [19] A. Padurean, C. C. Cormos and P. S. Agachi, “Pre-combustion carbon dioxide capture by gas–liquid absorption for Integrated Gasification Combined Cycle power plants,” International Journal of Greenhouse Gas Control, vol. 7, pp. 1–11, 2012. doi: 10.1016/j.ijggc.2011.12.007
  • [20] C. Wu, Q. Huang, Z. Xu, A. T. Sipra, N. Gao, L. P. d. S. Vandenberghe et al., “A comprehensive review of carbon capture science and technologies,” Carbon Capture Science and Technology, vol. 11, 100178, 2024. doi:10.1016/j.ccst.2023.100178
  • [21] N. McQueen, K. V. Gomes, C. McCormick, K. Blumanthal, M. Pisciotta, and J. Wilcox, “A review of direct air capture (DAC): Scaling up commercial technologies and innovating for the future,” Progress in Energy, vol. 3 no 3, 032001, 2021. doi: 10.1088/2516-1083/abf1ce
  • [22] F. O. Ochedi, J. Yu, H. Yu, Y. Liu and A. Hussain, “Carbon dioxide capture using liquid absorption methods: a review,” Environmental Chemistry Letter, vol. 19, pp. 77–109, 2021. doi: 10.1007/s10311-020-01093-8
  • [23] M. Perumal, D. Jayaraman and A. Balraj, “Experimental studies on CO2 absorption and solvent recovery in aqueous blends of monoethanolamine and tetrabutylammonium hydroxide,” Chemosphere, vol. 276, 130159, 2021. doi: 10.1016/j.chemosphere.2021.130159
  • [24] D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago and J. Palomar, “Process analysis overview of ionic liquids on CO2 chemical capture,” Chemical Engineering Journal, vol. 390, 124509, 2020. doi: 10.1016/j.cej.2020.124509
  • [25] R. Ben-Mansour, M. A. Habib, O. E. Bamidele, M. Basha, N. A. A. Qasem, A. Peedikakkal, T. Laoui and M. Ali, “Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review,” Applied Energy, vol. 161, pp. 225-255, 2016. doi: 10.1016/j.apenergy.2015.10.011
  • [26] X. Zhang, Z. Song, R. Gani and T. Zhou, “Comparative Economic Analysis of Physical, Chemical, and Hybrid Absorption Processes for Carbon Capture,” Industrial & Engineering Chemistry Research, vol. 59, no 5, pp. 2005-2012, 2020. doi: 10.1021/acs.iecr.9b05510
  • [27] R. Hou, C. Fong, B. D. Freeman, M. R. Hill and Z. Xie, “Current status and advances in membrane technology for carbon capture,” Separation and Purification Technology, vol. 300, 121863, 2022. doi: 10.1016/j.seppur.2022.121863
  • [28] S. F. Cannone, A. Lanzini, and M. Santarelli, “A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates,” Energies, vol. 14 no 2, 387, 2021. doi: 10.3390/en14020387
  • [29] L. Feng, Q. Zhang, J. Su, B. Ma, Y. Wan, R. Zhong, and R. Zou, “Graphene-Oxide-Modified Metal–Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO2/N2 Separation,” Nanomaterials, vol. 14 no 1, 24, 2024. doi: 10.3390/nano14010024
  • [30] M. Liu, M. D. Nothling, S. Zhang, Q. Fu and G. G. Qiao, “Thin film composite membranes for postcombustion carbon capture: Polymers and beyond,” Progress in Polymer Science, vol. 126, 101504, 2022. doi: 10.1016/j.progpolymsci.2022.101504
  • [31] F. Raganati, F. Miccio and P. Ammendola, “Adsorption of Carbon Dioxide for Post-combustion Capture: A Review,” Energy & Fuels, vol. 35, no 16, pp. 12845-12868, 2021. doi: 10.1021/acs.energyfuels.1c01618
  • [32] T. Ghanbari, F. Abnisa and W. M. A. W. Daud, “A review on production of metal organic frameworks (MOF) for CO2 adsorption,” Science of The Total Environment, vol. 707, 135090, 2020. doi: 10.1016/j.scitotenv.2019.135090
  • [33] O. T. Qazvini, R. Babarao and S. G. Telfer, “Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework, “Nature Communications, vol.12, 197, 2021. doi: 10.1038/s41467-020-20489-2
  • [34] D. Britt, H. Furukawa, B. Wang, T. G. Glover and O. M. Yaghi, “Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no 49, pp. 20637-20640, 2009. doi: 10.1073/pnas.0909718106
  • [35] B. Szczęśniak, J. Choma and M. Jaroniec, “Gas adsorption properties of hybrid graphene-MOF materials,” Journal of Colloid and Interface Science, vol. 514, pp. 801-813, 2018. doi: 10.1016/j.jcis.2017.11.049
  • [36] C. Petit and T. J. Bandosz, “Engineering the surface of a new class of adsorbents: Metal–organic framework/graphite oxide composites,” Journal of Colloid and Interface Science, vol. 447, pp. 139-151, 2015. doi: 10.1016/j.jcis.2014.08.026
  • [37] M. Shen, L. Tong, S. Yin, C. Liu, L. Wang, W. Fen and Y. Ding, “Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review,” Separation and Purification Technology, vol. 299, 121734, 2022. doi: 10.1016/j.seppur.2022.121734
  • [38] C. Font-Palma, D. Cann and C. Udemu, “Review of Cryogenic Carbon Capture Innovations and Their Potential Applications,” Journal of Carbon Research, vol. 7, no 3, 58, 2021. doi: 10.3390/c7030058
  • [39] S. K. Bhatia, R. K. Bhatia, J.-M. Jeon, G. Kumar and Y.-H. Yang, “Carbon dioxide capture and bioenergy production using biological system – A review,” Renewable and Sustainable Energy Reviews, vol. 110, pp. 143-158, 2019. doi: 10.1016/j.rser.2019.04.070
  • [40] E. Daneshvar, R. J. Wicker, P.-L. Show and A. Bhatnagar, “Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – A review,” Chemical Engineering Journal, vol. 427, 130884, 2022. doi: 10.1016/j.cej.2021.130884
  • [41] M. U. Sieborg, A. K. H. Nielsen, L. D. M Ottosen, K. Daasbjerg and M. V. W. Kofoed, “Bio-integrated carbon capture and utilization: at the interface between capture chemistry and archaeal CO2 reduction,” Nature Communications, vol. 15, 7492, 2024. doi: 10.1038/s41467-024-51700-3 [42] H. A. Alalwan and A. H. Alminshid, “CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique,” Science of The Total Environment, vol. 788, 147850, 2021. doi: 10.1016/j.scitotenv.2021.147850
  • [43] I. Gogolev, C.Linderholm, D. Gall, M. Schmitz, T. Mattisson, J. B. C. Pettersson and A. Lyngfelt, “Chemical-looping combustion in a 100 kW unit using a mixture of synthetic and natural oxygen carriers – Operational results and fate of biomass fuel alkali,” International Journal of Greenhouse Gas Control, vol. 88, pp. 371-382, 2019. doi: 10.1016/j.ijggc.2019.06.020
  • [44] Q. Hu, Y. Shen, J. W. Chew, T. Ge and C.-H. Wang, “Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production,” Chemical Engineering Journal, vol. 379, 122346, 2020. doi: 10.1016/j.cej.2019.122346
  • [45] B. Jin, R. Wang, D. Fu, T. Ouyang, Y. Fan, H. Zhang and Z. Liang, “Chemical looping CO2 capture and in-situ conversion as a promising platform for green and low-carbon industry transition: Review and perspective,” Carbon Capture Science & Technology, vol. 10, 100169, 2024. doi: 10.1016/j.ccst.2023.100169
  • [46] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan and L. F. d. Diego, “Progress in Chemical-Looping Combustion and Reforming technologies,” Progress in Energy and Combustion Science, vol. 38, no 2, pp. 215-282, 2012. doi: 10.1016/j.pecs.2011.09.001
  • [47] X. W. Liu, T. J. Sun, J. L. Hu, and S. D. Wang, “Composites of metal-organic frameworks and carbon-based materials: Preparations, functionalities and applications,” Journal of Materials Chemistry A, vol. 4, no 10, pp. 3584–3616, 2016. doi: 10.1039/C5TA09924B
  • [48] L. Hu, K. Clark, T. Alebrahim, and H. Lin, “Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering,” Journal of Membrane Science, vol. 644, 120140, 2022. doi: 10.1016/j.memsci.2021.120140
  • [49] G. Yu, X. Zou, L. Sun, B. Liu, Z. Wang, P. Zhang and G. Zhu, “Constructing Connected Paths between UiO-66 and PIM-1 to Improve Membrane CO2 Separation with Crystal-Like Gas Selectivity,” Advanced Materials, vol. 31, no 15, 1806853, 2019. doi: 10.1002/adma.201806853
  • [50] L. Maserati, S. M. Meckler, J. E. Bachman, J. R. Long and B. A. Helms, “Diamine-Appended Mg2(dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO2/N2 Separations,” Nano Letters, vol. 17, no 11, pp. 6828–6832, 2017. doi: 10.1021/acs.nanolett.7b03106 [51] M. Benzaqui, R. S. Pillai, A. Sabetghadam, V. Benoit, P. Normand, J. Marrot, N. Menguy, D. Montero, W. Shepard, A. Tissot, C. Martineau-Corcos, C. Sicard, M. Mihaylov, F. Carn, I. Beurroies, P. L. Llewellyn, G. De Weireld, K. Hadjiivanov, J. Gascon and C. Serre, “Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture,” Chemistry of Materials, vol. 29, no 24, pp. 10326–10338, 2017. doi: 10.1021/acs.chemmater.7b03203
  • [52] H. Wang, S. He, X. Qin, C. Li and T. Li, “Interfacial Engineering in Metal-Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes,” Journal of the American Chemical Society, vol. 140, no 49, pp. 17203–17210, 2018. doi: 10.1021/jacs.8b10138
  • [53] R. Thür, D. Van Havere, N. Van Velthoven, S. Smolders, A. Lamaire, J. Wieme, V. V. Speybroeck, D. De Vos and I. F. J. Vankelecom, “Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO2 permeation for a 2 more rational MMM development,” Journal of Materials Chemistry A, vol. 9, pp. 12782-12796, 2021. doi: 10.1039/D0TA10207E
  • [54] W. Wu, Z. Li, Y. Chen and W. Li, “Polydopamine-Modified Metal-Organic Framework Membrane with Enhanced Selectivity for Carbon Capture,” Environmental Science & Technology, vol. 53, no 7, pp. 3764–3772, 2019. doi: 10.1021/acs.est.9b00408
  • [55] S. Anastasiou, N. Bhoria, J. Pokhrel, K. S. Kumar Reddy, C. Srinivasakannan, K. Wang and G. N. Karanikolos, “Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation,” Materials Chemistry and Physics, vol. 212, pp. 513–522, 2018. doi: 10.1016/j.matchemphys.2018.03.064
  • [56] M. van Essen, R. Thür, M. Houben, I. F. J. Vankelecom, Z. Borneman and K. Nijmeijer, “Tortuous mixed matrix membranes: A subtle balance between microporosity and compatibility,” Journal of Membrane Science, vol. 635, 119517, 2021. doi: 10.1016/j.memsci.2021.119517
  • [57] A. Khan, A. M. Elsharif, A. Helal, Z. H. Yamani, A. Saeed Hakeem and M. Yusuf Khan “Mixed Dimensional Nanostructure (UiO-66-Decorated MWCNT) as a Nanofiller in Mixed-Matrix Membranes for Enhanced CO2/CH4 Separation,” Chemistry - A European Journal, vol. 27, no 43, pp. 11132–11140, 2021. doi: 10.1002/chem.202101017
  • [58] B. Yao, Y. Wang, Z. Fang, Y. Hu, Z. Ye and X. Peng, “Electrodepositing MOFs into laminated graphene oxide membrane for CO2 capture,” Microporous and Mesoporous Materials, vol. 361, 112758, 2023. doi: 10.1016/j.micromeso.2023.112758
  • [59] J. Wang, L. Li, X. Li and J. Zhang, “Constructing double-faced CO2-capture domains by sandwich-like fillers in membranes for efficient CO2 separation,” Chemical Engineering Science, vol. 283, 119374, 2024. doi: 10.1016/j.ces.2023.119374
  • [60] M. Zhao, J. Guo, Q. Xin, Y. Zhang, X. Li, X. Ding, L. Zhang, L. Zhao, H. Ye, H. Li, G. Xuan and Y. Zhang, “Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture,” Separation and Purification Technology, vol. 324, 124512, 2023. doi: 10.1016/j.seppur.2023.124512
  • [61] M. S. Maleh, S. Kiani and A. Raisi, “Study on the advantageous effect of nano-clay and polyurethane on structure and CO2 separation performance of polyethersulfone based ternary mixed matrix membranes,” Chemical Engineering Research and Design, vol. 179, pp. 27-40, 2022. doi: 10.1016/j.cherd.2022.01.011
  • [62] R. Lin, L. Ge, S. Liu, V. Rudolph and Z. Zhu, “Mixed-Matrix Membranes with Metal-Organic Framework-Decorated CNT Fillers for Efficient CO2 Separation,” ACS Applied Materials & Interfaces Journal, vol. 7, no 27, pp. 14750-14757, 2015. doi: 10.1021/acsami.5b02680
There are 60 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Conference Paper
Authors

Özge Östürk Sömek 0000-0002-1082-7728

Project Number No
Early Pub Date April 14, 2025
Publication Date
Submission Date December 3, 2024
Acceptance Date March 17, 2025
Published in Issue Year 2025 Issue: Erken Görünüm

Cite

IEEE Ö. Östürk Sömek, “Application of Nanoparticle-Doped MOF Composite-Embedded Mixed Matrix Membranes in Carbon Capture”, GJES, no. Erken Görünüm, pp. 1–12, April 2025.

GJES is indexed and archived by:

3311333114331153311633117

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg