Research Article
BibTex RIS Cite

Kredi Kartı Müşteri Kaybının Makine Öğrenmesi Yöntemleri Kullanılarak Tahmin Edilmesi

Year 2025, Volume: 11 Issue: 1, 16 - 34, 30.04.2025

Abstract

Günümüzde müşteriler muhtelif sebeplerle kredi kart kullanımlarından vazgeçebilmekte ve bu durum bankalar açısından olumsuz sonuçlar doğurmaktadır. Dolayısıyla, kredi kartı iptali yapacak muhtemel müşteriler önceden tahmin edilerek sözkonusu iptallerin banka lehine çevrilmesi ve böylece müşterilerin geri kazanılması gerekmektedir. Bu durum, müşteri kaybının takibi ve sözkonusu kaybın önlenmesi açısından da oldukça önem arzetmektedir. Bu bağlamda, çalışmada kredi kartı kullanan müşterilerin kart iptal durumlarını tespit etmek ve dolayısıyla müşteri kaybını tahmin etmek için makine öğrenmesi yöntemleri kullanılarak bir model önerilmiştir. Modelin oluşturulması için Kaggle platformundan elde edilen bir verisetinden yararlanılmıştır. Bu veri setinde toplam 10127 müşteriye ait kredi kart verisi bulunmaktadır. Veri setinde 23 özellik olmasına rağmen 2 özelliğin sonuçlara etkisi olmadığından modele dahil edilmeden silinmiştir. Sonuç olarak 20 girdi, 1 çıktı olmak üzere toplamda 21 farklı değişken kullanılmıştır. Modeller; Yapay Sinir Ağları, Lojistik Regresyon, Destek Vektör Makineleri, K-En Yakın Komşu, Karar Ağacı, Rastgele Orman, Ada Boost ve Gradient Boosting makine öğrenmesi algoritmaları kullanılarak oluşturulmuştur. Sonuç olarak, en yüksek performansı gösteren modelin %98.70’lik bir oranla Gradient Boosting, en düşük performansın ise %67.9’luk bir oranla Destek Vektör Makineleri modeli olduğu görülmüştür. Elde edilen tüm bu sonuçlar, Kredi Kartı Müşteri Kaybının makine öğrenmesi yöntemleriyle etkili bir şekilde tahmin edilebileceğini açıkça göstermektedir.

References

  • [1] D. AL-Najjar, N. Al-Rousan and H. AL-Najjar, “Machine Learning to Develop Credit Card Customer Churn Prediction,” Journal of Theoretical and Applied Electronic Commerce Research, vol. 17, no. 4, pp. 1529–1542, 2022. doi: 10.3390/jtaer17040077
  • [2] S. Kim, K. S. Shin, and K. Park, “An application of support vector machines for customer churn analysis: Credit card case,” In International Conference on Natural Computation, Berlin, Heidelberg: Springer Berlin Heidelberg, 27 – 29 August 2005, pp. 636-647, 2005. doi: 10.1007/11539117_91
  • [3] A. Keramati, H. Ghaneei and S. M. Mirmohammadi, “Developing a prediction model for customer churn from electronic banking services using data mining,” Financial Innovation, vol. 2, no. 1, pp. 2-13, 2016. doi: 10.1186/s40854-016-0029-6
  • [4] D. Nettleton, Commercial Data Mining: Processing, Analysis and Modeling for Predictive Analytics Projects (1st ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2014. doi: 10.1016/C2013-0-00263-0
  • [5] M. A. H. Farquad, V. Ravi and S. B. Raju, “Churn prediction using comprehensible support vector machine: An analytical CRM application,” Applied Soft Computing, vol. 19, pp. 31–40, 2014. doi: 10.1016/j.asoc.2014.01.031
  • [6] R. Hejazinia and M. Kazemi, “Prioritizing factors influencing customer churn,” Interdisciplinary Journal of Contemporary Research in Business, vol. 5, no. 12, pp. 227-236, 2014.
  • [7] E. Domingos, B. Ojeme and O. Daramola, “Experimental analysis of hyperparameters for deep learning‐based churn prediction in the banking sector,” Computation, vol. 9, no. 3, pp. 2-19, 2021. doi: 10.3390/computation9030034
  • [8] S. M. S. Hosseini, A. Maleki and M. R. Gholamian, “Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty,” Expert Systems with Applications, vol. 37, no. 7, pp. 5259–5264, 2010. doi: 10.1016/j.eswa.2009.12.070
  • [9] İ. T. Ağım, “Makine Öğrenmesi Teknikleriyle iskonto/İştira Kredilerinin Değerlendirilmesi,” M.Sc. İzmir Katip Çelebi Üniversitesi Fen Bilimleri Enstitüsü, 2024.
  • [10] F. Chollet, “On the measure of intelligence,” arXiv preprint arXiv:1911.01547, 2019. doi: 10.48550/arXiv.1911.01547
  • [11] S. Savaş and S. Buyrukoğlu, Teori ve Uygulamada Makine Öğrenmesi, Cilt: 1, Nobel Akademik Yayıncılık, Ed.: Savaş, S ve Buyrukoğlu, S., pp. 302, 2022.
  • [12] N. Gordini and V. Veglio, “Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry,” Industrial Marketing Management, 2016, doi: 10.1016/j.indmarman.2016.08.003
  • [13] M. Haenlein, “Social interactions in customer churn decisions: The impact of relationship directionality,” International Journal of Research in Marketing, vol. 30, no. 3, pp. 236–248, 2013. doi: 10.1016/j.ijresmar.2013.03.003
  • [14] A. Tamaddoni Jahromi, S. Stakhovych and M., Ewing, “Managing B2B customer churn, retention and profitability,” Industrial Marketing Management, vol. 43, no. 7, pp. 1258–1268, 2014. doi: 10.1016/j.indmarman.2014.06.016
  • [15] C.F. Tsai and Y.H. Lu, “Customer churn prediction by hybrid neural networks,” Expert Systems with Applications, vol. 36, no. 10, pp. 12547–12553, 2009. doi: 10.1016/j.eswa.2009.05.032
  • [16] M. Fathian, Y. Hoseinpoor and B. Minaei-Bidgoli, “Offering a hybrid approach of data mining to predict the customer churn based on bagging and boosting methods,” Kybernetes, vol. 45, no. 5, pp. 732–743, 2016. doi: 10.1108/K-07-2015-0172
  • [17] Kaggle, [Online]. Available: https://www.kaggle.com/datasets/sakshigoyal7/credit-card-customers. [Accessed: Sept. 14, 2024].
  • [18] S. J. Rigatti, “Random forest,” Journal of Insurance Medicine, vol. 47, no. 1, pp. 31-39, 2017. doi: 10.17849/insm-47-01-31-39.1
  • [19] B. Özkan, C. Parim and E. Çene, “Ülkelerin Gelişmişlik Düzeylerinin Karar Ağacı ve Rastgele Orman Yöntemleriyle Tahmin Edilmesi,” EKOIST Journal of Econometrics and Statistics, Sayı: 38, ss. 87- 104, 2023. doi: 10.26650/ekoist.2023.38.1172190
  • [20] A. Singhal, N. Kumari, P. Ghosh, Y. Singh, S. Garg, M. P. Shah, ... and D. K. Chauhan, “Optimizing cellulase production from Aspergillus flavus using response surface methodology and machine learning models,” Environmental Technology and Innovation, vol. 27, no. 102805, pp. 2-15, 2022. doi: 10.1016/j.eti.2022.102805
  • [21] Z. Özdemir Güler, M. A. Bakır and F. Kardiyen, “Destek vektör makinesi ile elde edilen olasılık çıktılarına dayalı yeni bir istatistiksel süreç izleme yöntemi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 2, pp. 1099-1112, 2023, doi: 10.17341/gazimmfd.1192354
  • [22] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, pp. 302, 1993.
  • [23] Ö. Gür, “Karar ağacı destekli hile tespiti ve bir uygulama,” Alanya Akademik Bakış, vol. 7, no. 1, pp. 511-528, 2023. doi: 10.29023/alanyaakademik.1196078
  • [24] F. Bulut, “Determining Heart Attack Risk Ration Through AdaBoost,” Celal Bayar University Journal of Science, vol. 12, no. 3, pp. 459-472, 2016. doi: 10.18466/cbayarfbe.280652
  • [25] E. A. Sağbaş, “MFCC Öznitelikleri ve AdaBoost Topluluk Öğrenme Yöntemi Kullanılarak Uyku Seslerinin Sınıflandırılması,” Computer Science, (IDAP-2023), pp. 31-36, 2023. doi: 10.53070/bbd.1347221
  • [26] A. Callens, D. Morichon, S. Abadie, M. Delpey and B. Liquet, “Using Random Forest and gradient boosting trees to improve wave forecast at a specific location,” Applied Ocean Research, vol. 104, no. 10233, 2020. doi: 10.1016/j.apor.2020.102339
  • [27] E. Güvenç, M. Sakal, G. Çetin and O. Özkaraca, “Öğrencilerin Dersteki Niteliklerinin Makine Öğrenmesi Teknikleri Kullanılarak Sınıflandırılması,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 10, no. 3, pp. 1359-1371, 2022. doi: 10.29130/dubited.1017202
  • [28] H. Karamanli, T. Yalcinoz, M. A. Yalcinoz and T. Yalcinoz, “A prediction model based on artificial neural networks for the diagnosis of obstructive sleep apnea,” Sleep and Breathing, vol. 20, pp. 509-514, 2016. doi: 10.1007/s11325-015-1218-7
  • [29] M. B. Odabaşı and M. C. Toklu, “Comparative Analysis of Artificial Neural Networks and Deep Learning Algorithms for Crypto Price Forecast,” Journal of Intelligent Systems: Theory and Applications, vol. 6, no. 2, pp. 96-107, 2023. doi: 10.38016/jista.1228629
  • [30] M. H. Calp, “İşletmeler için personel yemek talep miktarının yapay sinir ağları kullanılarak tahmin edilmesi,” Politeknik Dergisi, vol. 22, no. 3, pp. 675-686, 2019. doi: 10.2339/politeknik.444380
  • [31] P. K. Syriopoulos, N. G. Kalampalikis, S. B. Kotsiantis, and M. N. Vrahatis, “kNN Classification: a review,” Ann Math Artif Intell, pp. 1–33, Sep. 2023. doi: 10.1007/S10472-023-09882-X/METRICS
  • [32] J. Zhang, Z. Bian and S. Wang, “Bayes‐Decisive Linear KNN with Adaptive Nearest Neighbors” International Journal of Intelligent Systems, vol. 2024, no. 1, pp. 6664942, 2024. doi: 10.1155/2024/6664942
  • [33] J. A. Hanley and B. J. McNeil, “A method of comparing the areas under receiver operating characteristic curves derived from the same cases,” Radiology, vol. 148, no. 3, pp. 839-843, 1983. doi: 10.1148/radiology.148.3.6878708
  • [34] K. H. Zou, A. J. O’Malley and L. Mauri, “Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models,” Circulation, vol. 115, no. 5, pp. 654-657, 2007. doi: 10.1161/CIRCULATIONAHA.105.594929
  • [35] D. M. Powers, “Evaluation: from precision, recall, and F-measure to ROC, informedness, markedness, and correlation,” arXiv preprint arXiv:2010.16061, 2020. doi: 10.9735/2229-3981
  • [36] N. Japkowicz and M. Shah, Evaluating learning algorithms: a classification perspective. Cambridge University Press, 2011. doi: 10.1017/CBO9780511921803
  • [37] J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,” In Proceedings of the 23rd international conference on Machine learning, 25 – 29 June 2006, pp. 233-240, 2006. Doi: 10.1145/1143844.1143874
  • [38] A. Keramati, R. Jafari-Marandi, M. Aliannejadi, I. Ahmadian, M. Mozaffari and U. Abbasi. “Improved churn prediction in telecommunication industry using data mining techniques”, Applied Soft Computing, 24, pp. 994-1012, 2014. doi: 10.1016/j.asoc.2014.08.041
  • [39] S. V. Nath, and R. S. Behara. “Customer churn analysis in the wireless industry: A data mining approach,” In Proceedings-annual meeting of the decision sciences institute, vol. 561, pp. 505-510, November 2003.
  • [40] K. Dahiya and S. Bhatia. “Customer churn analysis in telecom industry,” In 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) Trends and Future Directions, 2-4 Sept. 2015, pp. 1-6. IEEE, 2015. doi: 10.1109/ICRITO.2015.7359318
  • [41] O. Kaynar, M. F. Tuna, Y. Görmez and M. A. Deveci, “Makine öğrenmesi yöntemleriyle müşteri kaybı analiz,” Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, vol. 18, no. 1, pp. 1-14, 2017.
  • [42] A. J. O. Rautio. “Churn prediction in SaaS using machine learning,” (Master's thesis), 2019.
  • [43] I. Ullah, B. Raza A. K. Malik, M. Imran, S. U. Islam, and S. W. Kim. “A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector,” IEEE Access, 7, pp. 60134-60149, 2019. doi: 10.1109/ACCESS.2019.2914999
  • [44] F. S. Özbaş, Müşteri Kayıp Tahmini (Customer Churn Prediction), YBS Ansiklopedi, vol. 8, no. 1, Haziran 2020.
  • [45] Y. Deng, D. Li, L. Yang, J. Tang and J. Zhao, “Analysis and prediction of bank user churn based on ensemble learning algorithm,” Proceedings of 2021 IEEE International Conference on Power Electronics, Computer Applications, ICPECA 2021, 22-24 January 2021, pp. 288–291, 2021. doi: 10.1109/ICPECA51329.2021.9362520
  • [46] S. J. Haddadi, M. O. Mohammadi, M. Bahrami, E. Khoeini, M. Beygi and M. H. Khoshkar, “Customer churn prediction in the iranian banking sector,” In 2022 International Conference on Applied Artificial Intelligence (ICAPAI), 5-5 May 2022, pp. 1-6, IEEE, 2022. doi: 10.1109/ICAPAI55158.2022.9801574
  • [47] K. Peng, Y. Peng and W. Li, “Research on customer churn prediction and model interpretability analysis,” PLOS One, vol. 18, no. 12:e0289724, 2023. doi: 10.1371/journal.pone.0289724
  • [48] B. Özcan, K. Kayapınar and K. Adem, “Gelişen Teknoloji ile Bankacılık Sektöründe Veri Analitiği: Müşteri Kaybı Tahmini İçin Makine Öğrenmesi Yaklaşımları,” Uluslararası Sivas Bilim ve Teknoloji Üniversitesi Dergisi, vol. 2, no 1, pp. 74-84, 2023.
  • [49] A. Khattak, Z. Mehak, H. Ahmad, M. U. Asghar, M. Z. Asghar and A. Khan,” Customer churn prediction using composite deep learning technique. Scientific Reports,” vol. 13, no. 1, pp. 17294, 2023. doi: 10.1038/s41598-023-44396-w
  • [50] K. C. Mouli, C. V. Raghavendran, V.Y. Bharadwaj, G. Y. Vybhavi, C. Sravani, K. M. Vafaeva ... and L. Hussein, “An analysis on classification models for customer churn prediction,” Cogent Engineering, vol. 11, no. 1, pp. 2378877, 2024 doi: 10.1080/23311916.2024.2378877
  • [51] V. H. Vu, “An Efficient Customer Churn Prediction Technique Using Combined Machine Learning in Commercial Banks,” In Operations Research Forum, vol. 5, no. 3, pp. 66. Cham: Springer International Publishing, July, 2024. doi: 10.1007/s43069-024-00345-5
  • [52] C. He and C. H. Ding. “A novel classification algorithm for customer churn prediction based on hybrid,” Ensemble-Fusion model. Scientific Reports, vol. 14, no. 1, pp. 20179, 2024. doi: 10.1038/s41598-024-71168-x

Predicting of Credit Card Customer Churn Using Machine Learning Methods

Year 2025, Volume: 11 Issue: 1, 16 - 34, 30.04.2025

Abstract

Today, customers are giving up using credit cards for various reasons and this has negative consequences for banks. Therefore, it is necessary to predict potential customers who will cancel their credit cards in advance and to turn these cancellations in favor of the bank and thus to regain the customers. This situation is also very important in terms of monitoring customer loss and preventing such loss. In this context, a model is proposed using machine learning methods to detect the card cancellation status of customers using credit cards and thus predict customer loss. A dataset obtained from the Kaggle platform was utilized to create the model. This dataset contains credit card data belonging to a total of 10127 customers. Although there were 23 features in the dataset, 2 features were deleted without being included in the model because they did not affect the results. As a result, a total of 21 different variables were used, 20 inputs and 1 output. The models were created using Artificial Neural Networks, Logistic Regression, Support Vector Machines, K-Nearest Neighbor, Decision Tree, Random Forest, Ada Boost, and Gradient Boosting machine learning algorithms. As a result, it was seen that the model with the highest performance was Gradient Boosting with a rate of 98.70%, and the model with the lowest performance was Support Vector Machines with a rate of 67.9%. All these results clearly show that Credit Card Customer Churn can be effectively predicted by machine learning methods.

References

  • [1] D. AL-Najjar, N. Al-Rousan and H. AL-Najjar, “Machine Learning to Develop Credit Card Customer Churn Prediction,” Journal of Theoretical and Applied Electronic Commerce Research, vol. 17, no. 4, pp. 1529–1542, 2022. doi: 10.3390/jtaer17040077
  • [2] S. Kim, K. S. Shin, and K. Park, “An application of support vector machines for customer churn analysis: Credit card case,” In International Conference on Natural Computation, Berlin, Heidelberg: Springer Berlin Heidelberg, 27 – 29 August 2005, pp. 636-647, 2005. doi: 10.1007/11539117_91
  • [3] A. Keramati, H. Ghaneei and S. M. Mirmohammadi, “Developing a prediction model for customer churn from electronic banking services using data mining,” Financial Innovation, vol. 2, no. 1, pp. 2-13, 2016. doi: 10.1186/s40854-016-0029-6
  • [4] D. Nettleton, Commercial Data Mining: Processing, Analysis and Modeling for Predictive Analytics Projects (1st ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2014. doi: 10.1016/C2013-0-00263-0
  • [5] M. A. H. Farquad, V. Ravi and S. B. Raju, “Churn prediction using comprehensible support vector machine: An analytical CRM application,” Applied Soft Computing, vol. 19, pp. 31–40, 2014. doi: 10.1016/j.asoc.2014.01.031
  • [6] R. Hejazinia and M. Kazemi, “Prioritizing factors influencing customer churn,” Interdisciplinary Journal of Contemporary Research in Business, vol. 5, no. 12, pp. 227-236, 2014.
  • [7] E. Domingos, B. Ojeme and O. Daramola, “Experimental analysis of hyperparameters for deep learning‐based churn prediction in the banking sector,” Computation, vol. 9, no. 3, pp. 2-19, 2021. doi: 10.3390/computation9030034
  • [8] S. M. S. Hosseini, A. Maleki and M. R. Gholamian, “Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty,” Expert Systems with Applications, vol. 37, no. 7, pp. 5259–5264, 2010. doi: 10.1016/j.eswa.2009.12.070
  • [9] İ. T. Ağım, “Makine Öğrenmesi Teknikleriyle iskonto/İştira Kredilerinin Değerlendirilmesi,” M.Sc. İzmir Katip Çelebi Üniversitesi Fen Bilimleri Enstitüsü, 2024.
  • [10] F. Chollet, “On the measure of intelligence,” arXiv preprint arXiv:1911.01547, 2019. doi: 10.48550/arXiv.1911.01547
  • [11] S. Savaş and S. Buyrukoğlu, Teori ve Uygulamada Makine Öğrenmesi, Cilt: 1, Nobel Akademik Yayıncılık, Ed.: Savaş, S ve Buyrukoğlu, S., pp. 302, 2022.
  • [12] N. Gordini and V. Veglio, “Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry,” Industrial Marketing Management, 2016, doi: 10.1016/j.indmarman.2016.08.003
  • [13] M. Haenlein, “Social interactions in customer churn decisions: The impact of relationship directionality,” International Journal of Research in Marketing, vol. 30, no. 3, pp. 236–248, 2013. doi: 10.1016/j.ijresmar.2013.03.003
  • [14] A. Tamaddoni Jahromi, S. Stakhovych and M., Ewing, “Managing B2B customer churn, retention and profitability,” Industrial Marketing Management, vol. 43, no. 7, pp. 1258–1268, 2014. doi: 10.1016/j.indmarman.2014.06.016
  • [15] C.F. Tsai and Y.H. Lu, “Customer churn prediction by hybrid neural networks,” Expert Systems with Applications, vol. 36, no. 10, pp. 12547–12553, 2009. doi: 10.1016/j.eswa.2009.05.032
  • [16] M. Fathian, Y. Hoseinpoor and B. Minaei-Bidgoli, “Offering a hybrid approach of data mining to predict the customer churn based on bagging and boosting methods,” Kybernetes, vol. 45, no. 5, pp. 732–743, 2016. doi: 10.1108/K-07-2015-0172
  • [17] Kaggle, [Online]. Available: https://www.kaggle.com/datasets/sakshigoyal7/credit-card-customers. [Accessed: Sept. 14, 2024].
  • [18] S. J. Rigatti, “Random forest,” Journal of Insurance Medicine, vol. 47, no. 1, pp. 31-39, 2017. doi: 10.17849/insm-47-01-31-39.1
  • [19] B. Özkan, C. Parim and E. Çene, “Ülkelerin Gelişmişlik Düzeylerinin Karar Ağacı ve Rastgele Orman Yöntemleriyle Tahmin Edilmesi,” EKOIST Journal of Econometrics and Statistics, Sayı: 38, ss. 87- 104, 2023. doi: 10.26650/ekoist.2023.38.1172190
  • [20] A. Singhal, N. Kumari, P. Ghosh, Y. Singh, S. Garg, M. P. Shah, ... and D. K. Chauhan, “Optimizing cellulase production from Aspergillus flavus using response surface methodology and machine learning models,” Environmental Technology and Innovation, vol. 27, no. 102805, pp. 2-15, 2022. doi: 10.1016/j.eti.2022.102805
  • [21] Z. Özdemir Güler, M. A. Bakır and F. Kardiyen, “Destek vektör makinesi ile elde edilen olasılık çıktılarına dayalı yeni bir istatistiksel süreç izleme yöntemi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 2, pp. 1099-1112, 2023, doi: 10.17341/gazimmfd.1192354
  • [22] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, pp. 302, 1993.
  • [23] Ö. Gür, “Karar ağacı destekli hile tespiti ve bir uygulama,” Alanya Akademik Bakış, vol. 7, no. 1, pp. 511-528, 2023. doi: 10.29023/alanyaakademik.1196078
  • [24] F. Bulut, “Determining Heart Attack Risk Ration Through AdaBoost,” Celal Bayar University Journal of Science, vol. 12, no. 3, pp. 459-472, 2016. doi: 10.18466/cbayarfbe.280652
  • [25] E. A. Sağbaş, “MFCC Öznitelikleri ve AdaBoost Topluluk Öğrenme Yöntemi Kullanılarak Uyku Seslerinin Sınıflandırılması,” Computer Science, (IDAP-2023), pp. 31-36, 2023. doi: 10.53070/bbd.1347221
  • [26] A. Callens, D. Morichon, S. Abadie, M. Delpey and B. Liquet, “Using Random Forest and gradient boosting trees to improve wave forecast at a specific location,” Applied Ocean Research, vol. 104, no. 10233, 2020. doi: 10.1016/j.apor.2020.102339
  • [27] E. Güvenç, M. Sakal, G. Çetin and O. Özkaraca, “Öğrencilerin Dersteki Niteliklerinin Makine Öğrenmesi Teknikleri Kullanılarak Sınıflandırılması,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 10, no. 3, pp. 1359-1371, 2022. doi: 10.29130/dubited.1017202
  • [28] H. Karamanli, T. Yalcinoz, M. A. Yalcinoz and T. Yalcinoz, “A prediction model based on artificial neural networks for the diagnosis of obstructive sleep apnea,” Sleep and Breathing, vol. 20, pp. 509-514, 2016. doi: 10.1007/s11325-015-1218-7
  • [29] M. B. Odabaşı and M. C. Toklu, “Comparative Analysis of Artificial Neural Networks and Deep Learning Algorithms for Crypto Price Forecast,” Journal of Intelligent Systems: Theory and Applications, vol. 6, no. 2, pp. 96-107, 2023. doi: 10.38016/jista.1228629
  • [30] M. H. Calp, “İşletmeler için personel yemek talep miktarının yapay sinir ağları kullanılarak tahmin edilmesi,” Politeknik Dergisi, vol. 22, no. 3, pp. 675-686, 2019. doi: 10.2339/politeknik.444380
  • [31] P. K. Syriopoulos, N. G. Kalampalikis, S. B. Kotsiantis, and M. N. Vrahatis, “kNN Classification: a review,” Ann Math Artif Intell, pp. 1–33, Sep. 2023. doi: 10.1007/S10472-023-09882-X/METRICS
  • [32] J. Zhang, Z. Bian and S. Wang, “Bayes‐Decisive Linear KNN with Adaptive Nearest Neighbors” International Journal of Intelligent Systems, vol. 2024, no. 1, pp. 6664942, 2024. doi: 10.1155/2024/6664942
  • [33] J. A. Hanley and B. J. McNeil, “A method of comparing the areas under receiver operating characteristic curves derived from the same cases,” Radiology, vol. 148, no. 3, pp. 839-843, 1983. doi: 10.1148/radiology.148.3.6878708
  • [34] K. H. Zou, A. J. O’Malley and L. Mauri, “Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models,” Circulation, vol. 115, no. 5, pp. 654-657, 2007. doi: 10.1161/CIRCULATIONAHA.105.594929
  • [35] D. M. Powers, “Evaluation: from precision, recall, and F-measure to ROC, informedness, markedness, and correlation,” arXiv preprint arXiv:2010.16061, 2020. doi: 10.9735/2229-3981
  • [36] N. Japkowicz and M. Shah, Evaluating learning algorithms: a classification perspective. Cambridge University Press, 2011. doi: 10.1017/CBO9780511921803
  • [37] J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,” In Proceedings of the 23rd international conference on Machine learning, 25 – 29 June 2006, pp. 233-240, 2006. Doi: 10.1145/1143844.1143874
  • [38] A. Keramati, R. Jafari-Marandi, M. Aliannejadi, I. Ahmadian, M. Mozaffari and U. Abbasi. “Improved churn prediction in telecommunication industry using data mining techniques”, Applied Soft Computing, 24, pp. 994-1012, 2014. doi: 10.1016/j.asoc.2014.08.041
  • [39] S. V. Nath, and R. S. Behara. “Customer churn analysis in the wireless industry: A data mining approach,” In Proceedings-annual meeting of the decision sciences institute, vol. 561, pp. 505-510, November 2003.
  • [40] K. Dahiya and S. Bhatia. “Customer churn analysis in telecom industry,” In 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) Trends and Future Directions, 2-4 Sept. 2015, pp. 1-6. IEEE, 2015. doi: 10.1109/ICRITO.2015.7359318
  • [41] O. Kaynar, M. F. Tuna, Y. Görmez and M. A. Deveci, “Makine öğrenmesi yöntemleriyle müşteri kaybı analiz,” Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, vol. 18, no. 1, pp. 1-14, 2017.
  • [42] A. J. O. Rautio. “Churn prediction in SaaS using machine learning,” (Master's thesis), 2019.
  • [43] I. Ullah, B. Raza A. K. Malik, M. Imran, S. U. Islam, and S. W. Kim. “A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector,” IEEE Access, 7, pp. 60134-60149, 2019. doi: 10.1109/ACCESS.2019.2914999
  • [44] F. S. Özbaş, Müşteri Kayıp Tahmini (Customer Churn Prediction), YBS Ansiklopedi, vol. 8, no. 1, Haziran 2020.
  • [45] Y. Deng, D. Li, L. Yang, J. Tang and J. Zhao, “Analysis and prediction of bank user churn based on ensemble learning algorithm,” Proceedings of 2021 IEEE International Conference on Power Electronics, Computer Applications, ICPECA 2021, 22-24 January 2021, pp. 288–291, 2021. doi: 10.1109/ICPECA51329.2021.9362520
  • [46] S. J. Haddadi, M. O. Mohammadi, M. Bahrami, E. Khoeini, M. Beygi and M. H. Khoshkar, “Customer churn prediction in the iranian banking sector,” In 2022 International Conference on Applied Artificial Intelligence (ICAPAI), 5-5 May 2022, pp. 1-6, IEEE, 2022. doi: 10.1109/ICAPAI55158.2022.9801574
  • [47] K. Peng, Y. Peng and W. Li, “Research on customer churn prediction and model interpretability analysis,” PLOS One, vol. 18, no. 12:e0289724, 2023. doi: 10.1371/journal.pone.0289724
  • [48] B. Özcan, K. Kayapınar and K. Adem, “Gelişen Teknoloji ile Bankacılık Sektöründe Veri Analitiği: Müşteri Kaybı Tahmini İçin Makine Öğrenmesi Yaklaşımları,” Uluslararası Sivas Bilim ve Teknoloji Üniversitesi Dergisi, vol. 2, no 1, pp. 74-84, 2023.
  • [49] A. Khattak, Z. Mehak, H. Ahmad, M. U. Asghar, M. Z. Asghar and A. Khan,” Customer churn prediction using composite deep learning technique. Scientific Reports,” vol. 13, no. 1, pp. 17294, 2023. doi: 10.1038/s41598-023-44396-w
  • [50] K. C. Mouli, C. V. Raghavendran, V.Y. Bharadwaj, G. Y. Vybhavi, C. Sravani, K. M. Vafaeva ... and L. Hussein, “An analysis on classification models for customer churn prediction,” Cogent Engineering, vol. 11, no. 1, pp. 2378877, 2024 doi: 10.1080/23311916.2024.2378877
  • [51] V. H. Vu, “An Efficient Customer Churn Prediction Technique Using Combined Machine Learning in Commercial Banks,” In Operations Research Forum, vol. 5, no. 3, pp. 66. Cham: Springer International Publishing, July, 2024. doi: 10.1007/s43069-024-00345-5
  • [52] C. He and C. H. Ding. “A novel classification algorithm for customer churn prediction based on hybrid,” Ensemble-Fusion model. Scientific Reports, vol. 14, no. 1, pp. 20179, 2024. doi: 10.1038/s41598-024-71168-x
There are 52 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Research Articles
Authors

M. Hanefi Calp 0000-0001-7991-438X

Early Pub Date April 14, 2025
Publication Date April 30, 2025
Submission Date October 18, 2024
Acceptance Date January 24, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

IEEE M. H. Calp, “Predicting of Credit Card Customer Churn Using Machine Learning Methods”, GJES, vol. 11, no. 1, pp. 16–34, 2025.

GJES is indexed and archived by:

3311333114331153311633117

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg