Review
BibTex RIS Cite

Hücre Dışı Matris ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri

Year 2025, , 113 - 130, 29.05.2025
https://doi.org/10.63716/guffd.1594101

Abstract

Hücre dışı matris, canlı gelişimini, doku homeostazını ve doku organizasyonu kontrol ederken hücre proliferasyonunu, migrasyonunu ve farklılaşmasını düzenler; bu yüzden bu matrisin bozulması kanserin ilerlemesine yol açar. Tümör gelişimi, metastaz ve terapötik direnç hem biyokimyasal sinyallerden hem de ekstrasellüler matristeki fiziksel sinyallerden etkilenir. İntegrinler, HDM proteinleri ve HDM’i yeniden şekillendirme hücreleri gibi HDM sensörlerini hedefleyen anti-kanser ilaçların keşfi için, tümör mikro çevresini ve HDM sertliği gibi mekanik etkilerin stromal hücreler ile kanser arasındaki karmaşık bağlantıları aydınlatma üzerindeki etkilerini araştırmamıza yardımcı olacaktır. Kanser hücreleri arasındaki geri bildirim ve HDM yeniden şekillemdirme süreçlerini anlamak, kanser hastaları için etkili tedaviler geliştirmek adına tümör mikro çevresininin temel mekanizmalarını derinlemesine anlamak için esastır.

References

  • Huang, J., Zhang, L., Wan, D., Zhou, L., Zheng, S., Lin, S., and Qiao, Y. (2021). Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther, 6. https://doi.org/10.1038/S41392-021-00544-0.
  • Li, C., Teixeira, A.F., Zhu, H.J., and ten Dijke, P. (2021). Cancer associated-fibroblast-derived exosomes in cancer progression. Molecular Cancer, 20. https://doi.org/10.1186/S12943-021-01463-Y.
  • Dick, J.E. (2008). Stem cell concepts renew cancer research. Blood, 112, 4793–4807. https://doi.org/10.1182/BLOOD-2008-08-077941.
  • Yamada, K.M., Collins, J.W., Cruz Walma, D.A., Doyle, A.D., Morales, S.G., Lu, J., Matsumoto, K., Nazari, S.S., Sekiguchi, R., Shinsato, Y., et al. (2019). Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. International Journal of Experimental Pathology, 100, 144–152. https://doi.org/10.1111/iep.12329.
  • Afasizheva, A., Devine, A., Tillman, H., Fung, K.L., Vieira, W.D., Blehm, B.H., Kotobuki, Y., Busby, B., Chen, E.I., and Tanner, K. (2016). Mitogen-activated protein kinase signaling causes malignant melanoma cells to differentially alter extracellular matrix biosynthesis to promote cell survival. BMC Cancer, 16. https://doi.org/10.1186/S12885-016-2211-7.
  • Long, K.R., and Huttner, W.B. (2019). How the extracellular matrix shapes neural development. Open Biology, 9. https://doi.org/10.1098/rsob.180216.
  • Theocharis, A.D., Skandalis, S.S., Gialeli, C., and Karamanos, N.K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27. https://doi.org/10.1016/J.ADDR.2015.11.001.
  • Kyriakopoulou, K., Piperigkou, Z., Tzaferi, K., and Karamanos, N.K. (2023). Trends in extracellular matrix biology. Molecular Biology Reports, 50, 853–863. https://doi.org/10.1007/S11033-022-07931-Y/FIGURES/3.
  • Cruz Walma, D.A., and Yamada, K.M. (2020). The extracellular matrix in development. Development, 147. https://doi.org/10.1242/DEV.175596/224217.
  • Doyle, A.D., Nazari, S.S., and Yamada, K.M. (2022). Cell–extracellular matrix dynamics. Physical Biology, 19, 021002. https://doi.org/10.1088/1478-3975/AC4390.
  • Karamanos, N.K., Theocharis, A.D., Piperigkou, Z., Manou, D., Passi, A., Skandalis, S.S., Vynios, D.H., Orian-Rousseau, V., Ricard-Blum, S., Schmelzer, C.E.H., et al. (2021). A guide to the composition and functions of the extracellular matrix. FEBS Journal, 288, 6850–6912. https://doi.org/10.1111/febs.15776.
  • Cruz Walma, D.A., and Yamada, K.M. (2020). The extracellular matrix in development. Development, 147. https://doi.org/10.1242/DEV.175596/224217.
  • Walker, C., Mojares, E., and Del Río Hernández, A. (2018). Role of Extracellular Matrix in Development and Cancer Progression. International Journal of Molecular Sciences, 19. https://doi.org/10.3390/IJMS19103028.
  • Henke, E., Nandigama, R., and Ergün, S. (2020). Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Frontiers in Molecular Biosciences, 6, 470149.
  • Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J., and Werb, Z. (2020). Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 11, 1–19.
  • Lu, P., Weaver, V.M., and Werb, Z. (2012). The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology, 196, 395–406. https://doi.org/10.1083/JCB.201102147.
  • Yuan, Z., Li, Y., Zhang, S., Wang, X., Dou, H., Yu, X., Zhang, Z., Yang, S., and Xiao, M. (2023). Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Molecular Cancer, 22, 1–42. https://doi.org/10.1186/S12943-023-01744-8.
  • Lu, P., Weaver, V.M., and Werb, Z. (2012). The extracellular matrix: a dynamic niche in cancer progression. Journal of Cell Biology, 196, 395–406. https://doi.org/10.1083/jcb.201102147.
  • Kessenbrock, K., Plaks, V., and Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141, 52–67. https://doi.org/10.1016/j.cell.2010.03.015.
  • Cenan, R.S., Ergin, E., Ekici, Y., and Ataç, F.B. (2018). Structural and functional properties of the extracellular matrix. Journal of Literature Pharmacy Sciences, 7, 251–260. https://doi.org/10.5336/pharmsci.2018-60599.
  • Üçgül, İ., and Aras, S. (2018). Ekstraselüler Matris Yapısı ve Görevleri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23, 295-310. https://doi.org/10.17482/uumfd.327376.
  • Güç, E., Briquez, P.S., Foretay, D., Fankhauser, M.A., Hubbell, J.A., Kilarski, W.W., and Swartz, M.A. (2017). Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials, 131, 160–175.
  • Rezzola, S., Sigmund, E.C., Halin, C., and Ronca, R. (2022). The lymphatic vasculature: An active and dynamic player in cancer progression. Medicinal Research Reviews, 42, 576–614. https://doi.org/10.1002/MED.21855.
  • Marchiò, S., Astanina, E., and Bussolino, F. (2013). Emerging lymphae for the fountain of life. EMBO Journal 32, 609–611.
  • Yamada, K.M., Collins, J.W., Cruz Walma, D.A., Doyle, A.D., Morales, S.G., Lu, J., Matsumoto, K., Nazari, S.S., Sekiguchi, R., Shinsato, Y., et al. (2019). Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. International Journal of Experimental Pathology, 100, 144–152. https://doi.org/10.1111/IEP.12329.
  • Cox, T.R. (2021). The matrix in cancer. Nature Reviews Cancer, 21, 217–238. https://doi.org/10.1038/s41568-020-00329-7.
  • Brown, G.T., and Murray, G.I. (2015). Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. Journal of Pathology, 237, 273–281. https://doi.org/10.1002/path.4586.
  • Lv, D., Fei, Y., Chen, H., Wang, J., Han, W., Cui, B., Feng, Y., Zhang, P., and Chen, J. (2024). Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1340702.
  • Åström, P., Juurikka, K., Hadler-Olsen, E.S., Svineng, G., Cervigne, N.K., Coletta, R.D., Risteli, J., Kauppila, J.H., Skarp, S., Kuttner, S., et al. (2017). The interplay of matrix metalloproteinase-8, transforming growth factor-β1 and vascular endothelial growth factor-C cooperatively contributes to the aggressiveness of oral tongue squamous cell carcinoma. British Journal of Cancer, 117, 1007–1016. https://doi.org/10.1038/bjc.2017.249.
  • Bergers, G., Brekken, R., McMahon, G., Vu, T.H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2, 737–744. https://doi.org/10.1038/35036374.
  • Darvishi, B., Eisavand, M.R., Majidzadeh-A, K., and Farahmand, L. (2022). Matrix stiffening and acquired resistance to chemotherapy: concepts and clinical significance. British Journal of Cancer, 126, 1253–1263. https://doi.org/10.1038/s41416-021-01680-8.
  • Tian, C., Öhlund, D., Rickelt, S., Lidström, T., Huang, Y., Hao, L., Zhao, R.T., Franklin, O., Bhatia, S.N., Tuveson, D.A., et al. (2020). Cancer cell–derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Research, 80, 1461–1474.
  • Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D.G., Egeblad, M., Evans, R.M., Fearon, D., Greten, F.R., Hingorani, S.R., Hunter, T., et al. (2020). A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 20, 174–186. https://doi.org/10.1038/s41568-019-0238-1.
  • Cox, T.R., and Erler, J.T. (2011). Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Disease Models & Mechanisms, 4, 165–178. https://doi.org/10.1242/DMM.004077.
  • Peng, D.H., Rodriguez, B.L., Diao, L., Chen, L., Wang, J., Byers, L.A., Wei, Y., Chapman, H.A., Yamauchi, M., Behrens, C., et al. (2020). Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nature Communications, 11, 1–18. https://doi.org/10.1038/s41467-020-18298-8.
  • Papanicolaou, M., Parker, A.L., Yam, M., Filipe, E.C., Wu, S.Z., Chitty, J.L., Wyllie, K., Tran, E., Mok, E., Nadalini, A., et al. (2022). Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nature Communications, 13, 1–21. https://doi.org/10.1038/s41467-022-32255-7.
  • Hebert, J.D., Myers, S.A., Naba, A., Abbruzzese, G., Lamar, J.M., Carr, S.A., and Hynes, R.O. (2020). Proteomic profiling of the ECM of xenograft breast cancer metastases in different organs reveals distinct metastatic niches. Cancer Research, 80, 1475–1485.
  • Tian, C., Öhlund, D., Rickelt, S., Lidström, T., Huang, Y., Hao, L., Zhao, R.T., Franklin, O., Bhatia, S.N., Tuveson, D.A., et al. (2020). Cancer cell–derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Research, 80, 1461–1474.
  • Sloas, D.C., Tran, J.C., Marzilli, A.M., and Ngo, J.T. (2023). Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection. Nature Biotechnology, 41, 1287–1295. https://doi.org/10.1038/s41587-022-01638-y.
  • Bonnans, C., Chou, J., and Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 15, 786–801. https://doi.org/10.1038/nrm3904.
  • Vining, K.H., and Mooney, D.J. (2017). Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews Molecular Cell Biology, 18, 728–742. https://doi.org/10.1038/nrm.2017.108.
  • Wolfenson, H., Yang, B., and Sheetz, M.P. (2019). Steps in Mechanotransduction Pathways that Control Cell Morphology. Annual Review of Physiology, 81, 585–605. https://doi.org/10.1146/ANNUREV-PHYSIOL-021317-121245/CITE/REFWORKS.
  • Hughes, J.H., and Kumar, S. (2016). Synthetic mechanobiology: engineering cellular force generation and signaling. Current Opinion in Biotechnology, 40, 82–89. https://doi.org/10.1016/J.COPBIO.2016.03.004.
  • Rafiq, N.B.M., Nishimura, Y., Plotnikov, S. V., Thiagarajan, V., Zhang, Z., Shi, S., Natarajan, M., Viasnoff, V., Kanchanawong, P., Jones, G.E., et al. (2019). A mechano-signalling network linking microtubules, myosin IIA filaments and integrin-based adhesions. Nature Materials, 18, 638–649. https://doi.org/10.1038/s41563-019-0371-y.
  • Le, V., Lee, J., Chaterji, S., Spencer, A., Liu, Y.L., Kim, P., Yeh, H.C., Kim, D.H., and Baker, A.B. (2018). Syndecan-1 in mechanosensing of nanotopological cues in engineered materials. Biomaterials, 155, 13–24. https://doi.org/10.1016/J.BIOMATERIALS.2017.11.007.
  • Zuidema, A., Wang, W., and Sonnenberg, A. (2020). Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction. Preprint at John Wiley and Sons Inc. https://doi.org/10.1002/bies.202000119 https://doi.org/10.1002/bies.202000119.
  • Matis, M. (2020). The Mechanical Role of Microtubules in Tissue Remodeling. BioEssays, 42, 1900244. https://doi.org/10.1002/BIES.201900244.
  • Torrino, S., Grasset, E.M., Audebert, S., Belhadj, I., Lacoux, C., Haynes, M., Pisano, S., Abélanet, S., Brau, F., Chan, S.Y., et al. (2021). Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. Cell Metabolism, 33, 1342-1357.e10. https://doi.org/10.1016/j.cmet.2021.05.009.
  • Navarro, A.P., Collins, M.A., and Folker, E.S. (2016). The nucleus is a conserved mechanosensation and mechanoresponse organelle. Cytoskeleton, 73, 59–67. https://doi.org/10.1002/CM.21277.
  • Uray, I.P., and Uray, K. (2021). Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. International Journal of Molecular Sciences, 22, 11566. https://doi.org/10.3390/IJMS222111566.
  • Shibue, T., and Weinberg, R.A. (2009). Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proceedings of the National Academy of Sciences of the United States of America, 106, 10290–10295.
  • Huveneers, S., and Danen, E.H.J. (2009). Adhesion signaling – crosstalk between integrins, Src and Rho. Journal of Cell Science, 122, 1059–1069. https://doi.org/10.1242/JCS.039446.
  • Discher, D.E., Mooney, D.J., and Zandstra, P.W. (2009). Growth Factors, Matrices, and Forces Combine and Control Stem Cells. Science, 324, 1673–1677. https://doi.org/10.1126/SCIENCE.1171643.
  • Dupont, S. (2016). Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Experimental Cell Research, 343, 42–53. https://doi.org/10.1016/J.YEXCR.2015.10.034.
  • Battilana, G., Zanconato, F., and Piccolo, S. (2021). Mechanisms of YAP/TAZ transcriptional control. Cell Stress 5, 167–172. https://doi.org/10.15698/CST2021.11.258.
  • Piccolo, S., Dupont, S., and Cordenonsi, M. (2014). The biology of YAP/TAZ: Hippo signaling and beyond. Physiological Reviews, 94, 1287–1312.
  • Low, B.C., Pan, C.Q., Shivashankar, G. V., Bershadsky, A., Sudol, M., and Sheetz, M. (2014). YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. Experimental & Molecular Biology Journal, 588, 2663–2670. https://doi.org/10.1016/J.FEBSLET.2014.04.012.
  • Wei, S.C., Fattet, L., Tsai, J.H., Guo, Y., Pai, V.H., Majeski, H.E., Chen, A.C., Sah, R.L., Taylor, S.S., Engler, A.J., et al. (2015). Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nature Cell Biology, 17, 678–688. https://doi.org/10.1038/ncb3157.
  • Zanconato, F., Battilana, G., Cordenonsi, M., and Piccolo, S. (2016). YAP/TAZ as therapeutic targets in cancer. Current Opinion in Pharmacology, 29, 26–33. https://doi.org/10.1016/J.COPH.2016.05.002.
  • Piccolo, S., Panciera, T., Contessotto, P., and Cordenonsi, M. (2022). YAP/TAZ as master regulators in cancer – modulation, function and therapeutic approaches. Nature Cancer, 4, 9-13.
  • Wu, B.K., Mei, S.C., Chen, E.H., Zheng, Y., and Pan, D. (2022). YAP induces an oncogenic transcriptional program through TET1-mediated epigenetic remodeling in liver growth and tumorigenesis. Nature Genetics, 54, 1202–1213. https://doi.org/10.1038/S41588-022-01119-7.
  • Harvey, K.F., Zhang, X., and Thomas, D.M. (2013). The Hippo pathway and human cancer. Nature Reviews Cancer, 13, 246–257. https://doi.org/10.1038/NRC3458.
  • Naba, A., Clauser, K.R., Hoersch, S., Liu, H., Carr, S.A., and Hynes, R.O. (2012). The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Molecular and Cellular Proteomics, 11. https://doi.org/10.1074/mcp.M111.014647.
  • Gospodarowicz D., Greenburg, G. and Birdwell C. R. .Determination of Cellular Shape by the Extracellular Matrix and Its Correlation with the Control of Cellular Growth. Cancer Research, 38, 4155-4171 https://aacrjournals.org/cancerres/article/38/11_Part_2/4155/482652/Determination-of-Cellular-Shape-by-the.
  • Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111. https://doi.org/10.1038/35102167.
  • Ramjiawan, R.R., Griffioen, A.W., and Duda, D.G. (2017). Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis, 20, 185–204. https://doi.org/10.1007/S10456-017-9552-Y.
  • Najafi, M., Farhood, B., and Mortezaee, K. (2019). Extracellular matrix (ECM) stiffness and degradation as cancer drivers. Journal Of Cellular Biochemistry, 120, 2782–2790. https://doi.org/10.1002/JCB.27681.
  • Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell, 46, 271–282. https://doi.org/10.1016/0092-8674(86)90744-0.
  • Insua-Rodríguez, J., and Oskarsson, T. (2016). The extracellular matrix in breast cancer. Advanced Drug Delivery Reviews, 97, 41–55. https://doi.org/10.1016/J.ADDR.2015.12.017.
  • Gkretsi, V., and Stylianopoulos, T. (2018). Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Front Oncology, 8, 342205. https://doi.org/10.3389/FONC.2018.00145/BIBTEX.
  • Chang, J.M., Park, I.A., Lee, S.H., Kim, W.H., Bae, M.S., Koo, H.R., Yi, A., Kim, S.J., Cho, N., and Moon, W.K. (2013). Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. European Radiology, 23, 2450–2458. https://doi.org/10.1007/S00330-013-2866-2/TABLES/4.
  • Lu, Q., Ling, W., Lu, C., Li, J., Ma, L., Quan, J., He, D., Liu, J., Yang, J., Wen, T., et al. (2015). Hepatocellular Carcinoma: Stiffness Value and Ratio to Discriminate Malignant from Benign Focal Liver Lesions. Radiology, 275, 880–888. https://doi.org/10.1148/radiol.14131164
Year 2025, , 113 - 130, 29.05.2025
https://doi.org/10.63716/guffd.1594101

Abstract

References

  • Huang, J., Zhang, L., Wan, D., Zhou, L., Zheng, S., Lin, S., and Qiao, Y. (2021). Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther, 6. https://doi.org/10.1038/S41392-021-00544-0.
  • Li, C., Teixeira, A.F., Zhu, H.J., and ten Dijke, P. (2021). Cancer associated-fibroblast-derived exosomes in cancer progression. Molecular Cancer, 20. https://doi.org/10.1186/S12943-021-01463-Y.
  • Dick, J.E. (2008). Stem cell concepts renew cancer research. Blood, 112, 4793–4807. https://doi.org/10.1182/BLOOD-2008-08-077941.
  • Yamada, K.M., Collins, J.W., Cruz Walma, D.A., Doyle, A.D., Morales, S.G., Lu, J., Matsumoto, K., Nazari, S.S., Sekiguchi, R., Shinsato, Y., et al. (2019). Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. International Journal of Experimental Pathology, 100, 144–152. https://doi.org/10.1111/iep.12329.
  • Afasizheva, A., Devine, A., Tillman, H., Fung, K.L., Vieira, W.D., Blehm, B.H., Kotobuki, Y., Busby, B., Chen, E.I., and Tanner, K. (2016). Mitogen-activated protein kinase signaling causes malignant melanoma cells to differentially alter extracellular matrix biosynthesis to promote cell survival. BMC Cancer, 16. https://doi.org/10.1186/S12885-016-2211-7.
  • Long, K.R., and Huttner, W.B. (2019). How the extracellular matrix shapes neural development. Open Biology, 9. https://doi.org/10.1098/rsob.180216.
  • Theocharis, A.D., Skandalis, S.S., Gialeli, C., and Karamanos, N.K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27. https://doi.org/10.1016/J.ADDR.2015.11.001.
  • Kyriakopoulou, K., Piperigkou, Z., Tzaferi, K., and Karamanos, N.K. (2023). Trends in extracellular matrix biology. Molecular Biology Reports, 50, 853–863. https://doi.org/10.1007/S11033-022-07931-Y/FIGURES/3.
  • Cruz Walma, D.A., and Yamada, K.M. (2020). The extracellular matrix in development. Development, 147. https://doi.org/10.1242/DEV.175596/224217.
  • Doyle, A.D., Nazari, S.S., and Yamada, K.M. (2022). Cell–extracellular matrix dynamics. Physical Biology, 19, 021002. https://doi.org/10.1088/1478-3975/AC4390.
  • Karamanos, N.K., Theocharis, A.D., Piperigkou, Z., Manou, D., Passi, A., Skandalis, S.S., Vynios, D.H., Orian-Rousseau, V., Ricard-Blum, S., Schmelzer, C.E.H., et al. (2021). A guide to the composition and functions of the extracellular matrix. FEBS Journal, 288, 6850–6912. https://doi.org/10.1111/febs.15776.
  • Cruz Walma, D.A., and Yamada, K.M. (2020). The extracellular matrix in development. Development, 147. https://doi.org/10.1242/DEV.175596/224217.
  • Walker, C., Mojares, E., and Del Río Hernández, A. (2018). Role of Extracellular Matrix in Development and Cancer Progression. International Journal of Molecular Sciences, 19. https://doi.org/10.3390/IJMS19103028.
  • Henke, E., Nandigama, R., and Ergün, S. (2020). Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Frontiers in Molecular Biosciences, 6, 470149.
  • Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J., and Werb, Z. (2020). Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 11, 1–19.
  • Lu, P., Weaver, V.M., and Werb, Z. (2012). The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology, 196, 395–406. https://doi.org/10.1083/JCB.201102147.
  • Yuan, Z., Li, Y., Zhang, S., Wang, X., Dou, H., Yu, X., Zhang, Z., Yang, S., and Xiao, M. (2023). Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Molecular Cancer, 22, 1–42. https://doi.org/10.1186/S12943-023-01744-8.
  • Lu, P., Weaver, V.M., and Werb, Z. (2012). The extracellular matrix: a dynamic niche in cancer progression. Journal of Cell Biology, 196, 395–406. https://doi.org/10.1083/jcb.201102147.
  • Kessenbrock, K., Plaks, V., and Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141, 52–67. https://doi.org/10.1016/j.cell.2010.03.015.
  • Cenan, R.S., Ergin, E., Ekici, Y., and Ataç, F.B. (2018). Structural and functional properties of the extracellular matrix. Journal of Literature Pharmacy Sciences, 7, 251–260. https://doi.org/10.5336/pharmsci.2018-60599.
  • Üçgül, İ., and Aras, S. (2018). Ekstraselüler Matris Yapısı ve Görevleri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23, 295-310. https://doi.org/10.17482/uumfd.327376.
  • Güç, E., Briquez, P.S., Foretay, D., Fankhauser, M.A., Hubbell, J.A., Kilarski, W.W., and Swartz, M.A. (2017). Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials, 131, 160–175.
  • Rezzola, S., Sigmund, E.C., Halin, C., and Ronca, R. (2022). The lymphatic vasculature: An active and dynamic player in cancer progression. Medicinal Research Reviews, 42, 576–614. https://doi.org/10.1002/MED.21855.
  • Marchiò, S., Astanina, E., and Bussolino, F. (2013). Emerging lymphae for the fountain of life. EMBO Journal 32, 609–611.
  • Yamada, K.M., Collins, J.W., Cruz Walma, D.A., Doyle, A.D., Morales, S.G., Lu, J., Matsumoto, K., Nazari, S.S., Sekiguchi, R., Shinsato, Y., et al. (2019). Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. International Journal of Experimental Pathology, 100, 144–152. https://doi.org/10.1111/IEP.12329.
  • Cox, T.R. (2021). The matrix in cancer. Nature Reviews Cancer, 21, 217–238. https://doi.org/10.1038/s41568-020-00329-7.
  • Brown, G.T., and Murray, G.I. (2015). Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. Journal of Pathology, 237, 273–281. https://doi.org/10.1002/path.4586.
  • Lv, D., Fei, Y., Chen, H., Wang, J., Han, W., Cui, B., Feng, Y., Zhang, P., and Chen, J. (2024). Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1340702.
  • Åström, P., Juurikka, K., Hadler-Olsen, E.S., Svineng, G., Cervigne, N.K., Coletta, R.D., Risteli, J., Kauppila, J.H., Skarp, S., Kuttner, S., et al. (2017). The interplay of matrix metalloproteinase-8, transforming growth factor-β1 and vascular endothelial growth factor-C cooperatively contributes to the aggressiveness of oral tongue squamous cell carcinoma. British Journal of Cancer, 117, 1007–1016. https://doi.org/10.1038/bjc.2017.249.
  • Bergers, G., Brekken, R., McMahon, G., Vu, T.H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2, 737–744. https://doi.org/10.1038/35036374.
  • Darvishi, B., Eisavand, M.R., Majidzadeh-A, K., and Farahmand, L. (2022). Matrix stiffening and acquired resistance to chemotherapy: concepts and clinical significance. British Journal of Cancer, 126, 1253–1263. https://doi.org/10.1038/s41416-021-01680-8.
  • Tian, C., Öhlund, D., Rickelt, S., Lidström, T., Huang, Y., Hao, L., Zhao, R.T., Franklin, O., Bhatia, S.N., Tuveson, D.A., et al. (2020). Cancer cell–derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Research, 80, 1461–1474.
  • Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D.G., Egeblad, M., Evans, R.M., Fearon, D., Greten, F.R., Hingorani, S.R., Hunter, T., et al. (2020). A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 20, 174–186. https://doi.org/10.1038/s41568-019-0238-1.
  • Cox, T.R., and Erler, J.T. (2011). Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Disease Models & Mechanisms, 4, 165–178. https://doi.org/10.1242/DMM.004077.
  • Peng, D.H., Rodriguez, B.L., Diao, L., Chen, L., Wang, J., Byers, L.A., Wei, Y., Chapman, H.A., Yamauchi, M., Behrens, C., et al. (2020). Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nature Communications, 11, 1–18. https://doi.org/10.1038/s41467-020-18298-8.
  • Papanicolaou, M., Parker, A.L., Yam, M., Filipe, E.C., Wu, S.Z., Chitty, J.L., Wyllie, K., Tran, E., Mok, E., Nadalini, A., et al. (2022). Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nature Communications, 13, 1–21. https://doi.org/10.1038/s41467-022-32255-7.
  • Hebert, J.D., Myers, S.A., Naba, A., Abbruzzese, G., Lamar, J.M., Carr, S.A., and Hynes, R.O. (2020). Proteomic profiling of the ECM of xenograft breast cancer metastases in different organs reveals distinct metastatic niches. Cancer Research, 80, 1475–1485.
  • Tian, C., Öhlund, D., Rickelt, S., Lidström, T., Huang, Y., Hao, L., Zhao, R.T., Franklin, O., Bhatia, S.N., Tuveson, D.A., et al. (2020). Cancer cell–derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Research, 80, 1461–1474.
  • Sloas, D.C., Tran, J.C., Marzilli, A.M., and Ngo, J.T. (2023). Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection. Nature Biotechnology, 41, 1287–1295. https://doi.org/10.1038/s41587-022-01638-y.
  • Bonnans, C., Chou, J., and Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 15, 786–801. https://doi.org/10.1038/nrm3904.
  • Vining, K.H., and Mooney, D.J. (2017). Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews Molecular Cell Biology, 18, 728–742. https://doi.org/10.1038/nrm.2017.108.
  • Wolfenson, H., Yang, B., and Sheetz, M.P. (2019). Steps in Mechanotransduction Pathways that Control Cell Morphology. Annual Review of Physiology, 81, 585–605. https://doi.org/10.1146/ANNUREV-PHYSIOL-021317-121245/CITE/REFWORKS.
  • Hughes, J.H., and Kumar, S. (2016). Synthetic mechanobiology: engineering cellular force generation and signaling. Current Opinion in Biotechnology, 40, 82–89. https://doi.org/10.1016/J.COPBIO.2016.03.004.
  • Rafiq, N.B.M., Nishimura, Y., Plotnikov, S. V., Thiagarajan, V., Zhang, Z., Shi, S., Natarajan, M., Viasnoff, V., Kanchanawong, P., Jones, G.E., et al. (2019). A mechano-signalling network linking microtubules, myosin IIA filaments and integrin-based adhesions. Nature Materials, 18, 638–649. https://doi.org/10.1038/s41563-019-0371-y.
  • Le, V., Lee, J., Chaterji, S., Spencer, A., Liu, Y.L., Kim, P., Yeh, H.C., Kim, D.H., and Baker, A.B. (2018). Syndecan-1 in mechanosensing of nanotopological cues in engineered materials. Biomaterials, 155, 13–24. https://doi.org/10.1016/J.BIOMATERIALS.2017.11.007.
  • Zuidema, A., Wang, W., and Sonnenberg, A. (2020). Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction. Preprint at John Wiley and Sons Inc. https://doi.org/10.1002/bies.202000119 https://doi.org/10.1002/bies.202000119.
  • Matis, M. (2020). The Mechanical Role of Microtubules in Tissue Remodeling. BioEssays, 42, 1900244. https://doi.org/10.1002/BIES.201900244.
  • Torrino, S., Grasset, E.M., Audebert, S., Belhadj, I., Lacoux, C., Haynes, M., Pisano, S., Abélanet, S., Brau, F., Chan, S.Y., et al. (2021). Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. Cell Metabolism, 33, 1342-1357.e10. https://doi.org/10.1016/j.cmet.2021.05.009.
  • Navarro, A.P., Collins, M.A., and Folker, E.S. (2016). The nucleus is a conserved mechanosensation and mechanoresponse organelle. Cytoskeleton, 73, 59–67. https://doi.org/10.1002/CM.21277.
  • Uray, I.P., and Uray, K. (2021). Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. International Journal of Molecular Sciences, 22, 11566. https://doi.org/10.3390/IJMS222111566.
  • Shibue, T., and Weinberg, R.A. (2009). Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proceedings of the National Academy of Sciences of the United States of America, 106, 10290–10295.
  • Huveneers, S., and Danen, E.H.J. (2009). Adhesion signaling – crosstalk between integrins, Src and Rho. Journal of Cell Science, 122, 1059–1069. https://doi.org/10.1242/JCS.039446.
  • Discher, D.E., Mooney, D.J., and Zandstra, P.W. (2009). Growth Factors, Matrices, and Forces Combine and Control Stem Cells. Science, 324, 1673–1677. https://doi.org/10.1126/SCIENCE.1171643.
  • Dupont, S. (2016). Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Experimental Cell Research, 343, 42–53. https://doi.org/10.1016/J.YEXCR.2015.10.034.
  • Battilana, G., Zanconato, F., and Piccolo, S. (2021). Mechanisms of YAP/TAZ transcriptional control. Cell Stress 5, 167–172. https://doi.org/10.15698/CST2021.11.258.
  • Piccolo, S., Dupont, S., and Cordenonsi, M. (2014). The biology of YAP/TAZ: Hippo signaling and beyond. Physiological Reviews, 94, 1287–1312.
  • Low, B.C., Pan, C.Q., Shivashankar, G. V., Bershadsky, A., Sudol, M., and Sheetz, M. (2014). YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. Experimental & Molecular Biology Journal, 588, 2663–2670. https://doi.org/10.1016/J.FEBSLET.2014.04.012.
  • Wei, S.C., Fattet, L., Tsai, J.H., Guo, Y., Pai, V.H., Majeski, H.E., Chen, A.C., Sah, R.L., Taylor, S.S., Engler, A.J., et al. (2015). Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nature Cell Biology, 17, 678–688. https://doi.org/10.1038/ncb3157.
  • Zanconato, F., Battilana, G., Cordenonsi, M., and Piccolo, S. (2016). YAP/TAZ as therapeutic targets in cancer. Current Opinion in Pharmacology, 29, 26–33. https://doi.org/10.1016/J.COPH.2016.05.002.
  • Piccolo, S., Panciera, T., Contessotto, P., and Cordenonsi, M. (2022). YAP/TAZ as master regulators in cancer – modulation, function and therapeutic approaches. Nature Cancer, 4, 9-13.
  • Wu, B.K., Mei, S.C., Chen, E.H., Zheng, Y., and Pan, D. (2022). YAP induces an oncogenic transcriptional program through TET1-mediated epigenetic remodeling in liver growth and tumorigenesis. Nature Genetics, 54, 1202–1213. https://doi.org/10.1038/S41588-022-01119-7.
  • Harvey, K.F., Zhang, X., and Thomas, D.M. (2013). The Hippo pathway and human cancer. Nature Reviews Cancer, 13, 246–257. https://doi.org/10.1038/NRC3458.
  • Naba, A., Clauser, K.R., Hoersch, S., Liu, H., Carr, S.A., and Hynes, R.O. (2012). The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Molecular and Cellular Proteomics, 11. https://doi.org/10.1074/mcp.M111.014647.
  • Gospodarowicz D., Greenburg, G. and Birdwell C. R. .Determination of Cellular Shape by the Extracellular Matrix and Its Correlation with the Control of Cellular Growth. Cancer Research, 38, 4155-4171 https://aacrjournals.org/cancerres/article/38/11_Part_2/4155/482652/Determination-of-Cellular-Shape-by-the.
  • Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111. https://doi.org/10.1038/35102167.
  • Ramjiawan, R.R., Griffioen, A.W., and Duda, D.G. (2017). Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis, 20, 185–204. https://doi.org/10.1007/S10456-017-9552-Y.
  • Najafi, M., Farhood, B., and Mortezaee, K. (2019). Extracellular matrix (ECM) stiffness and degradation as cancer drivers. Journal Of Cellular Biochemistry, 120, 2782–2790. https://doi.org/10.1002/JCB.27681.
  • Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell, 46, 271–282. https://doi.org/10.1016/0092-8674(86)90744-0.
  • Insua-Rodríguez, J., and Oskarsson, T. (2016). The extracellular matrix in breast cancer. Advanced Drug Delivery Reviews, 97, 41–55. https://doi.org/10.1016/J.ADDR.2015.12.017.
  • Gkretsi, V., and Stylianopoulos, T. (2018). Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Front Oncology, 8, 342205. https://doi.org/10.3389/FONC.2018.00145/BIBTEX.
  • Chang, J.M., Park, I.A., Lee, S.H., Kim, W.H., Bae, M.S., Koo, H.R., Yi, A., Kim, S.J., Cho, N., and Moon, W.K. (2013). Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. European Radiology, 23, 2450–2458. https://doi.org/10.1007/S00330-013-2866-2/TABLES/4.
  • Lu, Q., Ling, W., Lu, C., Li, J., Ma, L., Quan, J., He, D., Liu, J., Yang, J., Wen, T., et al. (2015). Hepatocellular Carcinoma: Stiffness Value and Ratio to Discriminate Malignant from Benign Focal Liver Lesions. Radiology, 275, 880–888. https://doi.org/10.1148/radiol.14131164
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Cell Development, Proliferation and Death, Cellular Interactions, Receptors and Membrane Biology
Journal Section Derlemeler
Authors

Tuğba Topal 0000-0002-8865-9656

İlknur Tosun 0009-0008-8069-5506

Publication Date May 29, 2025
Submission Date December 2, 2024
Acceptance Date April 14, 2025
Published in Issue Year 2025

Cite

APA Topal, T., & Tosun, İ. (2025). Hücre Dışı Matris ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri. Gazi Üniversitesi Fen Fakültesi Dergisi, 6(1), 113-130. https://doi.org/10.63716/guffd.1594101
AMA Topal T, Tosun İ. Hücre Dışı Matris ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri. GÜFFD. May 2025;6(1):113-130. doi:10.63716/guffd.1594101
Chicago Topal, Tuğba, and İlknur Tosun. “Hücre Dışı Matris Ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri”. Gazi Üniversitesi Fen Fakültesi Dergisi 6, no. 1 (May 2025): 113-30. https://doi.org/10.63716/guffd.1594101.
EndNote Topal T, Tosun İ (May 1, 2025) Hücre Dışı Matris ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri. Gazi Üniversitesi Fen Fakültesi Dergisi 6 1 113–130.
IEEE T. Topal and İ. Tosun, “Hücre Dışı Matris ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri”, GÜFFD, vol. 6, no. 1, pp. 113–130, 2025, doi: 10.63716/guffd.1594101.
ISNAD Topal, Tuğba - Tosun, İlknur. “Hücre Dışı Matris Ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri”. Gazi Üniversitesi Fen Fakültesi Dergisi 6/1 (May 2025), 113-130. https://doi.org/10.63716/guffd.1594101.
JAMA Topal T, Tosun İ. Hücre Dışı Matris ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri. GÜFFD. 2025;6:113–130.
MLA Topal, Tuğba and İlknur Tosun. “Hücre Dışı Matris Ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri”. Gazi Üniversitesi Fen Fakültesi Dergisi, vol. 6, no. 1, 2025, pp. 113-30, doi:10.63716/guffd.1594101.
Vancouver Topal T, Tosun İ. Hücre Dışı Matris ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri. GÜFFD. 2025;6(1):113-30.