Research Article
BibTex RIS Cite

Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma

Year 2025, , 139 - 145, 29.05.2025
https://doi.org/10.63716/guffd.1646250

Abstract

Bu çalışmada Einstein-Rosen Köprüsü’nün orijinal halinin genel anlamda geçilebilir olmadığı literatürde hali hazırda bilinmekle birlikte açık bir biçimde gösterilmiştir. Devamında, zamansal ve radyal kısımlarda yapılacak olan birebir aynı bir düzenlemenin de bu durumu ortadan kaldırmayacağı gösterilmiştir. Sonrasında ise Einstein-Rosen Köprüsü’nün zamansal kısmına bir düzenleme yapılarak geçilebilir bir kurt deliği elde edilmiştir. Düzenleme sonucunda elde edilen bu kurt deliği de yine küresel simetrik ve statik bir kurt deliğidir.

References

  • Shwarzcshild, Von K. (1916). Über das gravitationsfeld einer kugel aus inkompressibler flüssigkeit nach der EINSTEINshen theorie. Siztzungsberichte der Koniglich Preussichen Akademie der Wissenschaften, 18, 424-434.
  • Radhakrishnan, R., Brown, P., Matulevich, J., Davis, E., Mirfendereski, D., and Cleaver, G. (2024). A review of stable, traversable wormholes in f(R) gravity theories. Symmetry, 16, 1007.
  • Flamm, L. (1916). Beiträge zur einsteinschen gravitationstheorie, Physikalische Zeitschrift, 17, 448–454.
  • Einstein, A. and Rosen, N. (1935). The particle problem in the general theory of relativity. Physical Review, 48, 73.
  • Duane, G. S. (2019). Tunneling through bridges: Bohmian non-locality from higher-derivative gravity. Physics Letters A, 383, 929-935.
  • Jensen, K. and Karch, A. (2013). Holographic dual of an Einstein-Podolsky-Rosen pair has a wormhole. Physical Review Letters, 111, 211602.
  • Juan Maldacena, J. (2003). Eternal black holes in anti-de sitter. Journal of High Energy Physics, 2003(04), 021.
  • Maldacena, J. and Susskind, L. (2013). Cool horizons for entangled black holes. Fortschritte der Physik, 61(9), 781-811.
  • Kang, S. and Yeom, D. (2018). Tunneling from the past horizon. Physical Review D, 97, 086011.
  • Crowell L. (2022). Stretched horizon as a quantum gravity beam splitter. Frontiers in Physics, 10, 734199.
  • Bryan, K. L. H. and Medved, A. J. M. (2017). Black holes and information: A new take on an old paradox. Advances in High Energy Physics, 2017, 1-8.
  • Jusufi, K., Moulay, E., Mureika, J., and Ali, A. F. (2023). Einstein-Rosen bridge from the minimal length. The European Physical Journal C, 83, 282.
  • Ellis, H. (1973). Ether flow through a drainhole: A particle model in general relativity. Journal of Mathematical Physics, 14, 104-118.
  • Bronnikov, K. A. (1973). Scalar-Tensor theory and scalar charge. Acta Physica Polonica, B4(2), 251-266.
  • Morris, M. S. and Thorne, K. S. (1987). Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics, 56(5), 395-412.
  • Beig, R. and Siddiqui, A. A. (2007). Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes. Classical and Quantum Gravity, 24, 5435-5439.
  • Andréasson, H. (2008). Sharp bounds on 2m/r of general spherically symmetric static objects. Journal of Differential Equations, 245, 2243-2266.
  • Bronnikov, K. A., Fabris, J. C., Piattella, O. F., and Santos, E. C. (2016). Static, spherically symmetric solutions with a scalar field in rastall gravity. General Relativity and Gravitation, 48(12), 162.
  • Zhdanov, V. I. and Stashko, O. S. (2020). Static spherically symmetric configurations with N nonlinear scalar fields: Global and asymptotic properties. Physical Review D, 101, 064064.
Year 2025, , 139 - 145, 29.05.2025
https://doi.org/10.63716/guffd.1646250

Abstract

References

  • Shwarzcshild, Von K. (1916). Über das gravitationsfeld einer kugel aus inkompressibler flüssigkeit nach der EINSTEINshen theorie. Siztzungsberichte der Koniglich Preussichen Akademie der Wissenschaften, 18, 424-434.
  • Radhakrishnan, R., Brown, P., Matulevich, J., Davis, E., Mirfendereski, D., and Cleaver, G. (2024). A review of stable, traversable wormholes in f(R) gravity theories. Symmetry, 16, 1007.
  • Flamm, L. (1916). Beiträge zur einsteinschen gravitationstheorie, Physikalische Zeitschrift, 17, 448–454.
  • Einstein, A. and Rosen, N. (1935). The particle problem in the general theory of relativity. Physical Review, 48, 73.
  • Duane, G. S. (2019). Tunneling through bridges: Bohmian non-locality from higher-derivative gravity. Physics Letters A, 383, 929-935.
  • Jensen, K. and Karch, A. (2013). Holographic dual of an Einstein-Podolsky-Rosen pair has a wormhole. Physical Review Letters, 111, 211602.
  • Juan Maldacena, J. (2003). Eternal black holes in anti-de sitter. Journal of High Energy Physics, 2003(04), 021.
  • Maldacena, J. and Susskind, L. (2013). Cool horizons for entangled black holes. Fortschritte der Physik, 61(9), 781-811.
  • Kang, S. and Yeom, D. (2018). Tunneling from the past horizon. Physical Review D, 97, 086011.
  • Crowell L. (2022). Stretched horizon as a quantum gravity beam splitter. Frontiers in Physics, 10, 734199.
  • Bryan, K. L. H. and Medved, A. J. M. (2017). Black holes and information: A new take on an old paradox. Advances in High Energy Physics, 2017, 1-8.
  • Jusufi, K., Moulay, E., Mureika, J., and Ali, A. F. (2023). Einstein-Rosen bridge from the minimal length. The European Physical Journal C, 83, 282.
  • Ellis, H. (1973). Ether flow through a drainhole: A particle model in general relativity. Journal of Mathematical Physics, 14, 104-118.
  • Bronnikov, K. A. (1973). Scalar-Tensor theory and scalar charge. Acta Physica Polonica, B4(2), 251-266.
  • Morris, M. S. and Thorne, K. S. (1987). Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics, 56(5), 395-412.
  • Beig, R. and Siddiqui, A. A. (2007). Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes. Classical and Quantum Gravity, 24, 5435-5439.
  • Andréasson, H. (2008). Sharp bounds on 2m/r of general spherically symmetric static objects. Journal of Differential Equations, 245, 2243-2266.
  • Bronnikov, K. A., Fabris, J. C., Piattella, O. F., and Santos, E. C. (2016). Static, spherically symmetric solutions with a scalar field in rastall gravity. General Relativity and Gravitation, 48(12), 162.
  • Zhdanov, V. I. and Stashko, O. S. (2020). Static spherically symmetric configurations with N nonlinear scalar fields: Global and asymptotic properties. Physical Review D, 101, 064064.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Space Sciences (Other)
Journal Section Araştırma Makaleleri
Authors

Onur Genç 0000-0002-9061-7519

Publication Date May 29, 2025
Submission Date February 24, 2025
Acceptance Date May 1, 2025
Published in Issue Year 2025

Cite

APA Genç, O. (2025). Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma. Gazi Üniversitesi Fen Fakültesi Dergisi, 6(1), 139-145. https://doi.org/10.63716/guffd.1646250
AMA Genç O. Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma. GÜFFD. May 2025;6(1):139-145. doi:10.63716/guffd.1646250
Chicago Genç, Onur. “Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma”. Gazi Üniversitesi Fen Fakültesi Dergisi 6, no. 1 (May 2025): 139-45. https://doi.org/10.63716/guffd.1646250.
EndNote Genç O (May 1, 2025) Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma. Gazi Üniversitesi Fen Fakültesi Dergisi 6 1 139–145.
IEEE O. Genç, “Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma”, GÜFFD, vol. 6, no. 1, pp. 139–145, 2025, doi: 10.63716/guffd.1646250.
ISNAD Genç, Onur. “Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma”. Gazi Üniversitesi Fen Fakültesi Dergisi 6/1 (May 2025), 139-145. https://doi.org/10.63716/guffd.1646250.
JAMA Genç O. Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma. GÜFFD. 2025;6:139–145.
MLA Genç, Onur. “Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma”. Gazi Üniversitesi Fen Fakültesi Dergisi, vol. 6, no. 1, 2025, pp. 139-45, doi:10.63716/guffd.1646250.
Vancouver Genç O. Einstein-Rosen Köprüsünün Geçilebilirliği Üzerine Bir Tartışma. GÜFFD. 2025;6(1):139-45.