Research Article
BibTex RIS Cite
Year 2025, Volume: 38 Issue: 2, 865 - 872, 01.06.2025
https://doi.org/10.35378/gujs.1403424

Abstract

References

  • [1] Banaś, J. and Krajewska, M., “Existence of solutions for infinite systems of differential equations in spaces of tempered sequences”, Electronic Journal of Differential Equantios, 2017(60): 1-28, (2017).
  • [2] Haque, I., Ali, J., and Mursaleen, M., “Solvability of an infinite system of Langevin fractional differential equations in a new tempered sequence space”, Fractional Calculus and Applied Analysis, 26: 1894-1915, (2023). DOI: https://doi.org/10.1007/s13540-023-00175-y
  • [3] Das, A., Mohiuddine, S.A., Alotaibi, A., and Deuri, B. C., “Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces”, Alexandria Engineering Journal, 61(3): 2010-2015, (2022). DOI: https://doi.org/10.1016/j.aej.2021.07.031
  • [4] Haque, I., Ali, J., and Mursaleen, M., “Existence of solutions for an infinite systems of Hilfer fractional boundary value problems in tempered sequence spaces”, Alexandria Engineering Journal, 65: 575-583, (2023). DOI: https://doi.org/10.1016/j.aej.2022.09.032
  • [5] Mohiuddine, S.A., Das, A., and Alotaibi, A., “Existence of solutions for nonlinear integral equations in tempered sequence spaces via generalized Darbo-type theorem”, Journal of Function Spaces, 2022, Article ID 4527439, 1-8, (2022). DOI: https://doi.org/10.1155/2022/4527439
  • [6] Mursaleen, M., and Başar, F., Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Boca Raton, (2020).
  • [7] Salem, A., Almaghamsi, L., and Alzahrani, F., “An infinite system of fractional order with p-Laplacian operator in a tempered sequence space via measure of noncompactness technique”, Fractal Fractional, 5(4): Article 182, (2021). DOI: https://doi.org/10.3390/fractalfract5040182
  • [8] Rabbani, M., Das, A., Hazarika, B., and Arab, R., “Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations”, Chaos, Solitons & Fractals, 140: 1-7, (2020). DOI: https://doi.org/10.1016/j.chaos.2020.110221
  • [9] Grossman, M. and Katz, R., Non-Newtonian Calculus, Lee Press, Masschusetts, (1872).
  • [10] Bashirov, A.E., Kurpınar, E. M. and Özyapıcı, A., “Multiplicative calculus and its applications”, Journal of Mathematical Analysis and Applications, 337(1): 36-48, (2008). DOI: https://doi.org/10.1016/j.jmaa.2007.03.081
  • [11] Binbaşıoğlu, D., Demiriz, S. and Türkoğlu, D., “Fixed points of non-Newtonian contraction mappings on non-Newtonian metric spaces”, Journal of Fixed Point Theory and Applications, 18: 213-224, (2016). DOI: https://doi.org/10.1007/s11784-015-0271-y
  • [12] Binbaşıoğlu, D., “On fixed point results for generalized contractıons in non-Newtonian metric spaces”, Cumhuriyet Science Journal, 43(2), 289-293, (2022). DOI: https://doi.org/10.17776/csj.1007806
  • [13] Çakmak, A.F., and Başar, F., “Some new results on sequence spaces with respect to non-Newtonian calculus”, Journal of Inequalities and Applications, 2012(228): 1-17, (2012). DOI: https://doi.org/10.1186/1029-242X-2012-228
  • [14] Çakmak, A.F., and Başar, F., “Certain spaces of functions over the field of non-Newtonian complex numbers”, Abstract and Applied Analysis, 2014, Article ID 236124, 1-12, (2014). DOI: https://doi.org/10.1155/2014/236124
  • [15] Güngör, N., “Some geometric properties of the non-Newtonian sequence l_p (N)”, Mathematica Slovaca, 70(3): 689-696, (2020). DOI: https://doi.org/10.1515/ms-2017-0382
  • [16] Rohman, M., and Eryılmaz, İ., “Some basic results in ν-normed spaces”, Indonesian Journal of Mathematics and Applications, 1(1): 1-8, (2023). DOI: https://doi.org/10.21776/ub.ijma.2023.001.01.1

Basic Properties of Tempered ν-Sequence Spaces

Year 2025, Volume: 38 Issue: 2, 865 - 872, 01.06.2025
https://doi.org/10.35378/gujs.1403424

Abstract

In this paper, we will introduce tempered ν-sequence spaces generated by directed preserving generator ν. After building the spaces, we investigate and show tempered ν-sequence spaces are Banach spaces. In addition, we also find that there is an isomorphism between tempered ν-sequence spaces and the classical one. The direct implication is that some tempered ν-sequence spaces have a Schauder basis.

References

  • [1] Banaś, J. and Krajewska, M., “Existence of solutions for infinite systems of differential equations in spaces of tempered sequences”, Electronic Journal of Differential Equantios, 2017(60): 1-28, (2017).
  • [2] Haque, I., Ali, J., and Mursaleen, M., “Solvability of an infinite system of Langevin fractional differential equations in a new tempered sequence space”, Fractional Calculus and Applied Analysis, 26: 1894-1915, (2023). DOI: https://doi.org/10.1007/s13540-023-00175-y
  • [3] Das, A., Mohiuddine, S.A., Alotaibi, A., and Deuri, B. C., “Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces”, Alexandria Engineering Journal, 61(3): 2010-2015, (2022). DOI: https://doi.org/10.1016/j.aej.2021.07.031
  • [4] Haque, I., Ali, J., and Mursaleen, M., “Existence of solutions for an infinite systems of Hilfer fractional boundary value problems in tempered sequence spaces”, Alexandria Engineering Journal, 65: 575-583, (2023). DOI: https://doi.org/10.1016/j.aej.2022.09.032
  • [5] Mohiuddine, S.A., Das, A., and Alotaibi, A., “Existence of solutions for nonlinear integral equations in tempered sequence spaces via generalized Darbo-type theorem”, Journal of Function Spaces, 2022, Article ID 4527439, 1-8, (2022). DOI: https://doi.org/10.1155/2022/4527439
  • [6] Mursaleen, M., and Başar, F., Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Boca Raton, (2020).
  • [7] Salem, A., Almaghamsi, L., and Alzahrani, F., “An infinite system of fractional order with p-Laplacian operator in a tempered sequence space via measure of noncompactness technique”, Fractal Fractional, 5(4): Article 182, (2021). DOI: https://doi.org/10.3390/fractalfract5040182
  • [8] Rabbani, M., Das, A., Hazarika, B., and Arab, R., “Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations”, Chaos, Solitons & Fractals, 140: 1-7, (2020). DOI: https://doi.org/10.1016/j.chaos.2020.110221
  • [9] Grossman, M. and Katz, R., Non-Newtonian Calculus, Lee Press, Masschusetts, (1872).
  • [10] Bashirov, A.E., Kurpınar, E. M. and Özyapıcı, A., “Multiplicative calculus and its applications”, Journal of Mathematical Analysis and Applications, 337(1): 36-48, (2008). DOI: https://doi.org/10.1016/j.jmaa.2007.03.081
  • [11] Binbaşıoğlu, D., Demiriz, S. and Türkoğlu, D., “Fixed points of non-Newtonian contraction mappings on non-Newtonian metric spaces”, Journal of Fixed Point Theory and Applications, 18: 213-224, (2016). DOI: https://doi.org/10.1007/s11784-015-0271-y
  • [12] Binbaşıoğlu, D., “On fixed point results for generalized contractıons in non-Newtonian metric spaces”, Cumhuriyet Science Journal, 43(2), 289-293, (2022). DOI: https://doi.org/10.17776/csj.1007806
  • [13] Çakmak, A.F., and Başar, F., “Some new results on sequence spaces with respect to non-Newtonian calculus”, Journal of Inequalities and Applications, 2012(228): 1-17, (2012). DOI: https://doi.org/10.1186/1029-242X-2012-228
  • [14] Çakmak, A.F., and Başar, F., “Certain spaces of functions over the field of non-Newtonian complex numbers”, Abstract and Applied Analysis, 2014, Article ID 236124, 1-12, (2014). DOI: https://doi.org/10.1155/2014/236124
  • [15] Güngör, N., “Some geometric properties of the non-Newtonian sequence l_p (N)”, Mathematica Slovaca, 70(3): 689-696, (2020). DOI: https://doi.org/10.1515/ms-2017-0382
  • [16] Rohman, M., and Eryılmaz, İ., “Some basic results in ν-normed spaces”, Indonesian Journal of Mathematics and Applications, 1(1): 1-8, (2023). DOI: https://doi.org/10.21776/ub.ijma.2023.001.01.1
There are 16 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Mathematics
Authors

Minanur Rohman 0000-0003-0941-3787

İlker Eryılmaz 0000-0002-3590-892X

Nihat Altınışık 0000-0002-8914-4240

Moh. Nurul Huda 0000-0003-3952-2706

Eduardus Beo Seso Delvion 0009-0006-0792-7513

Early Pub Date March 8, 2025
Publication Date June 1, 2025
Submission Date December 13, 2023
Acceptance Date February 15, 2025
Published in Issue Year 2025 Volume: 38 Issue: 2

Cite

APA Rohman, M., Eryılmaz, İ., Altınışık, N., Huda, M. N., et al. (2025). Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science, 38(2), 865-872. https://doi.org/10.35378/gujs.1403424
AMA Rohman M, Eryılmaz İ, Altınışık N, Huda MN, Delvion EBS. Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science. June 2025;38(2):865-872. doi:10.35378/gujs.1403424
Chicago Rohman, Minanur, İlker Eryılmaz, Nihat Altınışık, Moh. Nurul Huda, and Eduardus Beo Seso Delvion. “Basic Properties of Tempered ν-Sequence Spaces”. Gazi University Journal of Science 38, no. 2 (June 2025): 865-72. https://doi.org/10.35378/gujs.1403424.
EndNote Rohman M, Eryılmaz İ, Altınışık N, Huda MN, Delvion EBS (June 1, 2025) Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science 38 2 865–872.
IEEE M. Rohman, İ. Eryılmaz, N. Altınışık, M. N. Huda, and E. B. S. Delvion, “Basic Properties of Tempered ν-Sequence Spaces”, Gazi University Journal of Science, vol. 38, no. 2, pp. 865–872, 2025, doi: 10.35378/gujs.1403424.
ISNAD Rohman, Minanur et al. “Basic Properties of Tempered ν-Sequence Spaces”. Gazi University Journal of Science 38/2 (June 2025), 865-872. https://doi.org/10.35378/gujs.1403424.
JAMA Rohman M, Eryılmaz İ, Altınışık N, Huda MN, Delvion EBS. Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science. 2025;38:865–872.
MLA Rohman, Minanur et al. “Basic Properties of Tempered ν-Sequence Spaces”. Gazi University Journal of Science, vol. 38, no. 2, 2025, pp. 865-72, doi:10.35378/gujs.1403424.
Vancouver Rohman M, Eryılmaz İ, Altınışık N, Huda MN, Delvion EBS. Basic Properties of Tempered ν-Sequence Spaces. Gazi University Journal of Science. 2025;38(2):865-72.