Research Article
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 1, 268 - 277, 26.03.2025
https://doi.org/10.54287/gujsa.1624298

Abstract

References

  • Capaz, R. B., Koiller, B., & de Queiroz, S. L. A. (1990). Gap states and localization properties of one-dimensional Fibonacci quasicrystals. Physical Review B, 42(10), 6402–6407. https://doi.org/10.1103/PhysRevB.42.6402
  • Çetinkaya, Ç., Çokduygulular, E., Kınacı, B., Güzelçimen, F., Özen, Y., Efkere, H. İ., Candan, İ., Emik, S., & Özçelik, S. (2021). Design and fabrication of a semi-transparent solar cell considering the effect of the layer thickness of MoO3/Ag/MoO3 transparent top contact on optical and electrical properties. Scientific Reports, 11(1), 13079. https://doi.org/10.1038/s41598-021-92539-8
  • Çokduygulular, E., Çetinkaya, Ç., Emik, S., & Kınacı, B. (2023). In-depth analysis on PTB7 based semi-transparent solar cell employing MoO3/Ag/WO3 contact for advanced optical performance and light utilization. Scientific Reports, 13(1), 7548. https://doi.org/10.1038/s41598-023-34507-y
  • Dai, X. F., Wang, H. Y., Chen, L. J., Duan, X. F., Chen, J. L., Wu, G. H., Zhu, H., & Xiao, J. Q. (2006). Growth and characterization of ferromagnetic shape memory alloy Co50Ni20FeGa29 single crystals. Journal of Crystal Growth, 290(2), 626–630. https://doi.org/10.1016/j.jcrysgro.2006.01.054
  • Elsayed, H. A., El-Sherbeeny, A. M., Nayak, S., Abukhadra, M. R., & Mehaney, A. (2024). Optical properties of the 1D quasiperiodic photonic crystals comprising gyroidal superconductor for THz applications. Europhysics Letters, 147(6), 65001. https://doi.org/10.1209/0295-5075/ad7758
  • Escorcia-García, J., & Mora-Ramos, M. E. (2009). Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon. PIERS Online, 5(2), 167–170.
  • Fujihara, S., Naito, H., & Kimura, T. (2001). Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF2 thin-films via sol–gel process. Thin Solid Films, 389(1–2), 227–232. https://doi.org/10.1016/S0040-6090(01)00893-8
  • Fujiwara, T., Kohmoto, M., & Tokihiro, T. (1989). Multifractal wave functions on a Fibonacci lattice. Physical Review B, 40(10), 7413–7416. https://doi.org/10.1103/PhysRevB.40.7413
  • Han, P., & Wang, H. (2005). Criterion of omnidirectional reflection in a one-dimensional photonic heterostructure. Journal of the Optical Society of America B, 22(7), 1571. https://doi.org/10.1364/JOSAB.22.001571
  • Jiménez-Vivanco, M. R., Lugo, E., Torres-Costa, V., Martín-Palma, R. J., Santana, M., & Herrera, R. (2024). Determination of the complex refractive index of free-standing porous silicon and oxidized porous silicon in the Visible and Ultraviolet range. Applied Physics A, 130(12), 952. https://doi.org/10.1007/s00339-024-08129-8
  • Kohmoto, M., Sutherland, B., & Iguchi, K. (1987). Localization of optics: Quasiperiodic media. Physical Review Letters, 58(23), 2436–2438. https://doi.org/10.1103/PhysRevLett.58.2436
  • Srivastava, R., Pati, S., & Ojha, S. P. (2008). Enhancement of omnidirectional reflection in photonic crystal heterostructures. Progress In Electromagnetics Research B, 1, 197–208. https://doi.org/10.2528/PIERB07102903
  • Taherzadeh, S., & Keshavarz, A. (2024). Optical Bistability in Vanadium Dioxide Photonic Crystals Engineered with One-Dimensional Fibonacci Sequences. Physics of Wave Phenomena, 32(6), 401–409. https://doi.org/10.3103/S1541308X24700407
  • Tavakoli, M., & Jalili, Y. S. (2014). One-dimensional Fibonacci fractal photonic crystals and their optical characteristics. Journal of Theoretical and Applied Physics, 8(1), 113. https://doi.org/10.1007/s40094-014-0113-0

Quasi-Periodic Photonic Structures: Fibonacci fractal-based optical filter design using ZnO/MgF2

Year 2025, Volume: 12 Issue: 1, 268 - 277, 26.03.2025
https://doi.org/10.54287/gujsa.1624298

Abstract

This study investigates the optical properties of one-dimensional photonic crystals based on ZnO/MgF₂, designed using Fibonacci fractal sequences. The effects of structures based on standard Fibonacci (FFPC), inverted Fibonacci (IFFPC), and mirror symmetry Fibonacci (MSFFPC) sequences on photonic band gaps and light-matter interactions were theoretically analyzed. Calculations were performed using the Transfer Matrix Method (TMM). The analyses revealed that lower-order sequences offer broad and uniform transmission, while higher-order sequences exhibit complex optical resonances with narrower bandwidths. MSFFPC structures, characterized by their regular configurations and narrow bandwidths, are ideal candidates for applications requiring precise color selection, such as sensors and narrow-band optical filters. Conversely, IFFPC structures provide advantages for wide spectral applications due to their broad transmission bands. FFPC structures, offering a balanced performance, can be employed in both wide-band and narrow-band optical systems.

References

  • Capaz, R. B., Koiller, B., & de Queiroz, S. L. A. (1990). Gap states and localization properties of one-dimensional Fibonacci quasicrystals. Physical Review B, 42(10), 6402–6407. https://doi.org/10.1103/PhysRevB.42.6402
  • Çetinkaya, Ç., Çokduygulular, E., Kınacı, B., Güzelçimen, F., Özen, Y., Efkere, H. İ., Candan, İ., Emik, S., & Özçelik, S. (2021). Design and fabrication of a semi-transparent solar cell considering the effect of the layer thickness of MoO3/Ag/MoO3 transparent top contact on optical and electrical properties. Scientific Reports, 11(1), 13079. https://doi.org/10.1038/s41598-021-92539-8
  • Çokduygulular, E., Çetinkaya, Ç., Emik, S., & Kınacı, B. (2023). In-depth analysis on PTB7 based semi-transparent solar cell employing MoO3/Ag/WO3 contact for advanced optical performance and light utilization. Scientific Reports, 13(1), 7548. https://doi.org/10.1038/s41598-023-34507-y
  • Dai, X. F., Wang, H. Y., Chen, L. J., Duan, X. F., Chen, J. L., Wu, G. H., Zhu, H., & Xiao, J. Q. (2006). Growth and characterization of ferromagnetic shape memory alloy Co50Ni20FeGa29 single crystals. Journal of Crystal Growth, 290(2), 626–630. https://doi.org/10.1016/j.jcrysgro.2006.01.054
  • Elsayed, H. A., El-Sherbeeny, A. M., Nayak, S., Abukhadra, M. R., & Mehaney, A. (2024). Optical properties of the 1D quasiperiodic photonic crystals comprising gyroidal superconductor for THz applications. Europhysics Letters, 147(6), 65001. https://doi.org/10.1209/0295-5075/ad7758
  • Escorcia-García, J., & Mora-Ramos, M. E. (2009). Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon. PIERS Online, 5(2), 167–170.
  • Fujihara, S., Naito, H., & Kimura, T. (2001). Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF2 thin-films via sol–gel process. Thin Solid Films, 389(1–2), 227–232. https://doi.org/10.1016/S0040-6090(01)00893-8
  • Fujiwara, T., Kohmoto, M., & Tokihiro, T. (1989). Multifractal wave functions on a Fibonacci lattice. Physical Review B, 40(10), 7413–7416. https://doi.org/10.1103/PhysRevB.40.7413
  • Han, P., & Wang, H. (2005). Criterion of omnidirectional reflection in a one-dimensional photonic heterostructure. Journal of the Optical Society of America B, 22(7), 1571. https://doi.org/10.1364/JOSAB.22.001571
  • Jiménez-Vivanco, M. R., Lugo, E., Torres-Costa, V., Martín-Palma, R. J., Santana, M., & Herrera, R. (2024). Determination of the complex refractive index of free-standing porous silicon and oxidized porous silicon in the Visible and Ultraviolet range. Applied Physics A, 130(12), 952. https://doi.org/10.1007/s00339-024-08129-8
  • Kohmoto, M., Sutherland, B., & Iguchi, K. (1987). Localization of optics: Quasiperiodic media. Physical Review Letters, 58(23), 2436–2438. https://doi.org/10.1103/PhysRevLett.58.2436
  • Srivastava, R., Pati, S., & Ojha, S. P. (2008). Enhancement of omnidirectional reflection in photonic crystal heterostructures. Progress In Electromagnetics Research B, 1, 197–208. https://doi.org/10.2528/PIERB07102903
  • Taherzadeh, S., & Keshavarz, A. (2024). Optical Bistability in Vanadium Dioxide Photonic Crystals Engineered with One-Dimensional Fibonacci Sequences. Physics of Wave Phenomena, 32(6), 401–409. https://doi.org/10.3103/S1541308X24700407
  • Tavakoli, M., & Jalili, Y. S. (2014). One-dimensional Fibonacci fractal photonic crystals and their optical characteristics. Journal of Theoretical and Applied Physics, 8(1), 113. https://doi.org/10.1007/s40094-014-0113-0
There are 14 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications, Condensed Matter Physics (Other)
Journal Section Physical Sciences
Authors

Erman Çokduygulular 0000-0003-3235-2919

Publication Date March 26, 2025
Submission Date January 21, 2025
Acceptance Date February 13, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Çokduygulular, E. (2025). Quasi-Periodic Photonic Structures: Fibonacci fractal-based optical filter design using ZnO/MgF2. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 268-277. https://doi.org/10.54287/gujsa.1624298