Research Article
BibTex RIS Cite

İki Farklı Biyopolimerin Siltli Zemin Dayanım Parametreleri Üzerindeki Etkilerinin Araştırılması

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1628900

Abstract

Zemin iyileştirme yöntemleri zayıf zeminlerin taşıma gücünü artırmak için yaygın olarak kullanılır. Çevresel kaygılar nedeniyle kireç ve çimento gibi geleneksel katkı maddeleri, yerini giderek daha sürdürülebilir alternatiflere bırakmaktadır. Son zamanlarda, biyopolimerler zemin iyileştirme amacıyla, çevre dostu seçenekler olarak dikkat çekmektedir. Ancak, zemin ve biyopolimer arasında oluşan bağların mukavemetini artırmak için biyopolimerleri ek maddelerle birleştirmek nadirdir. Bu çalışma, Guar Gum ve Xanthan Gum biyopolimerlerinin kalsiyum klorür (CaCl₂) ile birlikte kullanılmasının siltli zeminin mukavemet parametreleri üzerindeki etkilerini araştırmaktadır. Biyopolimerlerin zemin matrisi arasında jel benzeri yapılar oluşturarak mukavemeti artırdığı bilinmektedir. Aynı zamanda kalsiyum klorür, biyopolimerlerin karboksil gruplarıyla etkileşime girerek zemin mukavemetini daha da artıran çapraz bağlar oluşturur. Bu çalışmada, biyopolimerler ve kalsiyum klorür siltli zeminle birleştirilerek ve 7,28,56 ve 90 günlük kürlemeye tabi tutulmuştur. Kürlenen numunelerin serbest basınç ve kayma mukavemetleri, referans numune ile karşılaştırılmıştır. İçsel sürtünme açısı ve kohezyondaki değişiklikler de farklı biyopolimer oranlarına göre analiz edilmiştir. Sonuçlar, kalsiyum klorürün biyopolimerlerin çapraz bağlama etkisini artırmasıyla uzun süreli kürlenmiş numunelerin mukavemetinde önemli iyileştirmeler olduğunu göstermiştir. Bu bulgular, biyopolimerlerin kalsiyum klorürle birlikte çevre dostu zemin stabilizasyon projelerinde etkili olabileceğini ortaya koymaktadır.

References

  • [1] Shokrani A, Dhokia V, Newman ST. Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture. 2012; 57: 83–101.
  • [2] Doğan, N., Fırat, M.E., 2024. Uçucu kül, silis dumanı ve cam elyaf kullanılarak iyileştirilen kilin mühendislik performansının değerlendirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 12(4): 784–98, Doi: 10.29109/gujsc.1393857.
  • [3] Mitchell, J.K., Soga, K., 2005. Fundamentals of Soil Behavior. John Wiley & Sons, Hoboken.
  • [4] Bodur, B., Bayraktar, O.Y., Benli, A., Kaplan, G., Tobbala, D.E., Tayeh, B., 2023. Effect of using wastewater from the ready-mixed concrete plant on the performance of one-part alkali-activated GBFS/FA composites: Fresh, mechanical and durability properties. Journal of Building Engineering 76, Doi: 10.1016/j.jobe.2023.107167.
  • [5] Kaplan, G., Bayraktar, O.Y., Li, Z., Bodur, B., Yılmazoglu, M.U., Alcan, B.A., 2023. Improving the eco-efficiency of fiber reinforced composite by ultra-low cement content/high FA-GBFS addition for structural applications: Minimization of cost, CO2 emissions and embodied energy. Journal of Building Engineering 76, Doi: 10.1016/j.jobe.2023.107280.
  • [6] Gencel, O., Yavuz Bayraktar, O., Kaplan, G., Arslan, O., Nodehi, M., Benli, A., et al., 2022. Lightweight foam concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties. Construction and Building Materials 320, Doi: 10.1016/j.conbuildmat.2021.126187.
  • [7] Bodur, B., Mecit Işık, M.A., Benli, A., Bayrak, B., Öz, A., Bayraktar, O.Y., et al., 2024. Durability of green rubberized 3D printed lightweight cement composites reinforced with micro attapulgite and micro steel fibers: Printability and environmental perspective. Journal of Building Engineering 90: 109447, Doi: 10.1016/j.jobe.2024.109447.
  • [8] Özkan, İ.G.M., Aldemir, K., Alhasan, O., Benli, A., Bayraktar, O.Y., Yılmazoğlu, M.U., et al., 2024. Investigation on the sustainable use of different sizes of sawdust aggregates in eco-friendly foam concretes: Physico-mechanical, thermal insulation and durability characteristics. Construction and Building Materials 438, Doi: 10.1016/j.conbuildmat.2024.137100.
  • [9] Bozyigit, I., Javadi, A., Altun, S., 2021. Strength properties of xanthan gum and guar gum treated kaolin at different water contents. Journal of Rock Mechanics and Geotechnical Engineering 13(5): 1160–72, Doi: 10.1016/j.jrmge.2021.06.007.
  • [10] Bayraktar, O.Y., 2022. Usability of Organic Wastes in Concrete Production; Palm Leaf Sample. Kastamonu University Journal of Engineering and Sciences, Doi: 10.55385/kastamonujes.1104531.
  • [11] Kaplan, G., Bayraktar, O.Y., Bayraktar, T., 2023. Optimization of without SCM concrete exposed to seawater according to minimum cost and CO2 emissions: Sustainable design with ABC algorithm. Materials Today Communications 35: 105657, Doi: 10.1016/j.mtcomm.2023.105657.
  • [12] Bayraktar, O.Y., Benli, A., Bodur, B., Öz, A., Kaplan, G., 2024. Performance assessment and cost analysis of slag/metakaolin based rubberized semi-lightweight geopolymers with perlite aggregate: Sustainable reuse of waste tires. Construction and Building Materials 411, Doi: 10.1016/j.conbuildmat.2023.134655.
  • [13] Ahıskalı, A., Ahıskalı, M., Bayraktar, O.Y., Kaplan, G., Assaad, J., 2024. Mechanical and durability properties of polymer fiber reinforced one-part foam geopolymer concrete: A sustainable strategy for the recycling of waste steel slag aggregate and fly ash. Construction and Building Materials 440, Doi: 10.1016/j.conbuildmat.2024.137492.
  • [14] Dehghan, H., Tabarsa, A., Latifi, N., Bagheri, Y., 2019. Use of xanthan and guar gums in soil strengthening. Clean Technologies and Environmental Policy 21(1): 155–65, Doi: 10.1007/s10098-018-1625-0.
  • [15] Chang, I., Im, J., Cho, G.-C., 2016. Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal 53(10): 1658–70, Doi: 10.1139/cgj-2015-0475.
  • [16] BOUAZZA, A., GATES, W.P., RANJITH, P.G., 2009. Hydraulic conductivity of biopolymer-treated silty sand. Géotechnique 59(1): 71–2, Doi: 10.1680/geot.2007.00137.
  • [17] Dora, N., Nanda, P., Reddy, N.G., 2021. Application of Biopolymers for Enhancing Engineering Properties of Problematic Soils and Industrial Wastes: A Review. p. 203–11.
  • [18] Kumar, S., Yadav, B.D., Raj, R., 2024. A review on the application of biopolymers (xanthan, agar and guar) for sustainable improvement of soil. Discover Applied Sciences, Doi: 10.1007/s42452-024-06087-7.
  • [19] Jang, J., 2020. A Review of the Application of Biopolymers on Geotechnical Engineering and the Strengthening Mechanisms between Typical Biopolymers and Soils. Advances in Materials Science and Engineering 2020(1), Doi: 10.1155/2020/1465709.
  • [20] Cabalar, A.F., Awraheem, M.H., Khalaf, M.M., 2018. Geotechnical Properties of a Low-Plasticity Clay with Biopolymer. Journal of Materials in Civil Engineering 30(8), Doi: 10.1061/(ASCE)MT.1943-5533.0002380.
  • [21] Wiszniewski, M., Skutnik, Z., Biliniak, M., Çabalar, A.F., 2017. Some geomechanical properties of a biopolymer treated medium sand. Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation 49(3): 201–12, Doi: 10.1515/sggw-2017-0016.
  • [22] Chang, I., Im, J., Prasidhi, A.K., Cho, G.-C., 2015. Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials 74: 65–72, Doi: 10.1016/j.conbuildmat.2014.10.026.
  • [23] Patwa, D., Dubey, A.A., Ravi, K., Sreedeep, S., 2024. Biopolymer Stabilization of Highly Plastic Silty Soil for Rammed Earth Construction Materials. p. 379–89.
  • [24] Gedela, R., Indraratna, B., Medawela, S., Nguyen, T.T., 2023. Effects Of Fines Content On The Strength And Stiffness Of Biopolymer Treated Low-Plasticity Soils. Australian Geomechanics Journal: 33–41, Doi: 10.56295/AGJ5811.
  • [25] Alassal, M.A., Sasar, M., Jaradat, K.A., Abdelaziz, S.L., 2024. The Role of Biopolymers in Enhancing Granular Media Shear Strength: A Comparative Analysis. IFCEE 2024, Reston, VA: American Society of Civil Engineers p. 108–18.
  • [26] Sujatha, E.R., Saisree, S., 2019. Geotechnical behaviour of guar gum-treated soil. Soils and Foundations 59(6): 2155–66, Doi: 10.1016/j.sandf.2019.11.012.
  • [27] Nair, L.P., Kannan, K., 2020. Effect of Biopolymers on Soil Strengthening. p. 65–71.
  • [28] Lee, M., Park, D.-Y., Kwon, Y.-M., Chang, I., Cho, G.-C., 2023. Study on Crosslink-Induced Gelation of Xanthan Gum Biopolymer and Its Soil Strengthening Behavior as Sustainable Grout Material. Geo-Congress 2023, Reston, VA: American Society of Civil Engineers p. 322–30.
  • [29] Muguda, S., Hughes, P.N., Augarde, C.E., Perlot, C., Walter Bruno, A., Gallipoli, D., 2022. Cross-linking of biopolymers for stabilizing earthen construction materials. Building Research & Information 50(5): 502–14, Doi: 10.1080/09613218.2021.2001304.
  • [30] Kavazanjian, E., Iglesias, E., Karatas, I., 2009. Biopolymer soil stabilization for wind erosion control. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, vol. 1. p. 881–4.
  • [31] Soldo, A., Miletić, M., Auad, M.L., 2020. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports 10(1): 267, Doi: 10.1038/s41598-019-57135-x.
  • [32] Fatehi, H., Ong, D.E.L., Yu, J., Chang, I., 2023. The Effects of Particle Size Distribution and Moisture Variation on Mechanical Strength of Biopolymer-Treated Soil. Polymers 15(6): 1549, Doi: 10.3390/polym15061549.
  • [33] Çetin, M.Y., Bağrıaçık, B., Annagür, H.M., Topoliński, S., 2024. Improvement of Geotechnical Properties of Clayey Soil Using Biopolymer and Ferrochromium Slag Additives. Polymers 16(10): 1306, Doi: 10.3390/polym16101306.
  • [34] Caldeira, J.B., Correia, A.A., Branco, R., Morais, P. V., 2024. The effect of biopolymer stabilisation on biostimulated or bioaugmented mine residue for potential technosol production. Scientific Reports 14(1): 25583, Doi: 10.1038/s41598-024-75840-0.
  • [35] Bang, J.-U., Lee, M., Park, D.-Y., Chang, I., Cho, G.-C., 2024. Effects of soil composition and curing conditions on the strength and durability of Cr3+-crosslinked biopolymer-soil composites. Construction and Building Materials 449: 138440, Doi: 10.1016/j.conbuildmat.2024.138440.
  • [36] Ren, F., Ding, H., Dong, B., Qian, X., Liu, J., Tan, J., 2024. Study on the improvement of soil properties using hydrophilic-hydrophobic biopolymer crosslinking. Construction and Building Materials 415: 135101, Doi: 10.1016/j.conbuildmat.2024.135101.
  • [37] Lee, M., Chang, I., Cho, G.-C., 2023. Advanced Biopolymer–Based Soil Strengthening Binder with Trivalent Chromium–Xanthan Gum Crosslinking for Wet Strength and Durability Enhancement. Journal of Materials in Civil Engineering 35(10), Doi: 10.1061/JMCEE7.MTENG-16123.
  • [38] Jang, J., 2020. A Review of the Application of Biopolymers on Geotechnical Engineering and the Strengthening Mechanisms between Typical Biopolymers and Soils. Advances in Materials Science and Engineering 2020(1), Doi: 10.1155/2020/1465709.
  • [39] Biernat, M., Woźniak, A., Chraniuk, M., Panasiuk, M., Tymowicz-Grzyb, P., Pagacz, J., et al., 2023. Effect of Selected Crosslinking and Stabilization Methods on the Properties of Porous Chitosan Composites Dedicated for Medical Applications. Polymers 15(11): 2507, Doi: 10.3390/polym15112507.
  • [40] Ashok Kumar, M., Moghal, A.A.B., Bommisetty, J., Mohammad, N., 2024. Efficacy of Cross-Linking of Biopolymers in Soil—Stabilization. p. 163–75.
  • [41] Bagriacik, B., Ok, B., Kahiyah, M.T.M.A., 2021. An experimental study on improvement of cohesive soil with eco-friendly guar gum. Soils and Rocks 44(2): 1–9, Doi: 10.28927/SR.2021.060020.
  • [42] Soldo, A., Miletić, M., Auad, M.L., 2020. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports 10(1), Doi: 10.1038/s41598-019-57135-x.
  • [43] Fatehi, H., Abtahi, S.M., Hashemolhosseini, H., Hejazi, S.M., 2018. A novel study on using protein based biopolymers in soil strengthening. Construction and Building Materials 167: 813–21, Doi: 10.1016/j.conbuildmat.2018.02.028.
  • [44] Azimi, M., Soltani, A., Mirzababaei, M., Jaksa, M.B., Ashwath, N., 2024. Biopolymer stabilization of clayey soil. Journal of Rock Mechanics and Geotechnical Engineering 16(7): 2801–12, Doi: 10.1016/j.jrmge.2023.12.020.
  • [45] Keshav, N., Prabhu, A., Kattimani, A., Dharwad, A., Kallatti, C., Mahalank, S., 2021. Enhancing the Properties of Expansive Soil Using Biopolymers—Xanthan Gum and Guar Gum. p. 129–35.
  • [46] Ayeldeen, M.K., Negm, A.M., El Sawwaf, M.A., 2016. Evaluating the physical characteristics of biopolymer/soil mixtures. Arabian Journal of Geosciences 9(5), Doi: 10.1007/s12517-016-2366-1.
  • [47] Moghal, A.A.B., Vydehi, K.V., 2021. State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innovative Infrastructure Solutions 6(2), Doi: 10.1007/s41062-021-00462-8.
  • [48] Babatunde, Q.O., Son, D.G., Kim, S.Y., Byun, Y.-H., 2023. Effect of Curing Condition and Solvent Content on Mechanical Properties of Zein-Biopolymer-Treated Soil. Sustainability 15(15): 12048, Doi: 10.3390/su151512048.
  • [49] Azimi, M., Soltani, A., Mirzababaei, M., Jaksa, M.B., Ashwath, N., 2024. Biopolymer stabilization of clayey soil. Journal of Rock Mechanics and Geotechnical Engineering 16(7): 2801–12, Doi: 10.1016/j.jrmge.2023.12.020.
  • [50] Keshav, N., Prabhu, A., Kattimani, A., Dharwad, A., Kallatti, C., Mahalank, S., 2021. Enhancing the Properties of Expansive Soil Using Biopolymers—Xanthan Gum and Guar Gum. p. 129–35.
  • [51] Bagriacik, B., Ok, B., Kahiyah, M.T.M.A., 2021. An experimental study on improvement of cohesive soil with eco-friendly guar gum. Soils and Rocks 44(2): 1–9, Doi: 10.28927/SR.2021.060020.
  • [52] Sapuła, P., Bialik-Wąs, K., Malarz, K., 2023. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 15(1): 253, Doi: 10.3390/pharmaceutics15010253.
  • [53] Lee, K.Y., Mooney, D.J., 2012. Alginate: Properties and biomedical applications. Progress in Polymer Science 37(1): 106–26, Doi: 10.1016/j.progpolymsci.2011.06.003.
  • [54] Quan, H., Hu, Y., Huang, Z., Wenmeng, D., 2020. Preparation and property evaluation of a hydrophobically modified xanthan gum XG-C16. Journal of Dispersion Science and Technology 41(5): 656–66, Doi: 10.1080/01932691.2019.1610425.
  • [55] Maity, S., Sa, B., 2014. Development and Evaluation of Ca+ 2 Ion Cross-Linked Carboxymethyl Xanthan Gum Tablet Prepared by Wet Granulation Technique. AAPS PharmSciTech 15(4): 920–7, Doi: 10.1208/s12249-014-0123-x.
  • [56] Gao, C.H., 2016. Unique rheology of high acyl gellan gum and its potential applications in enhancement of petroleum production. Journal of Petroleum Exploration and Production Technology 6(4): 743–7, Doi: 10.1007/s13202-015-0212-8.
  • [57] Wegrzynowska-Drzymalska, K., Grebicka, P., Mlynarczyk, D.T., Chelminiak-Dudkiewicz, D., Kaczmarek, H., Goslinski, T., et al., 2020. Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications. Materials 13(15): 3413, Doi: 10.3390/ma13153413.
  • [58] Wei, X., Zhu, Q., Qian, J., Lin, Y., Shenoy, V.B., 2016. Response of biopolymer networks governed by the physical properties of cross-linking molecules. Soft Matter 12(9): 2537–41, Doi: 10.1039/C5SM02820E.
  • [59] Czakkel, O., Madsen, A., 2011. Evolution of dynamics and structure during formation of a cross-linked polymer gel. EPL (Europhysics Letters) 95(2): 28001, Doi: 10.1209/0295-5075/95/28001.
  • [60] Lin, Y., Liu, C., Tripathi, A.K., Tsavalas, J.G., 2023. Early bird gets the network: The relative importance of reactivity ratios, Ψ parameter, and crosslinker level on gel formation in <scp>FRP</scp>. The Canadian Journal of Chemical Engineering 101(9): 5382–94, Doi: 10.1002/cjce.25005.
  • [61] Raj, S., 2025. Stabilization of Soil Using Sodium Alginate Biopolymer. International Journal for Research in Applied Science and Engineering Technology 13(1): 270–8, Doi: 10.22214/ijraset.2025.66257.
  • [62] Yogeshwar, K.C., Sonthwal, Er.V.K., 2023. Stabilization of Soil Using Guar Gum Biopolymer. International Journal for Research in Applied Science and Engineering Technology 11(9): 1018–27, Doi: 10.22214/ijraset.2023.55796.
  • [63] Fradj, N., Török, Á., Kádár, I., 2024. Biopolymers in geotechnical engineering for soil improvement. Pollack Periodica 19(2): 82–6, Doi: 10.1556/606.2023.00937.
  • [64] Pydi, R., Yadu, L., Chouksey, S.K., 2024. Application of Biopolymers in Geotechnical Engineering Practices: An Eco-Friendly Approach. p. 127–36.
  • [65] ASTM D7928-17., 2017. Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis, ASTM West Conshohocken, PA. Doi: 10.1520/D7928-17.
  • [66] ASTM D6913-04., 2004. Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM West Conshohocken, PA. Doi: 10.1520/D6913-04.
  • [67] ASTM D854-14., 2014. Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM West Conshohocken, PA. Doi: 10.1520/D0854-14.
  • [68] Liu, Y., Chang, C.-W., Namdar, A., She, Y., Lin, C.-H., Yuan, X., et al., 2019. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Construction and Building Materials 221: 1–11, Doi:10.1016/j.conbuildmat.2019.05.157.
  • [69] Wan, J., Ouyang, F., Xiao, H., Wang, L., Tao, G., 2024. Experimental Study on the Physical and Mechanical Properties of Modified Clay Using Xanthan Gum and Guar Gum Composite Materials. Sustainability 16(13): 5432, Doi: 10.3390/su16135432.
  • [70] Grabska-Zielińska, S., 2024. Cross-Linking Agents in Three-Component Materials Dedicated to Biomedical Applications: A Review. Polymers 16(18): 2679, Doi: 10.3390/polym16182679.
  • [71] Ishak, N.S., Thng, C.S., Marsilla, K.I.K., 2020. The effect of crosslinking agent on protein-based bioplastic from fish waste. AIP Conference Proceedings, vol. 2267. American Institute of Physics Inc.
  • [72] Neto, V.O. de S., Castro, A.J.R., Moura, C.P., Júnior, A.M., Portela, R.R., Saraiva, G.D., et al., 2021. Biopolymers for Eco-Safe Remediation. p. 41–68.
  • [73] ASTM D698-12., 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM West Conshohocken, PA. Doi: 10.1520/D0698-12E02.
  • [74] ASTM D2166 / D2166M-16. 2016. Standard Test Method for Unconfined Compressive Strength of International, www.astm.org. Cohesive Soil, ASTM West Conshohocken, PA.
  • [75] ASTM D3080/D3080M-11., 2011. Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM West Conshohocken, PA. Doi: 10.1520/D3080_D3080M-11.
  • [76] Ramani Sujatha, E., Sivaraman, S., Kumar Subramani, A., n.d. Impact of hydration and gelling properties of guar gum on the mechanism of soil modification, Doi: 10.1007/s12517-020-06258-x/Published.
  • [77] Rong, X., Deng, S., Liang, B., Zhuang, J., Yu, Y., Wu, Z., 2024. Mechanical behavior and strengthening mechanism of loess stabilized with xanthan gum and guar gum biopolymers. Materials Research Express 11(10): 105305, Doi: 10.1088/2053-1591/ad832c.
  • [78] James, J., Natesan, A., Manohar, A., Subramanian, V., 2021. Potential of Portland pozzolana cement in the stabilization of an expansive soil subjected to alternate cycles of wetting and drying. Gradjevinski Materijali i Konstrukcije 64(2): 81–91, Doi: 10.5937/grmk2102081j.
  • [79] Le, V.H., Glasenapp, R., Rackwitz, F., 2024. Cyclic Hysteretic Behavior and Development of the Secant Shear Modulus of Sand under Drained and Undrained Conditions. International Journal of Geomechanics 24(7), Doi: 10.1061/ijgnai.gmeng-9380.
  • [80] Tankiewicz, M., Strózyk, J., Zieba, Z., 2021. Undrained Shear Strength cuand Undrained Elastic Modulus Eu of Anthropogenic Soils from Laboratory Tests. IOP Conference Series: Earth and Environmental Science, vol. 906. IOP Publishing Ltd.
  • [81] Bai, Y., Liu, J., Cui, Y., Shi, X., Song, Z., Qi, C., 2021. Mechanical behavior of polymer stabilized sand under different temperatures. Construction and Building Materials 290, Doi: 10.1016/j.conbuildmat.2021.123237.
  • [82] Ramachandran, A.L., Dubey, A.A., Dhami, N.K., Mukherjee, A., 2021. Multiscale Study of Soil Stabilization Using Bacterial Biopolymers. Journal of Geotechnical and Geoenvironmental Engineering 147(8), Doi: 10.1061/(asce)gt.1943-5606.0002575.
  • [83] Bagherinia, M., 2024. Mechanical, durability, and microstructure of soft clay stabilised with anionic biopolymer. Construction and Building Materials 417: 135343, Doi: 10.1016/j.conbuildmat.2024.135343.
  • [84] Whitcomb, P.J., Macosko, C.W., 1978. Rheology of Xanthan Gum. Journal of Rheology 22(5): 493–505, Doi: 10.1122/1.549485.
  • [85] Vydehi, K.V., Moghal, A.A.B., 2022. Effect of Biopolymeric Stabilization on the Strength and Compressibility Characteristics of Cohesive Soil. Journal of Materials in Civil Engineering 34(2), Doi: 10.1061/(ASCE)MT.1943-5533.0004068.
  • [86] Banne, S.P., Dhawale, A.W., Patil, R.B., Kankarej, S., Naikare, K., Patil, B., et al., 2024. Effect of Xanthan Gum Biopolymer on Laterite Soil in Settlement Analysis Using Plaxis-2D. p. 831–45.
  • [87] Arabani, M., Shalchian, M.M., Baghbani, A., 2024. A state-of-the-art review on interactive mechanisms and multi-scale application of biopolymers (BPs) in geo-improvement and vegetation growth. Journal of Environmental Management 358: 120905, Doi: 10.1016/j.jenvman.2024.120905.
  • [88] Larson, S.L., Newman, J.K., Griggs, C.S., Beverly, M., Nestler, C.C., 2012. ERDC TR-12-8 “Biopolymers as an Alternative to Petroleum-Based Polymers for Soil Modification: ESTCP ER-0920: Treatability Studies.”
  • [89] Sujatha, E.R., O’Kelly, B.C., 2023. Biopolymer Based Soil Treatment for Geotechnical Engineering Applications. Handbook of Biopolymers, Singapore: Springer Nature Singapore p. 1–18.

Investigation of the Effects of Two Different Biopolymers on the Strength Parameters of Silty Soil

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1628900

Abstract

Soil improvement methods are commonly employed to enhance the load-bearing capacity of weak soils. Due to environmental concerns, traditional additives like lime and cement are increasingly being replaced by more sustainable alternatives. Recently, biopolymers have gained attention as environmentally friendly options for soil stabilization. However, combining biopolymers with additional agents to enhance bond strength is rare. This study investigates the effects of using Guar Gum and Xanthan Gum biopolymers in combination with Calcium Chloride (CaCl₂) on the strength parameters of silty soil. Biopolymers are known to form gel-like structures between soil particles, increasing strength. At the same time, Calcium Chloride interacts with the carboxyl groups of biopolymers, creating cross-linkages that further improve soil strength. In this research, biopolymers and Calcium Chloride were combined with silty soil and subjected to 7,28,56 and 90 days of curing. Unconfined compressive strength (UCS) and direct shear tests were conducted, and the results were compared with reference samples. Changes in internal friction angle and cohesion were also analyzed based on different biopolymer ratios. The results demonstrated significant improvements in the strength of long-term cured samples, with Calcium Chloride enhancing the cross-linking effect of biopolymers. These findings suggest that biopolymers, in combination with Calcium Chloride, can be effective in environmentally friendly soil stabilization projects.

References

  • [1] Shokrani A, Dhokia V, Newman ST. Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture. 2012; 57: 83–101.
  • [2] Doğan, N., Fırat, M.E., 2024. Uçucu kül, silis dumanı ve cam elyaf kullanılarak iyileştirilen kilin mühendislik performansının değerlendirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 12(4): 784–98, Doi: 10.29109/gujsc.1393857.
  • [3] Mitchell, J.K., Soga, K., 2005. Fundamentals of Soil Behavior. John Wiley & Sons, Hoboken.
  • [4] Bodur, B., Bayraktar, O.Y., Benli, A., Kaplan, G., Tobbala, D.E., Tayeh, B., 2023. Effect of using wastewater from the ready-mixed concrete plant on the performance of one-part alkali-activated GBFS/FA composites: Fresh, mechanical and durability properties. Journal of Building Engineering 76, Doi: 10.1016/j.jobe.2023.107167.
  • [5] Kaplan, G., Bayraktar, O.Y., Li, Z., Bodur, B., Yılmazoglu, M.U., Alcan, B.A., 2023. Improving the eco-efficiency of fiber reinforced composite by ultra-low cement content/high FA-GBFS addition for structural applications: Minimization of cost, CO2 emissions and embodied energy. Journal of Building Engineering 76, Doi: 10.1016/j.jobe.2023.107280.
  • [6] Gencel, O., Yavuz Bayraktar, O., Kaplan, G., Arslan, O., Nodehi, M., Benli, A., et al., 2022. Lightweight foam concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties. Construction and Building Materials 320, Doi: 10.1016/j.conbuildmat.2021.126187.
  • [7] Bodur, B., Mecit Işık, M.A., Benli, A., Bayrak, B., Öz, A., Bayraktar, O.Y., et al., 2024. Durability of green rubberized 3D printed lightweight cement composites reinforced with micro attapulgite and micro steel fibers: Printability and environmental perspective. Journal of Building Engineering 90: 109447, Doi: 10.1016/j.jobe.2024.109447.
  • [8] Özkan, İ.G.M., Aldemir, K., Alhasan, O., Benli, A., Bayraktar, O.Y., Yılmazoğlu, M.U., et al., 2024. Investigation on the sustainable use of different sizes of sawdust aggregates in eco-friendly foam concretes: Physico-mechanical, thermal insulation and durability characteristics. Construction and Building Materials 438, Doi: 10.1016/j.conbuildmat.2024.137100.
  • [9] Bozyigit, I., Javadi, A., Altun, S., 2021. Strength properties of xanthan gum and guar gum treated kaolin at different water contents. Journal of Rock Mechanics and Geotechnical Engineering 13(5): 1160–72, Doi: 10.1016/j.jrmge.2021.06.007.
  • [10] Bayraktar, O.Y., 2022. Usability of Organic Wastes in Concrete Production; Palm Leaf Sample. Kastamonu University Journal of Engineering and Sciences, Doi: 10.55385/kastamonujes.1104531.
  • [11] Kaplan, G., Bayraktar, O.Y., Bayraktar, T., 2023. Optimization of without SCM concrete exposed to seawater according to minimum cost and CO2 emissions: Sustainable design with ABC algorithm. Materials Today Communications 35: 105657, Doi: 10.1016/j.mtcomm.2023.105657.
  • [12] Bayraktar, O.Y., Benli, A., Bodur, B., Öz, A., Kaplan, G., 2024. Performance assessment and cost analysis of slag/metakaolin based rubberized semi-lightweight geopolymers with perlite aggregate: Sustainable reuse of waste tires. Construction and Building Materials 411, Doi: 10.1016/j.conbuildmat.2023.134655.
  • [13] Ahıskalı, A., Ahıskalı, M., Bayraktar, O.Y., Kaplan, G., Assaad, J., 2024. Mechanical and durability properties of polymer fiber reinforced one-part foam geopolymer concrete: A sustainable strategy for the recycling of waste steel slag aggregate and fly ash. Construction and Building Materials 440, Doi: 10.1016/j.conbuildmat.2024.137492.
  • [14] Dehghan, H., Tabarsa, A., Latifi, N., Bagheri, Y., 2019. Use of xanthan and guar gums in soil strengthening. Clean Technologies and Environmental Policy 21(1): 155–65, Doi: 10.1007/s10098-018-1625-0.
  • [15] Chang, I., Im, J., Cho, G.-C., 2016. Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal 53(10): 1658–70, Doi: 10.1139/cgj-2015-0475.
  • [16] BOUAZZA, A., GATES, W.P., RANJITH, P.G., 2009. Hydraulic conductivity of biopolymer-treated silty sand. Géotechnique 59(1): 71–2, Doi: 10.1680/geot.2007.00137.
  • [17] Dora, N., Nanda, P., Reddy, N.G., 2021. Application of Biopolymers for Enhancing Engineering Properties of Problematic Soils and Industrial Wastes: A Review. p. 203–11.
  • [18] Kumar, S., Yadav, B.D., Raj, R., 2024. A review on the application of biopolymers (xanthan, agar and guar) for sustainable improvement of soil. Discover Applied Sciences, Doi: 10.1007/s42452-024-06087-7.
  • [19] Jang, J., 2020. A Review of the Application of Biopolymers on Geotechnical Engineering and the Strengthening Mechanisms between Typical Biopolymers and Soils. Advances in Materials Science and Engineering 2020(1), Doi: 10.1155/2020/1465709.
  • [20] Cabalar, A.F., Awraheem, M.H., Khalaf, M.M., 2018. Geotechnical Properties of a Low-Plasticity Clay with Biopolymer. Journal of Materials in Civil Engineering 30(8), Doi: 10.1061/(ASCE)MT.1943-5533.0002380.
  • [21] Wiszniewski, M., Skutnik, Z., Biliniak, M., Çabalar, A.F., 2017. Some geomechanical properties of a biopolymer treated medium sand. Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation 49(3): 201–12, Doi: 10.1515/sggw-2017-0016.
  • [22] Chang, I., Im, J., Prasidhi, A.K., Cho, G.-C., 2015. Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials 74: 65–72, Doi: 10.1016/j.conbuildmat.2014.10.026.
  • [23] Patwa, D., Dubey, A.A., Ravi, K., Sreedeep, S., 2024. Biopolymer Stabilization of Highly Plastic Silty Soil for Rammed Earth Construction Materials. p. 379–89.
  • [24] Gedela, R., Indraratna, B., Medawela, S., Nguyen, T.T., 2023. Effects Of Fines Content On The Strength And Stiffness Of Biopolymer Treated Low-Plasticity Soils. Australian Geomechanics Journal: 33–41, Doi: 10.56295/AGJ5811.
  • [25] Alassal, M.A., Sasar, M., Jaradat, K.A., Abdelaziz, S.L., 2024. The Role of Biopolymers in Enhancing Granular Media Shear Strength: A Comparative Analysis. IFCEE 2024, Reston, VA: American Society of Civil Engineers p. 108–18.
  • [26] Sujatha, E.R., Saisree, S., 2019. Geotechnical behaviour of guar gum-treated soil. Soils and Foundations 59(6): 2155–66, Doi: 10.1016/j.sandf.2019.11.012.
  • [27] Nair, L.P., Kannan, K., 2020. Effect of Biopolymers on Soil Strengthening. p. 65–71.
  • [28] Lee, M., Park, D.-Y., Kwon, Y.-M., Chang, I., Cho, G.-C., 2023. Study on Crosslink-Induced Gelation of Xanthan Gum Biopolymer and Its Soil Strengthening Behavior as Sustainable Grout Material. Geo-Congress 2023, Reston, VA: American Society of Civil Engineers p. 322–30.
  • [29] Muguda, S., Hughes, P.N., Augarde, C.E., Perlot, C., Walter Bruno, A., Gallipoli, D., 2022. Cross-linking of biopolymers for stabilizing earthen construction materials. Building Research & Information 50(5): 502–14, Doi: 10.1080/09613218.2021.2001304.
  • [30] Kavazanjian, E., Iglesias, E., Karatas, I., 2009. Biopolymer soil stabilization for wind erosion control. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, vol. 1. p. 881–4.
  • [31] Soldo, A., Miletić, M., Auad, M.L., 2020. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports 10(1): 267, Doi: 10.1038/s41598-019-57135-x.
  • [32] Fatehi, H., Ong, D.E.L., Yu, J., Chang, I., 2023. The Effects of Particle Size Distribution and Moisture Variation on Mechanical Strength of Biopolymer-Treated Soil. Polymers 15(6): 1549, Doi: 10.3390/polym15061549.
  • [33] Çetin, M.Y., Bağrıaçık, B., Annagür, H.M., Topoliński, S., 2024. Improvement of Geotechnical Properties of Clayey Soil Using Biopolymer and Ferrochromium Slag Additives. Polymers 16(10): 1306, Doi: 10.3390/polym16101306.
  • [34] Caldeira, J.B., Correia, A.A., Branco, R., Morais, P. V., 2024. The effect of biopolymer stabilisation on biostimulated or bioaugmented mine residue for potential technosol production. Scientific Reports 14(1): 25583, Doi: 10.1038/s41598-024-75840-0.
  • [35] Bang, J.-U., Lee, M., Park, D.-Y., Chang, I., Cho, G.-C., 2024. Effects of soil composition and curing conditions on the strength and durability of Cr3+-crosslinked biopolymer-soil composites. Construction and Building Materials 449: 138440, Doi: 10.1016/j.conbuildmat.2024.138440.
  • [36] Ren, F., Ding, H., Dong, B., Qian, X., Liu, J., Tan, J., 2024. Study on the improvement of soil properties using hydrophilic-hydrophobic biopolymer crosslinking. Construction and Building Materials 415: 135101, Doi: 10.1016/j.conbuildmat.2024.135101.
  • [37] Lee, M., Chang, I., Cho, G.-C., 2023. Advanced Biopolymer–Based Soil Strengthening Binder with Trivalent Chromium–Xanthan Gum Crosslinking for Wet Strength and Durability Enhancement. Journal of Materials in Civil Engineering 35(10), Doi: 10.1061/JMCEE7.MTENG-16123.
  • [38] Jang, J., 2020. A Review of the Application of Biopolymers on Geotechnical Engineering and the Strengthening Mechanisms between Typical Biopolymers and Soils. Advances in Materials Science and Engineering 2020(1), Doi: 10.1155/2020/1465709.
  • [39] Biernat, M., Woźniak, A., Chraniuk, M., Panasiuk, M., Tymowicz-Grzyb, P., Pagacz, J., et al., 2023. Effect of Selected Crosslinking and Stabilization Methods on the Properties of Porous Chitosan Composites Dedicated for Medical Applications. Polymers 15(11): 2507, Doi: 10.3390/polym15112507.
  • [40] Ashok Kumar, M., Moghal, A.A.B., Bommisetty, J., Mohammad, N., 2024. Efficacy of Cross-Linking of Biopolymers in Soil—Stabilization. p. 163–75.
  • [41] Bagriacik, B., Ok, B., Kahiyah, M.T.M.A., 2021. An experimental study on improvement of cohesive soil with eco-friendly guar gum. Soils and Rocks 44(2): 1–9, Doi: 10.28927/SR.2021.060020.
  • [42] Soldo, A., Miletić, M., Auad, M.L., 2020. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports 10(1), Doi: 10.1038/s41598-019-57135-x.
  • [43] Fatehi, H., Abtahi, S.M., Hashemolhosseini, H., Hejazi, S.M., 2018. A novel study on using protein based biopolymers in soil strengthening. Construction and Building Materials 167: 813–21, Doi: 10.1016/j.conbuildmat.2018.02.028.
  • [44] Azimi, M., Soltani, A., Mirzababaei, M., Jaksa, M.B., Ashwath, N., 2024. Biopolymer stabilization of clayey soil. Journal of Rock Mechanics and Geotechnical Engineering 16(7): 2801–12, Doi: 10.1016/j.jrmge.2023.12.020.
  • [45] Keshav, N., Prabhu, A., Kattimani, A., Dharwad, A., Kallatti, C., Mahalank, S., 2021. Enhancing the Properties of Expansive Soil Using Biopolymers—Xanthan Gum and Guar Gum. p. 129–35.
  • [46] Ayeldeen, M.K., Negm, A.M., El Sawwaf, M.A., 2016. Evaluating the physical characteristics of biopolymer/soil mixtures. Arabian Journal of Geosciences 9(5), Doi: 10.1007/s12517-016-2366-1.
  • [47] Moghal, A.A.B., Vydehi, K.V., 2021. State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innovative Infrastructure Solutions 6(2), Doi: 10.1007/s41062-021-00462-8.
  • [48] Babatunde, Q.O., Son, D.G., Kim, S.Y., Byun, Y.-H., 2023. Effect of Curing Condition and Solvent Content on Mechanical Properties of Zein-Biopolymer-Treated Soil. Sustainability 15(15): 12048, Doi: 10.3390/su151512048.
  • [49] Azimi, M., Soltani, A., Mirzababaei, M., Jaksa, M.B., Ashwath, N., 2024. Biopolymer stabilization of clayey soil. Journal of Rock Mechanics and Geotechnical Engineering 16(7): 2801–12, Doi: 10.1016/j.jrmge.2023.12.020.
  • [50] Keshav, N., Prabhu, A., Kattimani, A., Dharwad, A., Kallatti, C., Mahalank, S., 2021. Enhancing the Properties of Expansive Soil Using Biopolymers—Xanthan Gum and Guar Gum. p. 129–35.
  • [51] Bagriacik, B., Ok, B., Kahiyah, M.T.M.A., 2021. An experimental study on improvement of cohesive soil with eco-friendly guar gum. Soils and Rocks 44(2): 1–9, Doi: 10.28927/SR.2021.060020.
  • [52] Sapuła, P., Bialik-Wąs, K., Malarz, K., 2023. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 15(1): 253, Doi: 10.3390/pharmaceutics15010253.
  • [53] Lee, K.Y., Mooney, D.J., 2012. Alginate: Properties and biomedical applications. Progress in Polymer Science 37(1): 106–26, Doi: 10.1016/j.progpolymsci.2011.06.003.
  • [54] Quan, H., Hu, Y., Huang, Z., Wenmeng, D., 2020. Preparation and property evaluation of a hydrophobically modified xanthan gum XG-C16. Journal of Dispersion Science and Technology 41(5): 656–66, Doi: 10.1080/01932691.2019.1610425.
  • [55] Maity, S., Sa, B., 2014. Development and Evaluation of Ca+ 2 Ion Cross-Linked Carboxymethyl Xanthan Gum Tablet Prepared by Wet Granulation Technique. AAPS PharmSciTech 15(4): 920–7, Doi: 10.1208/s12249-014-0123-x.
  • [56] Gao, C.H., 2016. Unique rheology of high acyl gellan gum and its potential applications in enhancement of petroleum production. Journal of Petroleum Exploration and Production Technology 6(4): 743–7, Doi: 10.1007/s13202-015-0212-8.
  • [57] Wegrzynowska-Drzymalska, K., Grebicka, P., Mlynarczyk, D.T., Chelminiak-Dudkiewicz, D., Kaczmarek, H., Goslinski, T., et al., 2020. Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications. Materials 13(15): 3413, Doi: 10.3390/ma13153413.
  • [58] Wei, X., Zhu, Q., Qian, J., Lin, Y., Shenoy, V.B., 2016. Response of biopolymer networks governed by the physical properties of cross-linking molecules. Soft Matter 12(9): 2537–41, Doi: 10.1039/C5SM02820E.
  • [59] Czakkel, O., Madsen, A., 2011. Evolution of dynamics and structure during formation of a cross-linked polymer gel. EPL (Europhysics Letters) 95(2): 28001, Doi: 10.1209/0295-5075/95/28001.
  • [60] Lin, Y., Liu, C., Tripathi, A.K., Tsavalas, J.G., 2023. Early bird gets the network: The relative importance of reactivity ratios, Ψ parameter, and crosslinker level on gel formation in <scp>FRP</scp>. The Canadian Journal of Chemical Engineering 101(9): 5382–94, Doi: 10.1002/cjce.25005.
  • [61] Raj, S., 2025. Stabilization of Soil Using Sodium Alginate Biopolymer. International Journal for Research in Applied Science and Engineering Technology 13(1): 270–8, Doi: 10.22214/ijraset.2025.66257.
  • [62] Yogeshwar, K.C., Sonthwal, Er.V.K., 2023. Stabilization of Soil Using Guar Gum Biopolymer. International Journal for Research in Applied Science and Engineering Technology 11(9): 1018–27, Doi: 10.22214/ijraset.2023.55796.
  • [63] Fradj, N., Török, Á., Kádár, I., 2024. Biopolymers in geotechnical engineering for soil improvement. Pollack Periodica 19(2): 82–6, Doi: 10.1556/606.2023.00937.
  • [64] Pydi, R., Yadu, L., Chouksey, S.K., 2024. Application of Biopolymers in Geotechnical Engineering Practices: An Eco-Friendly Approach. p. 127–36.
  • [65] ASTM D7928-17., 2017. Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis, ASTM West Conshohocken, PA. Doi: 10.1520/D7928-17.
  • [66] ASTM D6913-04., 2004. Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM West Conshohocken, PA. Doi: 10.1520/D6913-04.
  • [67] ASTM D854-14., 2014. Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM West Conshohocken, PA. Doi: 10.1520/D0854-14.
  • [68] Liu, Y., Chang, C.-W., Namdar, A., She, Y., Lin, C.-H., Yuan, X., et al., 2019. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Construction and Building Materials 221: 1–11, Doi:10.1016/j.conbuildmat.2019.05.157.
  • [69] Wan, J., Ouyang, F., Xiao, H., Wang, L., Tao, G., 2024. Experimental Study on the Physical and Mechanical Properties of Modified Clay Using Xanthan Gum and Guar Gum Composite Materials. Sustainability 16(13): 5432, Doi: 10.3390/su16135432.
  • [70] Grabska-Zielińska, S., 2024. Cross-Linking Agents in Three-Component Materials Dedicated to Biomedical Applications: A Review. Polymers 16(18): 2679, Doi: 10.3390/polym16182679.
  • [71] Ishak, N.S., Thng, C.S., Marsilla, K.I.K., 2020. The effect of crosslinking agent on protein-based bioplastic from fish waste. AIP Conference Proceedings, vol. 2267. American Institute of Physics Inc.
  • [72] Neto, V.O. de S., Castro, A.J.R., Moura, C.P., Júnior, A.M., Portela, R.R., Saraiva, G.D., et al., 2021. Biopolymers for Eco-Safe Remediation. p. 41–68.
  • [73] ASTM D698-12., 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM West Conshohocken, PA. Doi: 10.1520/D0698-12E02.
  • [74] ASTM D2166 / D2166M-16. 2016. Standard Test Method for Unconfined Compressive Strength of International, www.astm.org. Cohesive Soil, ASTM West Conshohocken, PA.
  • [75] ASTM D3080/D3080M-11., 2011. Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM West Conshohocken, PA. Doi: 10.1520/D3080_D3080M-11.
  • [76] Ramani Sujatha, E., Sivaraman, S., Kumar Subramani, A., n.d. Impact of hydration and gelling properties of guar gum on the mechanism of soil modification, Doi: 10.1007/s12517-020-06258-x/Published.
  • [77] Rong, X., Deng, S., Liang, B., Zhuang, J., Yu, Y., Wu, Z., 2024. Mechanical behavior and strengthening mechanism of loess stabilized with xanthan gum and guar gum biopolymers. Materials Research Express 11(10): 105305, Doi: 10.1088/2053-1591/ad832c.
  • [78] James, J., Natesan, A., Manohar, A., Subramanian, V., 2021. Potential of Portland pozzolana cement in the stabilization of an expansive soil subjected to alternate cycles of wetting and drying. Gradjevinski Materijali i Konstrukcije 64(2): 81–91, Doi: 10.5937/grmk2102081j.
  • [79] Le, V.H., Glasenapp, R., Rackwitz, F., 2024. Cyclic Hysteretic Behavior and Development of the Secant Shear Modulus of Sand under Drained and Undrained Conditions. International Journal of Geomechanics 24(7), Doi: 10.1061/ijgnai.gmeng-9380.
  • [80] Tankiewicz, M., Strózyk, J., Zieba, Z., 2021. Undrained Shear Strength cuand Undrained Elastic Modulus Eu of Anthropogenic Soils from Laboratory Tests. IOP Conference Series: Earth and Environmental Science, vol. 906. IOP Publishing Ltd.
  • [81] Bai, Y., Liu, J., Cui, Y., Shi, X., Song, Z., Qi, C., 2021. Mechanical behavior of polymer stabilized sand under different temperatures. Construction and Building Materials 290, Doi: 10.1016/j.conbuildmat.2021.123237.
  • [82] Ramachandran, A.L., Dubey, A.A., Dhami, N.K., Mukherjee, A., 2021. Multiscale Study of Soil Stabilization Using Bacterial Biopolymers. Journal of Geotechnical and Geoenvironmental Engineering 147(8), Doi: 10.1061/(asce)gt.1943-5606.0002575.
  • [83] Bagherinia, M., 2024. Mechanical, durability, and microstructure of soft clay stabilised with anionic biopolymer. Construction and Building Materials 417: 135343, Doi: 10.1016/j.conbuildmat.2024.135343.
  • [84] Whitcomb, P.J., Macosko, C.W., 1978. Rheology of Xanthan Gum. Journal of Rheology 22(5): 493–505, Doi: 10.1122/1.549485.
  • [85] Vydehi, K.V., Moghal, A.A.B., 2022. Effect of Biopolymeric Stabilization on the Strength and Compressibility Characteristics of Cohesive Soil. Journal of Materials in Civil Engineering 34(2), Doi: 10.1061/(ASCE)MT.1943-5533.0004068.
  • [86] Banne, S.P., Dhawale, A.W., Patil, R.B., Kankarej, S., Naikare, K., Patil, B., et al., 2024. Effect of Xanthan Gum Biopolymer on Laterite Soil in Settlement Analysis Using Plaxis-2D. p. 831–45.
  • [87] Arabani, M., Shalchian, M.M., Baghbani, A., 2024. A state-of-the-art review on interactive mechanisms and multi-scale application of biopolymers (BPs) in geo-improvement and vegetation growth. Journal of Environmental Management 358: 120905, Doi: 10.1016/j.jenvman.2024.120905.
  • [88] Larson, S.L., Newman, J.K., Griggs, C.S., Beverly, M., Nestler, C.C., 2012. ERDC TR-12-8 “Biopolymers as an Alternative to Petroleum-Based Polymers for Soil Modification: ESTCP ER-0920: Treatability Studies.”
  • [89] Sujatha, E.R., O’Kelly, B.C., 2023. Biopolymer Based Soil Treatment for Geotechnical Engineering Applications. Handbook of Biopolymers, Singapore: Springer Nature Singapore p. 1–18.
There are 89 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering, Soil Mechanics in Civil Engineering
Journal Section Tasarım ve Teknoloji
Authors

Halil Oğuzhan Kara 0000-0002-7655-8444

Mehmet Uğur Yilmazoğlu 0000-0003-3574-1768

Early Pub Date August 15, 2025
Publication Date
Submission Date January 29, 2025
Acceptance Date May 29, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Kara, H. O., & Yilmazoğlu, M. U. (2025). Investigation of the Effects of Two Different Biopolymers on the Strength Parameters of Silty Soil. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3). https://doi.org/10.29109/gujsc.1628900

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526