Research Article
BibTex RIS Cite

Kırıkkale Bahşılı Bölgesinde Güneş Enerjisi Üretiminin PVGIS ve PVsyst ile Karşılaştırmalı Analizi

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1661431

Abstract

Bu çalışma, Kırıkkale’nin Bahşılı bölgesinde sabit eksenli bir fotovoltaik (PV) sistemin enerji üretim potansiyelini PVGIS ve PVsyst simülasyon yazılımlarını kullanarak incelemektedir. Araştırma, Türkiye’nin 2053 yılına kadar net sıfır emisyon hedefini gerçekleştirme taahhüdü doğrultusunda yenilenebilir enerjinin artan önemini vurgulamaktadır. Güneş takip sistemleri, güneş enerjisi verimliliğini artırmada umut verici bir teknoloji olarak görülmekte, ancak yüksek başlangıç maliyetleri ve bakım gereksinimleri bazı zorluklar yaratmaktadır. Karşılaştırmalı simülasyonlar sonucunda, PVsyst’in yıllık enerji üretimini 33,179 GWh olarak tahmin ettiği, PVGIS’in ise 25,392 GWh olarak öngördüğü belirlenmiştir. PVsyst’in tahmininin yaklaşık %30 daha yüksek olmasının, metodolojik farklılıklardan kaynaklandığı; özellikle PVsyst’in daha ayrıntılı bileşen analizi ve kayıp değerlendirmesi sunduğu tespit edilmiştir. Araştırma, proje planlamasında simülasyon doğruluğunun önemini vurgularken, sınırlamalarına rağmen güneş takip sistemlerinin potansiyel faydalarına dikkat çekmektedir. Gelecek çalışmalarda, güneş takip sistemleri analize dahil edilerek simülasyon sonuçlarının saha verileriyle doğrulanması hedeflenmektedir. Bulgular, Türkiye’de daha etkili güneş enerjisi projeleri planlamaya ve sürdürülebilir enerji çözümleri geliştirmeye katkı sağlamaktadır.

References

  • BP. (2020). BP Statistical Review of World Energy 2020. BP Global.
  • Smil, V. (2017). Energy and Civilization: A History. MIT Press.
  • Güven, A. F., & Demirtaş, M. (2021). Economic feasibility of solar tracking systems: A case study for Mediterranean climates. Applied Energy, 302, 117512
  • Yıldırım, B., & Düzkaya, H. (2024). Analysis of fixed and single axis tracking systems in solar power plants: A case study for Kırıkkale province in Turkey. 2024 11th International Conference on Electrical and Electronics Engineering (ICEEE), Muğla, Türkiye, 316-320
  • International Renewable Energy Agency (IRENA). (2022). Renewable energy statistics 2022: Turkey. https://www.irena.org/publications
  • Enerji ve Tabii Kaynaklar Bakanlığı. (2024). Türkiye Güneş Enerjisi Potansiyel Atlası (GEPA).
  • Huld, T., & Šúri, M. (2020). PVGIS: A key tool for photovoltaic system planning in Europe and beyond. Solar Energy, 207, 1256-1265.
  • PVsyst SA. (2024). PVsyst user manual: Advanced modeling for photovoltaic systems. https://www.PVsyst.com/manual
  • Karaoğlan, M., & Öztürk, Z. (2023). Performance evaluation of fixed vs. dual-axis solar tracking systems in Central Anatolia. Energy Conversion and Management, 276, 116542.
  • Jones, A. D., Kurtz, S. R., & King, D. L. (2021). Photovoltaic system modeling: Simulation and validation of energy yield predictions. IEEE Journal of Photovoltaics, 11(4), 897-905.
  • Şahin, S., Yıldız, H., & Demir, M. (2022). Evaluation of PV system performance using PVsyst software: A case study in central Turkey. Journal of Renewable Energy Research, 12(4), 2158-2167.
  • [Şúri, M., Huld, T. A., Dunlop, E. D., & Ossenbrink, H. A. (2020). Potential of PV power generation across Europe using solar radiation data from PVGIS. Solar Energy, 185, 207-219.
  • [European Commission. (2023). Photovoltaic Geographical Information System (PVGIS): Technical documentation. https://re.jrc.ec.europa.eu/pvg_tools/en/
  • İnan, A., Qali, A. A. J., Düzkaya, H., & Taplamacıoğlu, M. C. (2024). Optimization of the tilt angle of solar panels for seven cities in Türkiye. Turkish Journal of Electrical Power and Energy Systems, 4(3), 181-189.
  • Korkmaz, M., & Dogan, Y. (2021). Applıcatıon and Economıc Contrıbutıon of the Solar Energy System in Agrıcultural Plants: Usıng Pvsyst Software. Engineering Sciences, 2021, 16(2):89-96
  • Baqir, M., & Channi, K. H. (2022). Analysis and design of solar PV system using Pvsyst software. Department of Electrical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India.
  • Alsadi S, Khatib T. (2018). Photovoltaic power systems optimization research status: A review of criteria, constrains, models, techniques, and software tools. Appl Sci, 8(10): 10.
  • King, D. L., Kratochvil, J. A., & Boyson, W. E. (2019). Analysis of factors influencing the annual performance of photovoltaic systems. Sandia National Laboratories Report, 45(2), 1-34
  • Branker, K., Pathak, M. J. M., & Pearce, J. M. (2020). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15(9), 4470-4482.
  • Huld, T., Müller, R., & Gambardella, A. (2015). A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 116, 80-92.
  • Huld, T., Gottschalg, R., Beyer, H. G., & Topič, M. (2018). Mapping the performance of PV modules, effects of module type and data averaging. Solar Energy, 84(2), 324-338.
  • Shiva K. B., & Sudhakar, K. (2015). Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports, 1, 184-192.
  • Şahin, Z. R., & Salihmuhsin, M. (2024). Gerçekten sanala: 1 MWP güneş santralinin PVsyst simülasyon programıyla performans analizi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 23, 203-215.
  • Limem, F., & Sezen, S. (2021). Comparative Analysis of Different Photovoltaic Simulation Software: Case Study on Analyzing the Performance of a 5,1 kWp Grid Connected Photovoltaic System. European Journal of Science and Technology, (32), 816-826.
  • Abbas, A. S., Hussain, A. N., & Mohammad, A. T. (2023). Energy losses of proposed grid-connected PV system in Iraq. Proceedings of the 6th International Conference on Engineering Technology and its Applications (IICETA 2023), 363-367. IEEE.
  • Chen, J., & Zhang, L. (2019). Comparative analysis of PV simulation tools: Accuracy and efficiency considerations. Journal of Solar Energy Engineering, 141(5), 051011.
  • Patel, R., & Kumar, P. (2022). Performance enhancement of solar photovoltaic systems using tracking mechanisms: A review. Renewable and Sustainable Energy Reviews, 153, 111754.
  • Lee, S., & Kim, H. (2020). Impact of simulation methodologies on photovoltaic performance assessment. International Journal of Energy Research, 44(7), 5271-5283.
  • Türkmen, B., & Erdinç, O. (2020). Impact of climate change on photovoltaic performance: A case study for Central Turkey. Energy Reports, 6, 234-241.

Comparative Analysis with PVGIS and PVsyst for Solar Energy Production in Bahşılı Region of Kırıkkale

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1661431

Abstract

This study examines the energy production potential of a fixed-axis photovoltaic (PV) system in the Bahşılı region of Kırıkkale, using PVGIS and PVsyst simulation software. The research highlights the increasing significance of renewable energy in Turkey, particularly in light of the country’s commitment to achieving net-zero emissions by 2053. Solar tracking systems have been identified as a promising technology for enhancing solar energy efficiency, yet their high initial costs and maintenance requirements present challenges. Through comparative simulations, the study finds that PVsyst estimates annual energy production at 33.179 GWh, approximately 30% higher than the 25.392 GWh predicted by PVGIS. This discrepancy is attributed to methodological differences, with PVsyst offering more detailed component analysis and loss evaluations. The research underscores the importance of simulation accuracy in project planning and emphasizes the potential benefits of solar tracking systems despite their limitations. Future work will focus on incorporating solar tracking systems into the analysis and validating simulation results with real-world field data. The findings contribute to more effective solar energy project planning and development of sustainable energy solutions in Turkey.

References

  • BP. (2020). BP Statistical Review of World Energy 2020. BP Global.
  • Smil, V. (2017). Energy and Civilization: A History. MIT Press.
  • Güven, A. F., & Demirtaş, M. (2021). Economic feasibility of solar tracking systems: A case study for Mediterranean climates. Applied Energy, 302, 117512
  • Yıldırım, B., & Düzkaya, H. (2024). Analysis of fixed and single axis tracking systems in solar power plants: A case study for Kırıkkale province in Turkey. 2024 11th International Conference on Electrical and Electronics Engineering (ICEEE), Muğla, Türkiye, 316-320
  • International Renewable Energy Agency (IRENA). (2022). Renewable energy statistics 2022: Turkey. https://www.irena.org/publications
  • Enerji ve Tabii Kaynaklar Bakanlığı. (2024). Türkiye Güneş Enerjisi Potansiyel Atlası (GEPA).
  • Huld, T., & Šúri, M. (2020). PVGIS: A key tool for photovoltaic system planning in Europe and beyond. Solar Energy, 207, 1256-1265.
  • PVsyst SA. (2024). PVsyst user manual: Advanced modeling for photovoltaic systems. https://www.PVsyst.com/manual
  • Karaoğlan, M., & Öztürk, Z. (2023). Performance evaluation of fixed vs. dual-axis solar tracking systems in Central Anatolia. Energy Conversion and Management, 276, 116542.
  • Jones, A. D., Kurtz, S. R., & King, D. L. (2021). Photovoltaic system modeling: Simulation and validation of energy yield predictions. IEEE Journal of Photovoltaics, 11(4), 897-905.
  • Şahin, S., Yıldız, H., & Demir, M. (2022). Evaluation of PV system performance using PVsyst software: A case study in central Turkey. Journal of Renewable Energy Research, 12(4), 2158-2167.
  • [Şúri, M., Huld, T. A., Dunlop, E. D., & Ossenbrink, H. A. (2020). Potential of PV power generation across Europe using solar radiation data from PVGIS. Solar Energy, 185, 207-219.
  • [European Commission. (2023). Photovoltaic Geographical Information System (PVGIS): Technical documentation. https://re.jrc.ec.europa.eu/pvg_tools/en/
  • İnan, A., Qali, A. A. J., Düzkaya, H., & Taplamacıoğlu, M. C. (2024). Optimization of the tilt angle of solar panels for seven cities in Türkiye. Turkish Journal of Electrical Power and Energy Systems, 4(3), 181-189.
  • Korkmaz, M., & Dogan, Y. (2021). Applıcatıon and Economıc Contrıbutıon of the Solar Energy System in Agrıcultural Plants: Usıng Pvsyst Software. Engineering Sciences, 2021, 16(2):89-96
  • Baqir, M., & Channi, K. H. (2022). Analysis and design of solar PV system using Pvsyst software. Department of Electrical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India.
  • Alsadi S, Khatib T. (2018). Photovoltaic power systems optimization research status: A review of criteria, constrains, models, techniques, and software tools. Appl Sci, 8(10): 10.
  • King, D. L., Kratochvil, J. A., & Boyson, W. E. (2019). Analysis of factors influencing the annual performance of photovoltaic systems. Sandia National Laboratories Report, 45(2), 1-34
  • Branker, K., Pathak, M. J. M., & Pearce, J. M. (2020). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15(9), 4470-4482.
  • Huld, T., Müller, R., & Gambardella, A. (2015). A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 116, 80-92.
  • Huld, T., Gottschalg, R., Beyer, H. G., & Topič, M. (2018). Mapping the performance of PV modules, effects of module type and data averaging. Solar Energy, 84(2), 324-338.
  • Shiva K. B., & Sudhakar, K. (2015). Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports, 1, 184-192.
  • Şahin, Z. R., & Salihmuhsin, M. (2024). Gerçekten sanala: 1 MWP güneş santralinin PVsyst simülasyon programıyla performans analizi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 23, 203-215.
  • Limem, F., & Sezen, S. (2021). Comparative Analysis of Different Photovoltaic Simulation Software: Case Study on Analyzing the Performance of a 5,1 kWp Grid Connected Photovoltaic System. European Journal of Science and Technology, (32), 816-826.
  • Abbas, A. S., Hussain, A. N., & Mohammad, A. T. (2023). Energy losses of proposed grid-connected PV system in Iraq. Proceedings of the 6th International Conference on Engineering Technology and its Applications (IICETA 2023), 363-367. IEEE.
  • Chen, J., & Zhang, L. (2019). Comparative analysis of PV simulation tools: Accuracy and efficiency considerations. Journal of Solar Energy Engineering, 141(5), 051011.
  • Patel, R., & Kumar, P. (2022). Performance enhancement of solar photovoltaic systems using tracking mechanisms: A review. Renewable and Sustainable Energy Reviews, 153, 111754.
  • Lee, S., & Kim, H. (2020). Impact of simulation methodologies on photovoltaic performance assessment. International Journal of Energy Research, 44(7), 5271-5283.
  • Türkmen, B., & Erdinç, O. (2020). Impact of climate change on photovoltaic performance: A case study for Central Turkey. Energy Reports, 6, 234-241.
There are 29 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Tasarım ve Teknoloji
Authors

Beyza Yıldırım 0000-0001-8858-356X

Hıdır Düzkaya 0000-0002-2157-0438

Early Pub Date July 23, 2025
Publication Date
Submission Date March 19, 2025
Acceptance Date May 27, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Yıldırım, B., & Düzkaya, H. (2025). Comparative Analysis with PVGIS and PVsyst for Solar Energy Production in Bahşılı Region of Kırıkkale. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3). https://doi.org/10.29109/gujsc.1661431

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526