Research Article
BibTex RIS Cite

Sıcak hava kurutma prosesinin turunç (Citrus aurantium L.) flavedosunun renk ve antioksidan özellikleri üzerine etkisi

Year 2025, Volume: 29 Issue: 2, 205 - 214, 16.06.2025
https://doi.org/10.29050/harranziraat.1585454

Abstract

Bu araştırmada, farklı kurutma sıcaklıklarının (40, 50 ve 60 °C) acı portakal flavedosunun renk, toplam fenolik madde, toplam flavonoid, askorbik asit ve antioksidan aktivitesindeki değişimlere olan etkileri incelenmiştir. Taze numuneyle karşılaştırıldığında, tüm hava kurutma sıcaklıklarında L* ve a* değerleri artarken, b* ve h° değerleri azalmıştır. En düşük toplam renk değişikliği değerleri 40 ve 60 °C kurutma sıcaklıklarında elde edilmiştir. Kurutma sıcaklıkları toplam fenolik madde ve antioksidan aktivitede artışa neden olmuş, en yüksek toplam fenolik madde içeriği (16.35±0.54 mg GAE g-1) ve DPPH radikal süpürücü aktivitesi (IC50: 14.61±0.53 mg mg-1) 40 °C'de kurutulan flavedoda belirlenmiş ve en yüksek FRAP değeri (52.19±1.49 mmol TE g-1) 50 °C'de kurutulan flavedoda elde edilmiştir. Ancak uygulanan kurutma sıcaklıkları flavedonun toplam flavonoid içeriğinde (%52.79-64.75) ve askorbik asit içeriğinde (%36.63-45.54) düşüşe neden olmuştur. Bu çalışmadan elde edilen sonuçlara göre, acı portakal flavedoları, renk değişimlerini en aza indirmek ve fenolik ve antioksidan aktiviteyi artırmak için daha düşük sıcaklıklarda (40-50°C) kurutulabilir.

Project Number

TAGEM/TBAD/B/21/A7/P6/2370

References

  • Abd Rahman, N. F., Shamsudin, R., Ismail, A., Shah, N. N. A. K., & Varith, J. (2018). Effects of drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus grandis (L.) Osbeck) peels. Innovative Food Science & Emerging Technologies, 50, 217-225. DOI: https://doi.org/10.1016/j.ifset.2018.01.009.
  • Badalamenti, N., Bruno, M., Schicchi, R., Geraci, A., Leporini, M., Gervasi, L., ... & Loizzo, M. R. (2022). Chemical compositions and antioxidant activities of essential oils, and their combinations, obtained from flavedo by-product of seven cultivars of Sicilian Citrus aurantium L. Molecules, 27(5), 1580. DOI:https://www.mdpi.com/1420-3049/27/5/1580.
  • Castro-Vazquez, L., Alañón, M. E., Rodríguez-Robledo, V., Pérez-Coello, M. S., Hermosín-Gutierrez, I., Díaz-Maroto, M. C., ... & Arroyo-Jimenez, M. D. M. (2016). Bioactive flavonoids, antioxidant behaviour, and cytoprotective effects of dried grapefruit peels (Citrus paradisi Macf.). Oxidative Medicine and Cellular Longevity, 2016(1), 8915729.DOI: https://doi.org/10.1155/2016/8915729.
  • Cemeroğlu, B. (2010). Gıda Analizleri. Genişletilmiş 2. Baskı. Gıda Teknolojisi Derneği Yayınları No: 34. Bizim Grup Basımevi. Ankara, Türkiye, 657 s.
  • Chen, M. L., Yang, D. J., & Liu, S. C. (2011). Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. International Journal of Food Science & Technology, 46(6), 1179-1185.DOI: https://doi.org/10.1111/j.1365-2621.2011.02605.x.
  • Dag, D., Kilercioglu, M., & Oztop, M. H. (2017). Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT-Food Science and Technology, 83, 86-94.DOI: https://doi.org/10.1016/j.lwt.2017.05.007.
  • Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J. A., & Welti-Chanes, J. (2014). Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. Journal of Functional Foods, 6, 470-481.DOI: https://doi.org/10.1016/j.jff.2013.11.013.
  • Farahmandfar, R., Tirgarian, B., Dehghan, B., & Nemati, A. (2020). Changes in chemical composition and biological activity of essential oil from Thomson navel orange (Citrus sinensis L. Osbeck) peel under freezing, convective, vacuum, and microwave drying methods. Food science & nutrition, 8(1), 124-138. DOI: https://doi.org/10.1002/fsn3.1279.
  • FAO, (2022). Statistical data of FAO. Retrieved from: https://www.fao.org/faostat/en/#data/QCL. Access date: 14.07.2024.
  • Ghafoor, K., Al Juhaimi, F., Özcan, M. M., Uslu, N., Babiker, E. E., & Ahmed, I. A. M. (2020). Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. Lwt, 126, 109354.DOI: https://doi.org/10.1016/j.lwt.2020.109354.
  • Ghanem Romdhane, N., Bonazzi, C., Kechaou, N. & Mihoubi, N. B. (2015). Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Drying Technology, 33(13): 1581-1589. DOI: https://doi.org/10.1080/07373937.2015.1012266.
  • hanem, N., Mihoubi, D., Kechao, N. & Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage and total phenols content. Industrial Crops and Products, 40: 167-177.DOI: https://doi.org/10.1016/j.indcrop.2012.03.009.
  • Gómez-Mejía, E., Sacristán, I., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2023). Effect of storage and drying treatments on antioxidant activity and phenolic composition of lemon and clementine peel extracts. Molecules, 28(4), 1624. DOI: https://doi.org/10.3390/molecules28041624
  • Guclu, G., Polat, S., Kelebek, H., Capanoglu, E., & Selli, S. (2022). Elucidation of the impact of four different drying methods on the phenolics, volatiles, and color properties of the peels of four types of citrus fruits. Journal of the Science of Food and Agriculture, 102(13), 6036-6046. DOI:https://doi.org/10.1002/jsfa.11956
  • Kamiloglu, S., Toydemir, G., Boyacioglu, D., Beekwilder, J., Hall, R. D., & Capanoglu, E. (2016). A review on the effect of drying on antioxidant potential of fruits and vegetables. Critical reviews in food science and nutrition, 56(sup1), S110-S129.DOI: https://doi.org/10.1080/10408398.2015.1045969.
  • Lai, C., Liang, Y., Zhang, L., Huang, J., Kaliaperumal, K., Jiang, Y., & Zhang, J. (2022). Variations of bioactive phytochemicals and antioxidant capacity of navel orange peel in response to different drying methods. Antioxidants, 11(8), 1543.DOI: https://doi.org/10.3390/antiox11081543.
  • Muzykiewicz, A., Zielonka-Brzezicka, J., & Klimowicz, A. (2019). The antioxidant potential of flesh, albedo and flavedo extracts from different varieties of grapefruits. Acta Scientiarum Polonorum Technologia Alimentaria, 18(4), 453-462. DOI: https://doi.org/10.17306/J.AFS.2019.0731
  • Ozcan-Sinir, G., Ozkan-Karabacak, A., Tamer, C. E., & Copur, O. U. (2018). The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica). Food Science and Technology, 39, 475-484. DOI: https://doi.org/10.1590/fst.34417.
  • Önal, B., Adiletta, G., Crescitelli, A., Di Matteo, M., & Russo, P. (2019). Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’apple. Food and Bioproducts Processing, 115, 87-99.DOI: https://doi.org/10.1016/j.fbp.2019.03.002.
  • Papoutsis, K., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Bowyer, M. C., Scarlett, C. J., & Vuong, Q. V. (2017). Effect of vacuum‐drying, hot air‐drying and freeze‐drying on polyphenols and antioxidant capacity of lemon (Citrus limon) pomace aqueous extracts. International Journal of Food Science & Technology, 52(4), 880-887. DOI: https://doi.org/10.1111/ijfs.13351.
  • Pawar, R. S., Sagi, S. and Leontyev, D. (2020). Analysis of bitter orange dietary supplements for natural and synthetic phenethylamines by LC–MS/MS. Drug Testing and Analysis, 12(9): 1241-1251.DOI: https://doi.org/10.1002/dta.2871.
  • Phuyal, N., Jha, P. K., Raturi, P. P., & Rajbhandary, S. (2020). Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. The Scientific World Journal, 2020(1), 8780704. DOI: https://doi.org/10.1155/2020/8780704
  • Rafiq, S., Kaul, R., Sofi, S. A., Bashir, N., Nazir, F., & Nayik, G. A. (2018). Citrus peel as a source of functional ingredient: A review. Journal of the Saudi Society of Agricultural Sciences, 17(4), 351-358.DOI: https://doi.org/10.1016/j.jssas.2016.07.006.
  • Rafiq, S., Singh, B., & Gat, Y. (2019). Effect of different drying techniques on chemical composition, color and antioxidant properties of kinnow (Citrus reticulata) peel. Journal of food science and technology, 56, 2458-2466. DOI: https://doi.org/10.1007/s13197-019-03722-9.
  • Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., & Aruoma, O. I. (2010). Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology, 278(1), 75-87. DOI:https://doi.org/10.1016/j.tox.2010.01.012
  • Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2015). Effect of spray drying of four fruit juices on physicochemical, phytochemical and antioxidant properties. Journal of food processing and preservation, 39(6), 1656-1664.DOI: https://doi.org/10.1111/jfpp.12395.
  • Sdiri, S., Bermejo, A., Aleza, P., Navarro, P., Salvador, A. (2012). Phenolic composition. organic acids. sugars. vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International, 49(1): 462-468.DOI: https://doi.org/10.1016/j.foodres.2012.07.040.
  • Senadeera, W., Adiletta, G., Önal, B., Di Matteo, M., & Russo, P. (2020). Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods, 9(1), 101.DOI: https://doi.org/10.3390/foods9010101.
  • Sharma, P., Vishvakarma, R., Gautam, K., Vimal, A., Gaur, V. K., Farooqui, A., ... & Younis, K. (2022). Valorization of citrus peel waste for the sustainable production of value-added products. Bioresource Technology, 351, 127064. DOI:https://doi.org/10.1016/j.biortech.2022.127064
  • Suri, S., Singh, A., Nema, P. K., Malakar, S., & Arora, V. K. (2022). Sweet lime (Citrus limetta) peel waste drying approaches and effect on quality attributes, phytochemical and functional properties. Food Bioscience, 48, 101789. DOI: https://doi.org/10.1016/j.fbio.2022.101789.
  • Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D. H., 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of food composition and analysis, 19(6-7): 669-675. DOI: https://doi.org/10.1016/j.jfca.2006.01.003.
  • TÜİK, (2023). Bitkisel üretim istatistikleri, turunçgiller. https://data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111. Access date: 13.10.2024.
  • Wang, Z., Zhong, T., Mei, X., Chen, X., Chen, G., Rao, S., ... & Yang, Z. (2023). Comparison of different drying technologies for brocade orange (Citrus sinensis) peels: Changes in color, phytochemical profile, volatile, and biological availability and activity of bioactive compounds. Food Chemistry, 425, 136539. DOI: https://doi.org/10.1016/j.foodchem.2023.136539.
  • Yeasmin, F., Rahman, H., Rana, S., Khan, J., & Islam, N. (2021). The optimization of the drying process and vitamin C retention of carambola: An impact of storage and temperature. Journal of Food Processing and Preservation, 45(1), e15037. DOI: https://doi.org/10.1111/jfpp.15037.
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555-559. DOI: https://doi.org/10.1016/S0308-8146(98)00102-2.
  • Zou, Z., Xi, W., Hu, Y., Nie, C., & Zhou, Z. (2016). Antioxidant activity of Citrus fruits. Food chemistry, 196, 885-896. DOI:https://doi.org/10.1016/j.foodchem.2015.09.072.

Effect of hot air drying process on color and antioxidant attributes of the flavedo of bitter orange (Citrus aurantium L.)

Year 2025, Volume: 29 Issue: 2, 205 - 214, 16.06.2025
https://doi.org/10.29050/harranziraat.1585454

Abstract

This research investigated the effects of different drying temperatures (40, 50, and 60°C) on changes in color, total phenolic, total flavonoid, ascorbic acid, and antioxidant activity of bitter orange flavedo. In comparison to the fresh sample, the L* and a* values increased, while b* and h° values decreased at all air drying temperatures. The lowest total color change (TCC) values were achieved at drying temperatures of 40 and 60°C. Drying temperatures induced an increment in total phenolic and antioxidant activity, the highest total phenolic content (16.35±0.54 mg GAE g-1) and DPPH radical scavenging activity (IC50: 14.61±0.53 mg mg-1) were determined in flavedo dried at 40°C, and the highest FRAP value (52.19±1.49 mmol TE g-1) was achieved in flavedo dried at 50°C. However, the applied drying temperatures resulted in a decline in the flavedo's total flavonoid content (52.79–64.75%) and ascorbic acid content (36.63–45.54%). Based on the results obtained from this work, bitter orange flavedos can be dried at lower temperatures (40-50°C) to minimize color changes and enhance phenolic and antioxidative activity.

Supporting Institution

General Directorate of Agricultural Research and Policies.

Project Number

TAGEM/TBAD/B/21/A7/P6/2370

Thanks

This study is part of the project (Project number: TAGEM/TBAD/B/21/A7/P6/2370) supported by the General Directorate of Agricultural Research and Policies.

References

  • Abd Rahman, N. F., Shamsudin, R., Ismail, A., Shah, N. N. A. K., & Varith, J. (2018). Effects of drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus grandis (L.) Osbeck) peels. Innovative Food Science & Emerging Technologies, 50, 217-225. DOI: https://doi.org/10.1016/j.ifset.2018.01.009.
  • Badalamenti, N., Bruno, M., Schicchi, R., Geraci, A., Leporini, M., Gervasi, L., ... & Loizzo, M. R. (2022). Chemical compositions and antioxidant activities of essential oils, and their combinations, obtained from flavedo by-product of seven cultivars of Sicilian Citrus aurantium L. Molecules, 27(5), 1580. DOI:https://www.mdpi.com/1420-3049/27/5/1580.
  • Castro-Vazquez, L., Alañón, M. E., Rodríguez-Robledo, V., Pérez-Coello, M. S., Hermosín-Gutierrez, I., Díaz-Maroto, M. C., ... & Arroyo-Jimenez, M. D. M. (2016). Bioactive flavonoids, antioxidant behaviour, and cytoprotective effects of dried grapefruit peels (Citrus paradisi Macf.). Oxidative Medicine and Cellular Longevity, 2016(1), 8915729.DOI: https://doi.org/10.1155/2016/8915729.
  • Cemeroğlu, B. (2010). Gıda Analizleri. Genişletilmiş 2. Baskı. Gıda Teknolojisi Derneği Yayınları No: 34. Bizim Grup Basımevi. Ankara, Türkiye, 657 s.
  • Chen, M. L., Yang, D. J., & Liu, S. C. (2011). Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. International Journal of Food Science & Technology, 46(6), 1179-1185.DOI: https://doi.org/10.1111/j.1365-2621.2011.02605.x.
  • Dag, D., Kilercioglu, M., & Oztop, M. H. (2017). Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT-Food Science and Technology, 83, 86-94.DOI: https://doi.org/10.1016/j.lwt.2017.05.007.
  • Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J. A., & Welti-Chanes, J. (2014). Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. Journal of Functional Foods, 6, 470-481.DOI: https://doi.org/10.1016/j.jff.2013.11.013.
  • Farahmandfar, R., Tirgarian, B., Dehghan, B., & Nemati, A. (2020). Changes in chemical composition and biological activity of essential oil from Thomson navel orange (Citrus sinensis L. Osbeck) peel under freezing, convective, vacuum, and microwave drying methods. Food science & nutrition, 8(1), 124-138. DOI: https://doi.org/10.1002/fsn3.1279.
  • FAO, (2022). Statistical data of FAO. Retrieved from: https://www.fao.org/faostat/en/#data/QCL. Access date: 14.07.2024.
  • Ghafoor, K., Al Juhaimi, F., Özcan, M. M., Uslu, N., Babiker, E. E., & Ahmed, I. A. M. (2020). Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. Lwt, 126, 109354.DOI: https://doi.org/10.1016/j.lwt.2020.109354.
  • Ghanem Romdhane, N., Bonazzi, C., Kechaou, N. & Mihoubi, N. B. (2015). Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Drying Technology, 33(13): 1581-1589. DOI: https://doi.org/10.1080/07373937.2015.1012266.
  • hanem, N., Mihoubi, D., Kechao, N. & Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage and total phenols content. Industrial Crops and Products, 40: 167-177.DOI: https://doi.org/10.1016/j.indcrop.2012.03.009.
  • Gómez-Mejía, E., Sacristán, I., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2023). Effect of storage and drying treatments on antioxidant activity and phenolic composition of lemon and clementine peel extracts. Molecules, 28(4), 1624. DOI: https://doi.org/10.3390/molecules28041624
  • Guclu, G., Polat, S., Kelebek, H., Capanoglu, E., & Selli, S. (2022). Elucidation of the impact of four different drying methods on the phenolics, volatiles, and color properties of the peels of four types of citrus fruits. Journal of the Science of Food and Agriculture, 102(13), 6036-6046. DOI:https://doi.org/10.1002/jsfa.11956
  • Kamiloglu, S., Toydemir, G., Boyacioglu, D., Beekwilder, J., Hall, R. D., & Capanoglu, E. (2016). A review on the effect of drying on antioxidant potential of fruits and vegetables. Critical reviews in food science and nutrition, 56(sup1), S110-S129.DOI: https://doi.org/10.1080/10408398.2015.1045969.
  • Lai, C., Liang, Y., Zhang, L., Huang, J., Kaliaperumal, K., Jiang, Y., & Zhang, J. (2022). Variations of bioactive phytochemicals and antioxidant capacity of navel orange peel in response to different drying methods. Antioxidants, 11(8), 1543.DOI: https://doi.org/10.3390/antiox11081543.
  • Muzykiewicz, A., Zielonka-Brzezicka, J., & Klimowicz, A. (2019). The antioxidant potential of flesh, albedo and flavedo extracts from different varieties of grapefruits. Acta Scientiarum Polonorum Technologia Alimentaria, 18(4), 453-462. DOI: https://doi.org/10.17306/J.AFS.2019.0731
  • Ozcan-Sinir, G., Ozkan-Karabacak, A., Tamer, C. E., & Copur, O. U. (2018). The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica). Food Science and Technology, 39, 475-484. DOI: https://doi.org/10.1590/fst.34417.
  • Önal, B., Adiletta, G., Crescitelli, A., Di Matteo, M., & Russo, P. (2019). Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’apple. Food and Bioproducts Processing, 115, 87-99.DOI: https://doi.org/10.1016/j.fbp.2019.03.002.
  • Papoutsis, K., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Bowyer, M. C., Scarlett, C. J., & Vuong, Q. V. (2017). Effect of vacuum‐drying, hot air‐drying and freeze‐drying on polyphenols and antioxidant capacity of lemon (Citrus limon) pomace aqueous extracts. International Journal of Food Science & Technology, 52(4), 880-887. DOI: https://doi.org/10.1111/ijfs.13351.
  • Pawar, R. S., Sagi, S. and Leontyev, D. (2020). Analysis of bitter orange dietary supplements for natural and synthetic phenethylamines by LC–MS/MS. Drug Testing and Analysis, 12(9): 1241-1251.DOI: https://doi.org/10.1002/dta.2871.
  • Phuyal, N., Jha, P. K., Raturi, P. P., & Rajbhandary, S. (2020). Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. The Scientific World Journal, 2020(1), 8780704. DOI: https://doi.org/10.1155/2020/8780704
  • Rafiq, S., Kaul, R., Sofi, S. A., Bashir, N., Nazir, F., & Nayik, G. A. (2018). Citrus peel as a source of functional ingredient: A review. Journal of the Saudi Society of Agricultural Sciences, 17(4), 351-358.DOI: https://doi.org/10.1016/j.jssas.2016.07.006.
  • Rafiq, S., Singh, B., & Gat, Y. (2019). Effect of different drying techniques on chemical composition, color and antioxidant properties of kinnow (Citrus reticulata) peel. Journal of food science and technology, 56, 2458-2466. DOI: https://doi.org/10.1007/s13197-019-03722-9.
  • Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., & Aruoma, O. I. (2010). Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology, 278(1), 75-87. DOI:https://doi.org/10.1016/j.tox.2010.01.012
  • Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2015). Effect of spray drying of four fruit juices on physicochemical, phytochemical and antioxidant properties. Journal of food processing and preservation, 39(6), 1656-1664.DOI: https://doi.org/10.1111/jfpp.12395.
  • Sdiri, S., Bermejo, A., Aleza, P., Navarro, P., Salvador, A. (2012). Phenolic composition. organic acids. sugars. vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International, 49(1): 462-468.DOI: https://doi.org/10.1016/j.foodres.2012.07.040.
  • Senadeera, W., Adiletta, G., Önal, B., Di Matteo, M., & Russo, P. (2020). Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods, 9(1), 101.DOI: https://doi.org/10.3390/foods9010101.
  • Sharma, P., Vishvakarma, R., Gautam, K., Vimal, A., Gaur, V. K., Farooqui, A., ... & Younis, K. (2022). Valorization of citrus peel waste for the sustainable production of value-added products. Bioresource Technology, 351, 127064. DOI:https://doi.org/10.1016/j.biortech.2022.127064
  • Suri, S., Singh, A., Nema, P. K., Malakar, S., & Arora, V. K. (2022). Sweet lime (Citrus limetta) peel waste drying approaches and effect on quality attributes, phytochemical and functional properties. Food Bioscience, 48, 101789. DOI: https://doi.org/10.1016/j.fbio.2022.101789.
  • Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D. H., 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of food composition and analysis, 19(6-7): 669-675. DOI: https://doi.org/10.1016/j.jfca.2006.01.003.
  • TÜİK, (2023). Bitkisel üretim istatistikleri, turunçgiller. https://data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111. Access date: 13.10.2024.
  • Wang, Z., Zhong, T., Mei, X., Chen, X., Chen, G., Rao, S., ... & Yang, Z. (2023). Comparison of different drying technologies for brocade orange (Citrus sinensis) peels: Changes in color, phytochemical profile, volatile, and biological availability and activity of bioactive compounds. Food Chemistry, 425, 136539. DOI: https://doi.org/10.1016/j.foodchem.2023.136539.
  • Yeasmin, F., Rahman, H., Rana, S., Khan, J., & Islam, N. (2021). The optimization of the drying process and vitamin C retention of carambola: An impact of storage and temperature. Journal of Food Processing and Preservation, 45(1), e15037. DOI: https://doi.org/10.1111/jfpp.15037.
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555-559. DOI: https://doi.org/10.1016/S0308-8146(98)00102-2.
  • Zou, Z., Xi, W., Hu, Y., Nie, C., & Zhou, Z. (2016). Antioxidant activity of Citrus fruits. Food chemistry, 196, 885-896. DOI:https://doi.org/10.1016/j.foodchem.2015.09.072.
There are 36 citations in total.

Details

Primary Language English
Subjects Drying Technologies
Journal Section Araştırma Makaleleri
Authors

Demet Yıldız Turgut 0000-0002-7486-3701

Muharrem Gölükcü 0000-0003-1646-5876

Burcu Bozova 0000-0002-7575-6326

Haluk Tokgöz 0000-0002-9956-0045

Orçun Çınar 0000-0002-8356-384X

Ertuğrul Turgutoğlu 0000-0002-8354-8578

Project Number TAGEM/TBAD/B/21/A7/P6/2370
Early Pub Date June 11, 2025
Publication Date June 16, 2025
Submission Date November 14, 2024
Acceptance Date March 14, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Yıldız Turgut, D., Gölükcü, M., Bozova, B., Tokgöz, H., et al. (2025). Effect of hot air drying process on color and antioxidant attributes of the flavedo of bitter orange (Citrus aurantium L.). Harran Tarım Ve Gıda Bilimleri Dergisi, 29(2), 205-214. https://doi.org/10.29050/harranziraat.1585454

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.