Research Article
BibTex RIS Cite

Siirt ili yarı kurak iklim koşullarında tesis edilen fıstık bahçelerinde toprak organik karbon stokunun değerlendirilmesi

Year 2025, Volume: 29 Issue: 2, 286 - 298, 16.06.2025
https://doi.org/10.29050/harranziraat.1656156

Abstract

Tarım arazilerinin yönetimi, küresel karbon (C) döngüsünde çok önemli bir rol oynamaktadır. Yoğun toprak işleme, toprak organik karbonunun (SOC) mineralizasyonunu artıran ve CO₂ olarak atmosfere salınmasına yol açan başlıca faktörlerden biridir. Bu çalışmada son dönemlerde Siirt iline bağlı Kurtalan ilçesinde yetiştiriciliği önemli oranda artan Siirt Fıstık bahçelerinde toprak organik C stoku (TOCS)’nun belirlenmesi ve yersel değişimlerinin haritalanarak izlenebilirliğinin sağlanması amaçlanmıştır. Bu amaçla, 72 farklı fıstık bahçesinden 0-20 cm derinlikten toprak örnekleri alınmıştır. Alınan toprak örneklerinin toprak organik C (TOC) içeriği ve hacim ağırlığı belirlenerek TOCS değerleri hesaplanmış ve yersel değişimleri haritalanmıştır. TOC içeriği 2.85 g kg-¹ ile 26 g kg-¹ arasında değişirken, SOCS değerleri 8.97 t ha-¹ ile 73.74 t ha-¹ arasında değişmiştir. Çalışma alanındaki farklı tekstür gruplarına ait toprak örnekleri arasında TOC ve TOCS değerlerinde önemli düzeyde değişkenlik gözlenmiştir. Ayrıca, meyve bahçesi yaşı arttıkça, SOC ve SOCS değerleri önemli ölçüde azalmıştır. 20 yaş ve üzeri Siirtfıstığı bahçelerinde TOC ve TOCS değerleri 5 yaş ve altı bahçelere göre sırası ile %20.3 ve %22.7 oranında azalmıştır. TOC içeriğindeki bu düşüş, toprak agregat stabilitesinin önemli bir göstergesi olan SOC:Kil oranına da yansımış ve genç bahçelerde ortalama 0.32 iken yaşlı bahçelerde 0.20'ye düşmüştür. Bu durum, Siirtfıstığı bahçelerindeki tarımsal uygulamaların toprak agregasyonunu bozarak organik karbon mineralizasyonunu hızlandırdığını ve toprağın zaman içinde organik madde tutma kabiliyetini azalttığını göstermektedir. Bu sonuçlar, yarı kurak iklime sahip Siirtfıstığı ekim alanlarında toprak bütünlüğünü korumak, karbon tutma oranını artırmak ve uzun vadeli tarımsal sürdürülebilirliği desteklemek için sürdürülebilir toprak yönetimi stratejilerine acil ihtiyaç olduğunu göstermektedir.

Project Number

2023-İHTZİR-01

References

  • Abdulkadir, A., Mohammed, I., & Daudu, C. K. (2021). Organic carbon in tropical soils: Current trends and potential for carbon sequestration in Nigerian cropping systems. In Handbook of Climate Change Management: Research, Leadership, Transformation (pp. 1-23). Cham: Springer International Publishing. DOI https://doi.org/10.1007/978-3-030-22759-3_307-1
  • Acosta, J. A., Imbernón-Mulero, A., Gallego-Elvira, B., Maestre-Valero, J. F., Martínez-Martínez, S., & Martínez-Álvarez, V. (2024). Soil Carbon Dioxide Emissions and Carbon Sequestration with Implementation of Alley Cropping in a Mediterranean Citrus Orchard. Plants, 13(17), 2399. DOI: https://doi.org/10.3390/plants13172399
  • Adekiya, A. O., Alori, E. T., Ogunbode, T. O., Sangoyomi, T., & Oriade, O. A. (2023). Enhancing Organic Carbon Content in Tropical Soils: Strategies for Sustainable Agriculture and Climate Change Mitigation. The Open Agriculture Journal, 17(1). DOI: http://dx.doi.org/10.2174/0118743315282476231124074206
  • Ahmad, N., Virk, A. L., Shoukat, M. R., Zahra, N., Arshad, I., Wang, X., Li, J. & Hafeez, M. B. (2025). Nutrient Management on Soil Organic Carbon Storage and Crop Production under Changing Environments. In Agricultural Crop Improvement (pp. 258-273). CRC Press.
  • Beillouin, D., Cardinael, R., Berre, D., Boyer, A., Corbeels, M., Fallot, A., Feder, F. & Demenois, J. (2022). A global overview of studies about land management, land‐use change, and climate change effects on soil organic carbon. Global change biology, 28(4), 1690-1702. DOI: https://doi.org/10.1111/gcb.15998
  • Blake, G.R., Hardge, K.H. (1986). “Bulk Density” In: Klute, A. (Ed.), Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph No.9, Soil Science Society of America, Madison, WI, pp. 363-375. DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c13
  • Brady, N. C., & Weil, R. R. (2008). The Nature and Properties of Soils (14th ed.). Pearson.
  • Budak, M., & Günal, H. (2018). Carbon Storage Potentials of Soils Under Different Land Uses in the Upper Tigris Basin. Anatolian Journal of Forest Research, 4(1), 63-76. (in Turkish)
  • Budak, M., Günal, H., Çelik, İ., Kılıç, M., Kılıç, O.M., Sırrı, M., Aslan, N., (2025). Determination of Soil Fertility and Quality in Pistachio Production Areas and Proposals for Sustainable Pistachio Production, Project Final Report (Project No: 2023-İHTZİR-01), Siirt. (in Turkish).
  • Bouyoucos, G. J., (1962). Hydrometer method improved for making particle size analyses of soils 1, Agronomy Journal, 54(5), 464-465. DOI: https://doi.org/10.2134/agronj1962.00021962005400050028x
  • Cao, S., Zhou, Y., Zhou, Y., Zhou, X., & Zhou, W. (2021). Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. Journal of Environmental Management, 293, 112847. DOI: https://doi.org/10.1016/j.jenvman.2021.112847
  • Chang, T. K., & Lin, Y. P. (2000). Geostatistical simulation and estimation of the spatial variability of soil zinc. Journal of Environmental Science & Health. Part A. Toxic/Hazardous Substances & Environmental Engineering, 2000, Vol A35, Issue 3, p327.
  • Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific and Research Publications, 3(2), 1-8.
  • Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J. R., Kirkham, M. B., Hossain, M. Z. & Kim, G. H. (2021). Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Advances in agronomy, 166, 131-196. DOI: https://doi.org/10.1016/bs.agron.2020.10.001
  • Conant, R. T., Easter, M., Paustian, K., Swan, A., & Williams, S. (2007). Impacts of periodic tillage on soil C stocks: A synthesis. Soil and Tillage Research, 95(1-2), 1-10. DOI: https://doi.org/10.1016/j.still.2006.12.006
  • de Oliveira Silva, B., Moitinho, M. R., de Araujo Santos, G. A., Teixeira, D. D. B., Fernandes, C., & La Scala Jr, N. (2019). Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil and Tillage Research, 186, 224-232. DOI: https://doi.org/10.1016/j.still.2018.10.019
  • Fallahzade, J., Karimi, A., Naderi, M., & Shirani, H. (2020). Soil mechanical properties and wind erosion following conversion of desert to irrigated croplands in central Iran. Soil and Tillage Research, 204, 104665. DOI: https://doi.org/10.1016/j.still.2020.104665
  • Francaviglia, R., Almagro, M., & Vicente-Vicente, J. L. (2023). Conservation agriculture and soil organic carbon: Principles, processes, practices and policy options. Soil Systems, 7(1), 17. DOI: https://doi.org/10.3390/soilsystems7010017
  • Hayes, R. C., Rohan, M., Li, G. D., Orgill, S. E., Poile, G. J., Oates, A. A., & Conyers, M. K. (2022). The nature of spatial variability of four soil chemical properties and the implications for soil sampling. Journal of Soils and Sediments, 22(12), 3006-3017. DOI: https://doi.org/10.1007/s11368-022-03285-x
  • Hussain, S., Hussain, S., Guo, R., Sarwar, M., Ren, X., Krstic, D., Aslam, Z., Zulifqar, U., Rauf, A., Hano, C. & El-Esawi, M. A. (2021). Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants, 10(10), 2001. DOI: https://doi.org/10.3390/plants10102001
  • Jat, H. S., Datta, A., Choudhary, M., Yadav, A. K., Choudhary, V., Sharma, P. C., Gathala, M. K., Jat, M. L. & McDonald, A. (2019). Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil and Tillage Research, 190, 128-138. DOI: https://doi.org/10.1016/j.still.2019.03.005
  • Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P. C., & Boivin, P. (2017). Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?. Geoderma, 302, 14-21. DOI: https://doi.org/10.1016/j.geoderma.2017.04.021
  • Karaman, F., & Turan, N. (2019). Vegetation Structure of Natural Rangelands at Two Different Elevations in the Continental Climate Zone. Turkish Journal of Agricultural Research, 6(3), 268-276. (in Turkish). DOI: https://doi.org/10.19159/tutad.581923
  • Kumar, S. S., Mahale, A. G., & Patil, A. C. (2020). Mitigation of Climate change through approached agriculture-soil carbon sequestration (A review). Current Journal of Applied Science and Technology, 39(33), 47-64. DOI: https://doi.org/ 10.9734/CJAST/2020/v39i3331017
  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22. DOI: https://doi.org/10.1016/j.geoderma.2004.01.032
  • Lessmann, M., Ros, G. H., Young, M. D., & de Vries, W. (2022). Global variation in soil carbon sequestration potential through improved cropland management. Global Change Biology, 28(3), 1162-1177. DOI: https://doi.org/10.1111/gcb.15954
  • Montanaro, G., Xiloyannis, C., Nuzzo, V., & Dichio, B. (2017). Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Scientia Horticulturae, 217, 92-101. DOI: https://doi.org/10.1016/j.scienta.2017.01.012
  • Muñoz-Rojas, M., Abd-Elmabod, S. K., Zavala, L. M., De la Rosa, D., & Jordán, A. (2017). Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: A case study in Northern Egypt. Agriculture, ecosystems & environment, 238, 142-152. DOI: https://doi.org/10.1016/j.agee.2016.09.001
  • Nelson, D.W. ve Sommers, L.E. (1982). Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Page, A.L., Miller, R.H. Keeney, D.R. (Ed) 2nd Ed. SSS of Am. Inc. Pub., Madison, Wisconsin. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  • Öztürk, M. (2025). Spatial Distribution and Mapping of Soil Carbon Stock In Pistachio Fields In Şanliurfa. Graduate School of Natural And Applied Sciences Soil Science And Plant Nutrition Department. (Master Thesis). Şanlıurfa Turkey.
  • Padarian, J., Stockmann, U., Minasny, B., & McBratney, A. B. (2022). Monitoring changes in global soil organic carbon stocks from space. Remote Sensing of Environment, 281, 113260. DOI: https://doi.org/10.1016/j.rse.2022.113260
  • Poeplau, C., & Don, A. (2023). A simple soil organic carbon level metric beyond the organic carbon‐to‐clay ratio. Soil Use and Management, 39(3), 1057-1067.
  • Prout, J. M., Shepherd, K. D., McGrath, S. P., Kirk, G. J., Hassall, K. L., & Haefele, S. M. (2022). Changes in organic carbon to clay ratios in different soils and land uses in England and Wales over time. Scientific Reports, 12(1), 5162. DOI: | https://doi.org/10.1038/s41598-022-09101-3
  • Salem, H. M., Valero, C., Muñoz, M. Á., Rodríguez, M. G., & Silva, L. L. (2015). Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 237, 60-70. DOI: https://doi.org/10.1016/j.geoderma.2014.08.014
  • Sauzet, O., Johannes, A., Deluz, C., Dupla, X., Matter, A., Baveye, P. C., & Boivin, P. (2024). The organic carbon‐to‐clay ratio as an indicator of soil structure vulnerability, a metric focused on the condition of soil structure. Soil Use and Management, 40(2), e13060. DOI: https://doi.org/10.1111/sum.13060
  • Shangguan, W., Dai, Y., Duan, Q., Liu, B., & Yuan, H. (2014). A global soil data set for earth system modeling. Journal of Advances in Modeling Earth Systems, 6(1), 249-263. DOI: https://doi.org/10.1002/2013MS000293
  • Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. DOI: https://doi.org/10.1023/A:1016125726789
  • Sørensen, C. G., Halberg, N., Oudshoorn, F. W., Petersen, B. M., & Dalgaard, R. (2014). Energy inputs and GHG emissions of tillage systems. Biosystems Engineering, 120, 2-14. DOI: https://doi.org/10.1016/j.biosystemseng.2014.01.004
  • Topa, D., Cara, I. G., & Jităreanu, G. (2021). Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena, 199, 105102. DOI: https://doi.org/10.1016/j.catena.2020.105102
  • Xu, M. P., Zhi, R. C., Jian, J. N., Feng, Y. Z., Han, X. H., & Zhang, W. (2023). Changes in soil organic C fractions and C pool stability are mediated by C-degrading enzymes in litter decomposition of Robinia pseudoacacia plantations. Microbial Ecology, 86(2), 1189-1199. DOI: https://doi.org/10.1007/s00248-022-02113-6
  • Wang, Y., Zhang, J. H., Zhang, Z. H., & Jia, L. Z. (2016). Impact of tillage erosion on water erosion in a hilly landscape. Science of the Total Environment, 551, 522-532. DOI: https://doi.org/10.1016/j.scitotenv.2016.02.045
  • Wang, X., Qi, J. Y., Zhang, X. Z., Li, S. S., Virk, A. L., Zhao, X., Xiao, X.P. & Zhang, H. L. (2019). Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system. Soil and Tillage Research, 194, 104339. DOI: https://doi.org/10.1016/j.still.2019.104339
  • Yadav, G.S., Lal, R., Meena, R.S., Babu, S., Das, A., Bhowmik, S.N., Datta, M., Layak, J., Saha, P. (2017). Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecological Indicators. Volume 105, Pages 303-315 DOI: https://doi.org/10.1016/j.ecolind.2017.08.071
  • Yakupoglu, T., Gundogan, R., Dindaroglu, T., & Kara, Z. (2017). Effects of land conversion from native shrub to pistachio orchard on soil erodibility in an arid region. Environmental monitoring and assessment, 189, 1-12.
  • Yeşilova, P. G., & Helvacı, C. (2013). Diagenesis and Paleogeographic Development of Oligocene Evaporites of the Germik Formation (Kurtalan, GB Siirt), Turkey. Earth Sciences, 34(1), 141-168. (in Turkish).
  • Zhang, M. Y., Wang, F. J., Chen, F., Malemela, M. P., & Zhang, H. L. (2013). Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. Journal of Cleaner Production, 54, 101-107. DOI: https://doi.org/10.1016/j.jclepro.2013.04.033
  • Zheng, H., Liu, W., Zheng, J., Luo, Y., Li, R., Wang, H., & Qi, H. (2018). Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS One, 13(6), e0199523. DOI: https://doi.org/ https://doi.org/10.1371/journal.pone.0199523

Assessment of soil organic carbon stock in pistachio orchards established under semi-arid climates of Siirt province, Türkiye

Year 2025, Volume: 29 Issue: 2, 286 - 298, 16.06.2025
https://doi.org/10.29050/harranziraat.1656156

Abstract

The management of agricultural lands plays a crucial role in the global carbon (C) cycle.
Intensive soil tillage is one of the primary factors contributing to the mineralization of soil
organic carbon (SOC), leading to its release into the atmosphere as CO₂. This study
determined the soil organic carbon stock (SOCS) in pistachio-growing areas, which have
expanded significantly in recent years in Kurtalan district, Siirt province. Spatial variation
of SOCS was also mapped within the study area to ensure its long-term monitoring over
time. For this purpose, soil samples were collected from a depth of 0–20 cm in 72
pistachio orchards. The soil organic C (SOC) content and bulk density (Bd) of the collected
soil samples were determined, and SOCS values were calculated to generate spatial
distribution maps. The SOC content ranged from 2.85 g kg⁻¹ to 26 g kg⁻¹, while SOCS
varied between 8.97 t ha⁻¹ and 73.74 t ha⁻¹. Significant variability in SOC and SOCS was
observed among soil samples belonging to different texture groups. Additionally, SOC
and SOCS values significantly decreased as orchard age increased. The SOC and SOCS
values decreased by 20.3% and 22.7%, respectively in pistachio orchards older than 20
years compared 5 years old or younger orchards. This decline in SOC content was also
reflected in the SOC:Clay ratio, a key indicator of soil structure stability, which dropped
from an average of 0.32 in younger orchards to 0.20 in older orchards. This suggests that
agricultural practices in pistachio orchards disrupt soil aggregation, accelerating organic C
mineralization and reducing the soil’s ability to retain organic matter over time. These
results show the urgent need for sustainable soil management strategies to preserve soil
integrity, enhance C retention, and support long-term agricultural sustainability in semiarid
pistachio cultivation areas.

Supporting Institution

Siirt Üniversitesi

Project Number

2023-İHTZİR-01

Thanks

The bulk density and organic carbon data required for calculating total organic carbon stock values were derived from the project (2023-İHTZİR-01) funded by Siirt University. We extend our gratitude to the Siirt University Agricultural and Livestock Specialization Coordination Center for their support.

References

  • Abdulkadir, A., Mohammed, I., & Daudu, C. K. (2021). Organic carbon in tropical soils: Current trends and potential for carbon sequestration in Nigerian cropping systems. In Handbook of Climate Change Management: Research, Leadership, Transformation (pp. 1-23). Cham: Springer International Publishing. DOI https://doi.org/10.1007/978-3-030-22759-3_307-1
  • Acosta, J. A., Imbernón-Mulero, A., Gallego-Elvira, B., Maestre-Valero, J. F., Martínez-Martínez, S., & Martínez-Álvarez, V. (2024). Soil Carbon Dioxide Emissions and Carbon Sequestration with Implementation of Alley Cropping in a Mediterranean Citrus Orchard. Plants, 13(17), 2399. DOI: https://doi.org/10.3390/plants13172399
  • Adekiya, A. O., Alori, E. T., Ogunbode, T. O., Sangoyomi, T., & Oriade, O. A. (2023). Enhancing Organic Carbon Content in Tropical Soils: Strategies for Sustainable Agriculture and Climate Change Mitigation. The Open Agriculture Journal, 17(1). DOI: http://dx.doi.org/10.2174/0118743315282476231124074206
  • Ahmad, N., Virk, A. L., Shoukat, M. R., Zahra, N., Arshad, I., Wang, X., Li, J. & Hafeez, M. B. (2025). Nutrient Management on Soil Organic Carbon Storage and Crop Production under Changing Environments. In Agricultural Crop Improvement (pp. 258-273). CRC Press.
  • Beillouin, D., Cardinael, R., Berre, D., Boyer, A., Corbeels, M., Fallot, A., Feder, F. & Demenois, J. (2022). A global overview of studies about land management, land‐use change, and climate change effects on soil organic carbon. Global change biology, 28(4), 1690-1702. DOI: https://doi.org/10.1111/gcb.15998
  • Blake, G.R., Hardge, K.H. (1986). “Bulk Density” In: Klute, A. (Ed.), Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph No.9, Soil Science Society of America, Madison, WI, pp. 363-375. DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c13
  • Brady, N. C., & Weil, R. R. (2008). The Nature and Properties of Soils (14th ed.). Pearson.
  • Budak, M., & Günal, H. (2018). Carbon Storage Potentials of Soils Under Different Land Uses in the Upper Tigris Basin. Anatolian Journal of Forest Research, 4(1), 63-76. (in Turkish)
  • Budak, M., Günal, H., Çelik, İ., Kılıç, M., Kılıç, O.M., Sırrı, M., Aslan, N., (2025). Determination of Soil Fertility and Quality in Pistachio Production Areas and Proposals for Sustainable Pistachio Production, Project Final Report (Project No: 2023-İHTZİR-01), Siirt. (in Turkish).
  • Bouyoucos, G. J., (1962). Hydrometer method improved for making particle size analyses of soils 1, Agronomy Journal, 54(5), 464-465. DOI: https://doi.org/10.2134/agronj1962.00021962005400050028x
  • Cao, S., Zhou, Y., Zhou, Y., Zhou, X., & Zhou, W. (2021). Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. Journal of Environmental Management, 293, 112847. DOI: https://doi.org/10.1016/j.jenvman.2021.112847
  • Chang, T. K., & Lin, Y. P. (2000). Geostatistical simulation and estimation of the spatial variability of soil zinc. Journal of Environmental Science & Health. Part A. Toxic/Hazardous Substances & Environmental Engineering, 2000, Vol A35, Issue 3, p327.
  • Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific and Research Publications, 3(2), 1-8.
  • Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J. R., Kirkham, M. B., Hossain, M. Z. & Kim, G. H. (2021). Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Advances in agronomy, 166, 131-196. DOI: https://doi.org/10.1016/bs.agron.2020.10.001
  • Conant, R. T., Easter, M., Paustian, K., Swan, A., & Williams, S. (2007). Impacts of periodic tillage on soil C stocks: A synthesis. Soil and Tillage Research, 95(1-2), 1-10. DOI: https://doi.org/10.1016/j.still.2006.12.006
  • de Oliveira Silva, B., Moitinho, M. R., de Araujo Santos, G. A., Teixeira, D. D. B., Fernandes, C., & La Scala Jr, N. (2019). Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil and Tillage Research, 186, 224-232. DOI: https://doi.org/10.1016/j.still.2018.10.019
  • Fallahzade, J., Karimi, A., Naderi, M., & Shirani, H. (2020). Soil mechanical properties and wind erosion following conversion of desert to irrigated croplands in central Iran. Soil and Tillage Research, 204, 104665. DOI: https://doi.org/10.1016/j.still.2020.104665
  • Francaviglia, R., Almagro, M., & Vicente-Vicente, J. L. (2023). Conservation agriculture and soil organic carbon: Principles, processes, practices and policy options. Soil Systems, 7(1), 17. DOI: https://doi.org/10.3390/soilsystems7010017
  • Hayes, R. C., Rohan, M., Li, G. D., Orgill, S. E., Poile, G. J., Oates, A. A., & Conyers, M. K. (2022). The nature of spatial variability of four soil chemical properties and the implications for soil sampling. Journal of Soils and Sediments, 22(12), 3006-3017. DOI: https://doi.org/10.1007/s11368-022-03285-x
  • Hussain, S., Hussain, S., Guo, R., Sarwar, M., Ren, X., Krstic, D., Aslam, Z., Zulifqar, U., Rauf, A., Hano, C. & El-Esawi, M. A. (2021). Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants, 10(10), 2001. DOI: https://doi.org/10.3390/plants10102001
  • Jat, H. S., Datta, A., Choudhary, M., Yadav, A. K., Choudhary, V., Sharma, P. C., Gathala, M. K., Jat, M. L. & McDonald, A. (2019). Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil and Tillage Research, 190, 128-138. DOI: https://doi.org/10.1016/j.still.2019.03.005
  • Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P. C., & Boivin, P. (2017). Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?. Geoderma, 302, 14-21. DOI: https://doi.org/10.1016/j.geoderma.2017.04.021
  • Karaman, F., & Turan, N. (2019). Vegetation Structure of Natural Rangelands at Two Different Elevations in the Continental Climate Zone. Turkish Journal of Agricultural Research, 6(3), 268-276. (in Turkish). DOI: https://doi.org/10.19159/tutad.581923
  • Kumar, S. S., Mahale, A. G., & Patil, A. C. (2020). Mitigation of Climate change through approached agriculture-soil carbon sequestration (A review). Current Journal of Applied Science and Technology, 39(33), 47-64. DOI: https://doi.org/ 10.9734/CJAST/2020/v39i3331017
  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22. DOI: https://doi.org/10.1016/j.geoderma.2004.01.032
  • Lessmann, M., Ros, G. H., Young, M. D., & de Vries, W. (2022). Global variation in soil carbon sequestration potential through improved cropland management. Global Change Biology, 28(3), 1162-1177. DOI: https://doi.org/10.1111/gcb.15954
  • Montanaro, G., Xiloyannis, C., Nuzzo, V., & Dichio, B. (2017). Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Scientia Horticulturae, 217, 92-101. DOI: https://doi.org/10.1016/j.scienta.2017.01.012
  • Muñoz-Rojas, M., Abd-Elmabod, S. K., Zavala, L. M., De la Rosa, D., & Jordán, A. (2017). Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: A case study in Northern Egypt. Agriculture, ecosystems & environment, 238, 142-152. DOI: https://doi.org/10.1016/j.agee.2016.09.001
  • Nelson, D.W. ve Sommers, L.E. (1982). Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Page, A.L., Miller, R.H. Keeney, D.R. (Ed) 2nd Ed. SSS of Am. Inc. Pub., Madison, Wisconsin. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  • Öztürk, M. (2025). Spatial Distribution and Mapping of Soil Carbon Stock In Pistachio Fields In Şanliurfa. Graduate School of Natural And Applied Sciences Soil Science And Plant Nutrition Department. (Master Thesis). Şanlıurfa Turkey.
  • Padarian, J., Stockmann, U., Minasny, B., & McBratney, A. B. (2022). Monitoring changes in global soil organic carbon stocks from space. Remote Sensing of Environment, 281, 113260. DOI: https://doi.org/10.1016/j.rse.2022.113260
  • Poeplau, C., & Don, A. (2023). A simple soil organic carbon level metric beyond the organic carbon‐to‐clay ratio. Soil Use and Management, 39(3), 1057-1067.
  • Prout, J. M., Shepherd, K. D., McGrath, S. P., Kirk, G. J., Hassall, K. L., & Haefele, S. M. (2022). Changes in organic carbon to clay ratios in different soils and land uses in England and Wales over time. Scientific Reports, 12(1), 5162. DOI: | https://doi.org/10.1038/s41598-022-09101-3
  • Salem, H. M., Valero, C., Muñoz, M. Á., Rodríguez, M. G., & Silva, L. L. (2015). Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 237, 60-70. DOI: https://doi.org/10.1016/j.geoderma.2014.08.014
  • Sauzet, O., Johannes, A., Deluz, C., Dupla, X., Matter, A., Baveye, P. C., & Boivin, P. (2024). The organic carbon‐to‐clay ratio as an indicator of soil structure vulnerability, a metric focused on the condition of soil structure. Soil Use and Management, 40(2), e13060. DOI: https://doi.org/10.1111/sum.13060
  • Shangguan, W., Dai, Y., Duan, Q., Liu, B., & Yuan, H. (2014). A global soil data set for earth system modeling. Journal of Advances in Modeling Earth Systems, 6(1), 249-263. DOI: https://doi.org/10.1002/2013MS000293
  • Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. DOI: https://doi.org/10.1023/A:1016125726789
  • Sørensen, C. G., Halberg, N., Oudshoorn, F. W., Petersen, B. M., & Dalgaard, R. (2014). Energy inputs and GHG emissions of tillage systems. Biosystems Engineering, 120, 2-14. DOI: https://doi.org/10.1016/j.biosystemseng.2014.01.004
  • Topa, D., Cara, I. G., & Jităreanu, G. (2021). Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena, 199, 105102. DOI: https://doi.org/10.1016/j.catena.2020.105102
  • Xu, M. P., Zhi, R. C., Jian, J. N., Feng, Y. Z., Han, X. H., & Zhang, W. (2023). Changes in soil organic C fractions and C pool stability are mediated by C-degrading enzymes in litter decomposition of Robinia pseudoacacia plantations. Microbial Ecology, 86(2), 1189-1199. DOI: https://doi.org/10.1007/s00248-022-02113-6
  • Wang, Y., Zhang, J. H., Zhang, Z. H., & Jia, L. Z. (2016). Impact of tillage erosion on water erosion in a hilly landscape. Science of the Total Environment, 551, 522-532. DOI: https://doi.org/10.1016/j.scitotenv.2016.02.045
  • Wang, X., Qi, J. Y., Zhang, X. Z., Li, S. S., Virk, A. L., Zhao, X., Xiao, X.P. & Zhang, H. L. (2019). Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system. Soil and Tillage Research, 194, 104339. DOI: https://doi.org/10.1016/j.still.2019.104339
  • Yadav, G.S., Lal, R., Meena, R.S., Babu, S., Das, A., Bhowmik, S.N., Datta, M., Layak, J., Saha, P. (2017). Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecological Indicators. Volume 105, Pages 303-315 DOI: https://doi.org/10.1016/j.ecolind.2017.08.071
  • Yakupoglu, T., Gundogan, R., Dindaroglu, T., & Kara, Z. (2017). Effects of land conversion from native shrub to pistachio orchard on soil erodibility in an arid region. Environmental monitoring and assessment, 189, 1-12.
  • Yeşilova, P. G., & Helvacı, C. (2013). Diagenesis and Paleogeographic Development of Oligocene Evaporites of the Germik Formation (Kurtalan, GB Siirt), Turkey. Earth Sciences, 34(1), 141-168. (in Turkish).
  • Zhang, M. Y., Wang, F. J., Chen, F., Malemela, M. P., & Zhang, H. L. (2013). Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. Journal of Cleaner Production, 54, 101-107. DOI: https://doi.org/10.1016/j.jclepro.2013.04.033
  • Zheng, H., Liu, W., Zheng, J., Luo, Y., Li, R., Wang, H., & Qi, H. (2018). Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS One, 13(6), e0199523. DOI: https://doi.org/ https://doi.org/10.1371/journal.pone.0199523
There are 47 citations in total.

Details

Primary Language English
Subjects Land Capability and Soil Productivity, Soil Chemistry and Soil Carbon Sequestration (Excl. Carbon Sequestration Science)
Journal Section Araştırma Makaleleri
Authors

Mesut Budak 0000-0001-5715-1246

Miraç Kiliç 0000-0001-8026-5540

Kübra Polat 0000-0003-2966-8699

Elif Günal 0000-0003-0624-2919

Mesut Sırrı 0000-0001-9793-9599

Reşat Yolbaş 0009-0000-8244-397X

Project Number 2023-İHTZİR-01
Early Pub Date June 11, 2025
Publication Date June 16, 2025
Submission Date March 12, 2025
Acceptance Date May 19, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Budak, M., Kiliç, M., Polat, K., Günal, E., et al. (2025). Assessment of soil organic carbon stock in pistachio orchards established under semi-arid climates of Siirt province, Türkiye. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(2), 286-298. https://doi.org/10.29050/harranziraat.1656156

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.