Research Article
BibTex RIS Cite

Türkiye’nin farklı iklim bölgelerinden toplanan Xanthium spinosum popülasyonlarının tohum çimlenme özellikleri: Yabancı ot mücadelesi açısından ipuçları

Year 2025, Volume: 29 Issue: 2, 328 - 344, 16.06.2025
https://doi.org/10.29050/harranziraat.1686971

Abstract

Xanthium spinosum, Türkiye’nin birçok agroekolojik bölgesine yayılmış, tarımsal üretimi ve yerel biyoçeşitliliği olumsuz etkileyen sorunlu bir istilacı yabancı ottur. Bu türün tohum çimlenme biyolojisinin anlaşılması, etkili ve bölgeye özgü yönetim önlemlerinin oluşturulması açısından büyük önem taşımaktadır. Bu çalışmada, Türkiye’nin dört farklı coğrafik bölgesinden (Güneydoğu Anadolu, Akdeniz, Karadeniz ve İç Anadolu) toplanan X. spinosum popülasyonlarının çimlenme davranışı üzerinde fotoperiyot, sıcaklık, pH, tuzluluk, ozmotik potansiyel ve tohum gömülme derinliğinin etkileri değerlendirilmiştir. En yüksek çimlenme, 12 saat ışık/12 saat karanlık fotoperiyotta gözlenmiş, Güneydoğu Anadolu ve Akdeniz popülasyonları daha yüksek ışık duyarlılığı sergilemiştir. Sıcaklık açısından en yüksek çimlenmenin Güneydoğu Anadolu ve Akdeniz popülasyonlarında yaklaşık 30 °C’de gözlemlenirken, Karadeniz ve İç Anadolu popülasyonlarında ise daha ılıman sıcaklıklarda (25–27 °C) gerçekleştiği ortaya konulmuştur. Benzer şekilde, tüm popülasyonlarda nötr pH (~7.0–7.6) koşullarında en yüksek çimlenme kaydedilmiş, Güneydoğu Anadolu popülasyonu daha geniş bir pH toleransı göstermiştir. Tuzluluk ve ozmotik stres testleri, Güneydoğu Anadolu popülasyonunun tuz ve kuraklık streslerine karşı daha yüksek tolerans sergilediğini ortaya koymuştur. Fide çıkışı, düşük gömülme derinliklerinde (~2–4 cm) zirveye ulaşmış, derinlik arttıkça keskin bir düşüş göstermiştir. Bu sonuçlar, yerel iklimsel ve edafik koşullarla ilişkili önemli popülasyon-özgü adaptasyon kalıplarını vurgulamaktadır. Bu çalışmada belirlenen çevresel toleranslara dayalı derin sürüm teknikleri ve yönetim stratejileri, X. spinosum’un gelişimini sınırlayabilir. Bu çalışmada ortaya konulan popülasyon düzeyindeki değişkenlik, bölgeye özgü etkili yabancı ot yönetim stratejileri için kritik öneme sahiptir

References

  • Ahmadi, A., Zaefarian, F., Rezvani, M., Mansouri, I., & Sindel, B. M. (2024). Response of spiny cocklebur (Xanthium spinosum) and common cocklebur (X. strumarium) seed germination to environmental and soil factors. Australian Journal of Botany, 72(4). https://doi.org/10.1071/BT23094
  • Alberto Ortiz, T., Ragassi Urbano, M., & Assari Takahashi, L. S. (2019). Effects of water deficit and pH on seed germination and seedling development in Cereus jamacaru. Semina:Ciencias Agrarias, 40(4), 1379–1392. https://doi.org/10.5433/1679-0359.2019v40n4p1379
  • Assefa, A., & Tilaye, G. (2023). Abundance of Xanthium spinosum L. along the different land types and its impacts on invaded plant communities in North Shewa Zone, Ethiopia. Sustinere: Journal of Environment and Sustainability, 7(3), 190–206. https://doi.org/10.22515/sustinere.jes.v7i3.343
  • Auld, B. A. (1993). Emergence and flowering in Xanthium spinosum. Agriculture, Ecosystems and Environment, 47(3), 215–222. https://doi.org/10.1016/0167-8809(93)90123-7
  • Baskin, C. C., & Baskin, J. M. (2014). Seeds: ecology, biogeography, and evolution of dormancy and germination. Elsevier Science.
  • Batlla, D., & Benech-Arnold, R. L. (2014). Weed seed germination and the light environment: Implications for weed management. Weed Biology and Management, 14(2), 77-87. https://doi.org/10.1111/wbm.12039
  • Batlla, D., & Luis Benech-Arnold, R. (2007). Predicting changes in dormancy level in weed seed soil banks: Implications for weed management. Crop Protection, 26(3), 189-197. https://doi.org/10.1016/j.cropro.2005.07.014
  • Benech-Arnold, R. L., Sánchez, R. A., Forcella, F., Kruk, B. C., & Ghersa, C. M. (2000). Environmental control of dormancy in weed seed banks in soil. Field Crops Research, 67(2), 105-122. https://doi.org/10.1016/S0378-4290(00)00087-3
  • Benvenuti, S. (2003). Soil texture involvement in germination and emergence of buried weed seeds. Agronomy Journal, 95(1), 191-198. https://doi.org/10.2134/agronj2003.0191
  • Benvenuti, S., & Mazzoncini, M. (2019). Soil physics involvement in the germination ecology of buried weed seeds. Plants, 8(1), 1-7. https://doi.org/10.3390/plants8010007
  • Bükün, B. (2005). Weed flora changes in cotton growing areas during the last decade after irrigation of Harran plain in Şanliurfa, Turkey. Pakistan Journal of Botany, 37(3), 667–672.
  • CABI. (2022). Xanthium spinosum (bathurst burr) – Invasive Species Compendium. CAB International, Wallingford, UK.
  • Chauhan, B. S., Gill, G., & Preston, C. (2006a). Factors affecting seed germination of annual sowthistle (Sonchus oleraceus) in southern Australia. Weed Science, 54(4), 854–860. https://doi.org/10.1614/WS-06-047R.1
  • Chauhan, B. S., Gill, G., & Preston, C. (2006b). Factors affecting seed germination of little mallow (Malva parviflora) in southern Australia. Weed Science, 54(6), 1045–1050.
  • Chauhan, B. S., Gill, G., & Preston, C. (2006c). Factors affecting seed germination of threehorn bedstraw (Galium tricornutum) in Australia. Weed Science, 54(3), 471–477.
  • Chauhan, B. S., & Johnson, D. E. (2010). The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy, 105, 221–262.
  • Cochrane, A., Yates, C. J., Hoyle, G. L., & Nicotra, A. B. (2015). Will among-population variation in seed traits improve the chance of species persistence under climate change? Global Ecology and Biogeography, 24(1), 12–24. https://doi.org/10.1111/geb.12234
  • DiTommaso, A. (2004). Germination behavior of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities. Weed Science, 52(6), 1002–1009. https://doi.org/10.1614/WS-04-030R1
  • Dürr, C., Dickie, J. B., Yang, X. Y., & Pritchard, H. W. (2015). Ranges of critical temperature and water potential values for the germination of species worldwide: Contribution to a seed trait database. Agricultural and Forest Meteorology, 200, 222-232. https://doi.org/10.1016/j.agrformet.2014.09.024
  • Esashi, Y., & Leopold, A. C. (1968). Physical forces in dormancy and germination of Xanthium seeds. Plant Physiology, 43(6), 871-876. https://doi.org/10.1104/pp.43.6.871
  • Farooq, S., Onen, H., Ozaslan, C., Baskin, C. C., & Gunal, H. (2019). Seed germination niche for common ragweed (Ambrosia artemisiifolia L.) populations naturalized in Turkey. South African Journal of Botany, 123, 361–371. https://doi.org/10.1016/j.sajb.2019.03.031
  • Farooq, S., Onen, H., Tad, S., Ozaslan, C., Mahmoud, S. F., Brestic, M., Zivcak, M., Skalicky, M., & El-Shehawi, A. M. (2021). The influence of environmental factors on seed germination of Polygonum perfoliatum L.: Implications for management. Agronomy, 11(6), 1123. https://doi.org/10.3390/agronomy11061123
  • Fenner, M., & Thompson, K. (2005). The ecology of seeds. Cambridge University Press. Cambridge, UK, 2005
  • Grundy, A. C., Mead, A., & Burston, S. (2003). Modelling the emergence response of weed seeds to burial depth: Interactions with seed density, weight and shape. Journal of Applied Ecology, 40(4), 750-770. https://doi.org/10.1046/j.1365-2664.2003.00836.x
  • Gul, B., Ansari, R., Flowers, T. J., & Khan, M. A. (2013). Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 92, 4-18. https://doi.org/10.1016/j.envexpbot.2012.11.006
  • Hakim, M. A., Juraimi, A. S., Hanafi, M. M., Selamat, A., Ismail, M. R., & Rezaul Karim, S. M. (2011). Studies on seed germination and growth in weed species of rice field under salinity stress. Journal of Environmental Biology, 32(5), 529-536.
  • Hegarty, T. W. (1978). The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review. Plant, Cell & Environment, 1(2), 101-119. https://doi.org/10.1111/j.1365-3040.1978.tb00752.x
  • Hocking, P. J., & Liddle, M. J. (1986). The biology of Australian weeds: 15. Xanthium occidentale Bertol. complex and Xanthium spinosum L. Journal of the Australian Institute of Agricultural Science, 52(4), 191–221.
  • Holm, L. G., Plucknett, D. L., Pancho, J. V., Herbebgeb, J. S., Hilbig, W., & Halle, S. (1978). The World’s Worst Weeds. Distribution and Biology. Pedobiologia, 18(4), 296-297. https://doi.org/10.1016/s0031-4056(23)00601-7
  • Kadıoğlu, İ., & Kekeç, M. (2020). İklim değişikliğine bağlı olarak Xanthium strumarium L.’un Türkiye’de gelecekte dağılım alanlarının belirlenmesi. Türkiye Herboloji Dergisi, 23(1), 1–14.
  • Kelečević, B., Kovačević, Z., Mitrić, S., & Vrbničanin, S. (2024). Responses of seed germination of Xanthium orientale L. and Xanthium spinosum L. to temperature. Plant Protection Science, 60(3), 295–304. https://doi.org/10.17221/124/2023-PPS
  • Kigel, J. (2017). Seed germination in arid and semiarid regions. In Seed Development and Germination. https://doi.org/10.1201/9780203740071. pp: 55.
  • Liu, Y., Li, Y., Wang, R., Guo, L., Ji, Y., Chen, Y., Hao, L., & Lin, K. (2025). Impacts of human activity and climate change on the suitable habitats for Xanthium spinosum in China. Plants, 14(3), 306. https://doi.org/10.3390/plants14030306
  • Malka, S., Eizenberg, H., & Matzrafi, M. (2023). Variation in seed properties and germination capabilities among populations of the invasive weed Parthenium hysterophorus L. (Asteraceae). Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1222366
  • Marschner, C. A., Colucci, I., Stup, R. S., Westbrook, A. S., Brunharo, C. A. C. G., DiTommaso, A., & Mesgaran, M. B. (2024). Modeling weed seedling emergence for time-specific weed management: a systematic review. Weed Science, 72(4), 313–329. https://doi.org/10.1017/wsc.2024.25
  • Mesgaran, M. B., Mashhadi, H. R., Alizadeh, H., Hunt, J., Young, K. R., & Cousens, R. D. (2013). Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 53(2), 89-101. Michel, B. E. (1983). Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant physiology, 72(1), 66-70.
  • Nautiyal, P. C., Sivasubramaniam, K., & Dadlani, M. (2023). Seed Dormancy and Regulation of Germination. In Seed Science and Technology: Biology, Production, Quality. https://doi.org/10.1007/978-981-19-5888-5_3
  • Obam, S. O. (2006). The accuracy of Scheffe’s third degree over second-degree, optimization regression polynomials. Nigerian Journal of Technology, 25(2), 5-15.
  • Önen, H., Farooq, S., Tad, S., Özaslan, C., Gunal, H., & Chauhan, B. S. (2018). The influence of environmental factors on germination of Burcucumber (Sicyos angulatus) seeds: Implications for range expansion and management. Weed Science, 66(4), 494–501. https://doi.org/10.1017/wsc.2018.20
  • Ozaslan, C., Farooq, S., Onen, H., Ozcan, S., Bukun, B., & Gunal, H. (2017). Germination biology of two invasive Physalis species and implications for their management in arid and semi-arid regions. Scientific Reports, 12(7), 1–12. https://doi.org/10.1038/s41598-017-17169-5
  • Ozturk, L., Sivri, N., & Sin, B. (2017). An update of weed flora of vineyards in Northwestern Turkey. International Journal of Environment, Agriculture and Biotechnology, 2(6), 3050-3055. http://dx.doi.org/10.22161/ijeab/2.6.35
  • Qu, X. X., & Huang, Z. Y. (2005). The adaptive strategies of halophyte seed germination. In Acta Ecologica Sinica (Vol. 25, Issue 9).
  • Qasem, J.R. (2020). Weed Seed Dormancy: The Ecophysiology and Survival Strategies. In Seed Dormancy and Germination. https://doi.org/10.5772/intechopen.88015
  • Schwartz-Lazaro, L. M., & Copes, J. T. (2019). A review of the soil seedbank from a weed scientists perspective. Agronomy, 9(7), 369. https://doi.org/10.3390/agronomy9070369
  • Song, J., Feng, G., Tian, C., & Zhang, F. (2005). Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed-germination stage. Annals of Botany, 96(3), 399-405. https://doi.org/10.1093/aob/mci196
  • Steinmaus, S. J., Prather, T. S., & Holt, J. S. (2000). Estimation of base temperatures for nine weed species. Journal of Experimental Botany, 51(343), 275-286. https://doi.org/10.1093/jexbot/51.343.275
  • Sun, J., Khattak, W. A., Abbas, A., Nawaz, M., Hameed, R., Javed, Q., Bo, Y., Khan, K. A., & Du, D. (2023). Ecological adaptability of invasive weeds under environmental pollutants: A review. Environmental and Experimental Botany, 215, 105492. https://doi.org/10.1016/j.envexpbot.2023.105492
  • Tao, Y. yuan, Shang, T. cui, Yan, J. jie, Hu, Y. xia, Zhao, Y., & Liu, Y. (2022). Effects of sand burial depth on Xanthium spinosum seed germination and seedling growth. BMC Plant Biology, 22(1), 43. https://doi.org/10.1186/s12870-022-03424-z
  • Tian, Y.-G., Pang, L.-H., Jiang, X.-Q., & Lu, B.-R. (2024). Impact of soil burial depths on survival of weedy rice seeds: Implications for weed management. Agronomy, 14(6), 1281. https://doi.org/10.3390/agronomy14061281
  • Travlos, I., Gazoulis, I., Kanatas, P., Tsekoura, A., Zannopoulos, S., & Papastylianou, P. (2020). Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Frontiers in Agronomy, 2, 1-9. https://doi.org/10.3389/fagro.2020.00001
  • Walter, G. M., Catara, S., Bridle, J. R., & Cristaudo, A. (2020). Population variation in early development can determine ecological resilience in response to environmental change. New Phytologist, 226(5), 1312-1324. https://doi.org/10.1111/nph.16453
  • Weaver, S. E., & Lechowicz, M. J. (1983). The Biology of Canadian Weeds.: 56. Xanthium strumarium L. Canadian Journal of Plant Science, 63(1), 211–225.
  • Xiao, Y., He, J., Aishan, T., Sui, X., Zhou, Y., & Yimingniyazi, A. (2024). Effects of different degrees of Xanthium spinosum invasion on the invasibility of plant communities in the Yili Grassland of Northwest China. Biology, 13(1), 14. https://doi.org/10.3390/biology13010014
  • Yuan, G., Gao, Y., Fang, J., Shen, G., & Tian, Z. (2025). Environmental influences on seed germination and seedling emergence in four Echinochloa Taxa. Agronomy, 15(2), 401. https://doi.org/10.3390/agronomy15020401

Seed germination characteristics of Xanthium spinosum populations from different climatic regions of Türkiye: Implications for weed management

Year 2025, Volume: 29 Issue: 2, 328 - 344, 16.06.2025
https://doi.org/10.29050/harranziraat.1686971

Abstract

Xanthium spinosum is a troublesome invasive weed widely distributed through many agroecological zones in Türkiye, adversely affecting crop production and local biodiversity. Understanding its seed germination biology is essential for formulating efficient, region-specific management measurements. This study assessed the influence of photoperiod, temperature, pH, salinity, osmotic potential, and seed burial depth on the germination characteristics of X. spinosum populations collected from four geographical regions (Southeastern Anatolia, Mediterranean, Black Sea, and Central Anatolia) in Türkiye. Peak germination was observed under a 12-hour light/dark photoperiod, with Southeastern Anatolia and the Mediterranean populations exhibiting higher responsiveness to light. The highest germination occurred at ~30 °C for Southeastern Anatolia and Mediterranean populations, whereas Black Sea and Central Anatolia populations preferred relatively lower temperatures (25–27 °C) for peak germination. Similarly, neutral pH (~7.0–7.6) resulted in the highest germination of all populations, whereas Southeastern Anatolia had better pH tolerance. Salinity and osmotic stress tests revealed significant demographic differences, with the Southeastern Anatolia population exhibiting higher tolerance to salinity and drought stresses. Seedling emergence peaked at lower burial depths (~2–4 cm) and had a sharp decline at increased depths. These results highlight significant population-specific adaptation patterns associated with local climatic and edaphic conditions. Deep tillage and management strategies based on environmental tolerance determined in the current study may restrict the further spread of X. spinosum.

References

  • Ahmadi, A., Zaefarian, F., Rezvani, M., Mansouri, I., & Sindel, B. M. (2024). Response of spiny cocklebur (Xanthium spinosum) and common cocklebur (X. strumarium) seed germination to environmental and soil factors. Australian Journal of Botany, 72(4). https://doi.org/10.1071/BT23094
  • Alberto Ortiz, T., Ragassi Urbano, M., & Assari Takahashi, L. S. (2019). Effects of water deficit and pH on seed germination and seedling development in Cereus jamacaru. Semina:Ciencias Agrarias, 40(4), 1379–1392. https://doi.org/10.5433/1679-0359.2019v40n4p1379
  • Assefa, A., & Tilaye, G. (2023). Abundance of Xanthium spinosum L. along the different land types and its impacts on invaded plant communities in North Shewa Zone, Ethiopia. Sustinere: Journal of Environment and Sustainability, 7(3), 190–206. https://doi.org/10.22515/sustinere.jes.v7i3.343
  • Auld, B. A. (1993). Emergence and flowering in Xanthium spinosum. Agriculture, Ecosystems and Environment, 47(3), 215–222. https://doi.org/10.1016/0167-8809(93)90123-7
  • Baskin, C. C., & Baskin, J. M. (2014). Seeds: ecology, biogeography, and evolution of dormancy and germination. Elsevier Science.
  • Batlla, D., & Benech-Arnold, R. L. (2014). Weed seed germination and the light environment: Implications for weed management. Weed Biology and Management, 14(2), 77-87. https://doi.org/10.1111/wbm.12039
  • Batlla, D., & Luis Benech-Arnold, R. (2007). Predicting changes in dormancy level in weed seed soil banks: Implications for weed management. Crop Protection, 26(3), 189-197. https://doi.org/10.1016/j.cropro.2005.07.014
  • Benech-Arnold, R. L., Sánchez, R. A., Forcella, F., Kruk, B. C., & Ghersa, C. M. (2000). Environmental control of dormancy in weed seed banks in soil. Field Crops Research, 67(2), 105-122. https://doi.org/10.1016/S0378-4290(00)00087-3
  • Benvenuti, S. (2003). Soil texture involvement in germination and emergence of buried weed seeds. Agronomy Journal, 95(1), 191-198. https://doi.org/10.2134/agronj2003.0191
  • Benvenuti, S., & Mazzoncini, M. (2019). Soil physics involvement in the germination ecology of buried weed seeds. Plants, 8(1), 1-7. https://doi.org/10.3390/plants8010007
  • Bükün, B. (2005). Weed flora changes in cotton growing areas during the last decade after irrigation of Harran plain in Şanliurfa, Turkey. Pakistan Journal of Botany, 37(3), 667–672.
  • CABI. (2022). Xanthium spinosum (bathurst burr) – Invasive Species Compendium. CAB International, Wallingford, UK.
  • Chauhan, B. S., Gill, G., & Preston, C. (2006a). Factors affecting seed germination of annual sowthistle (Sonchus oleraceus) in southern Australia. Weed Science, 54(4), 854–860. https://doi.org/10.1614/WS-06-047R.1
  • Chauhan, B. S., Gill, G., & Preston, C. (2006b). Factors affecting seed germination of little mallow (Malva parviflora) in southern Australia. Weed Science, 54(6), 1045–1050.
  • Chauhan, B. S., Gill, G., & Preston, C. (2006c). Factors affecting seed germination of threehorn bedstraw (Galium tricornutum) in Australia. Weed Science, 54(3), 471–477.
  • Chauhan, B. S., & Johnson, D. E. (2010). The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy, 105, 221–262.
  • Cochrane, A., Yates, C. J., Hoyle, G. L., & Nicotra, A. B. (2015). Will among-population variation in seed traits improve the chance of species persistence under climate change? Global Ecology and Biogeography, 24(1), 12–24. https://doi.org/10.1111/geb.12234
  • DiTommaso, A. (2004). Germination behavior of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities. Weed Science, 52(6), 1002–1009. https://doi.org/10.1614/WS-04-030R1
  • Dürr, C., Dickie, J. B., Yang, X. Y., & Pritchard, H. W. (2015). Ranges of critical temperature and water potential values for the germination of species worldwide: Contribution to a seed trait database. Agricultural and Forest Meteorology, 200, 222-232. https://doi.org/10.1016/j.agrformet.2014.09.024
  • Esashi, Y., & Leopold, A. C. (1968). Physical forces in dormancy and germination of Xanthium seeds. Plant Physiology, 43(6), 871-876. https://doi.org/10.1104/pp.43.6.871
  • Farooq, S., Onen, H., Ozaslan, C., Baskin, C. C., & Gunal, H. (2019). Seed germination niche for common ragweed (Ambrosia artemisiifolia L.) populations naturalized in Turkey. South African Journal of Botany, 123, 361–371. https://doi.org/10.1016/j.sajb.2019.03.031
  • Farooq, S., Onen, H., Tad, S., Ozaslan, C., Mahmoud, S. F., Brestic, M., Zivcak, M., Skalicky, M., & El-Shehawi, A. M. (2021). The influence of environmental factors on seed germination of Polygonum perfoliatum L.: Implications for management. Agronomy, 11(6), 1123. https://doi.org/10.3390/agronomy11061123
  • Fenner, M., & Thompson, K. (2005). The ecology of seeds. Cambridge University Press. Cambridge, UK, 2005
  • Grundy, A. C., Mead, A., & Burston, S. (2003). Modelling the emergence response of weed seeds to burial depth: Interactions with seed density, weight and shape. Journal of Applied Ecology, 40(4), 750-770. https://doi.org/10.1046/j.1365-2664.2003.00836.x
  • Gul, B., Ansari, R., Flowers, T. J., & Khan, M. A. (2013). Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 92, 4-18. https://doi.org/10.1016/j.envexpbot.2012.11.006
  • Hakim, M. A., Juraimi, A. S., Hanafi, M. M., Selamat, A., Ismail, M. R., & Rezaul Karim, S. M. (2011). Studies on seed germination and growth in weed species of rice field under salinity stress. Journal of Environmental Biology, 32(5), 529-536.
  • Hegarty, T. W. (1978). The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review. Plant, Cell & Environment, 1(2), 101-119. https://doi.org/10.1111/j.1365-3040.1978.tb00752.x
  • Hocking, P. J., & Liddle, M. J. (1986). The biology of Australian weeds: 15. Xanthium occidentale Bertol. complex and Xanthium spinosum L. Journal of the Australian Institute of Agricultural Science, 52(4), 191–221.
  • Holm, L. G., Plucknett, D. L., Pancho, J. V., Herbebgeb, J. S., Hilbig, W., & Halle, S. (1978). The World’s Worst Weeds. Distribution and Biology. Pedobiologia, 18(4), 296-297. https://doi.org/10.1016/s0031-4056(23)00601-7
  • Kadıoğlu, İ., & Kekeç, M. (2020). İklim değişikliğine bağlı olarak Xanthium strumarium L.’un Türkiye’de gelecekte dağılım alanlarının belirlenmesi. Türkiye Herboloji Dergisi, 23(1), 1–14.
  • Kelečević, B., Kovačević, Z., Mitrić, S., & Vrbničanin, S. (2024). Responses of seed germination of Xanthium orientale L. and Xanthium spinosum L. to temperature. Plant Protection Science, 60(3), 295–304. https://doi.org/10.17221/124/2023-PPS
  • Kigel, J. (2017). Seed germination in arid and semiarid regions. In Seed Development and Germination. https://doi.org/10.1201/9780203740071. pp: 55.
  • Liu, Y., Li, Y., Wang, R., Guo, L., Ji, Y., Chen, Y., Hao, L., & Lin, K. (2025). Impacts of human activity and climate change on the suitable habitats for Xanthium spinosum in China. Plants, 14(3), 306. https://doi.org/10.3390/plants14030306
  • Malka, S., Eizenberg, H., & Matzrafi, M. (2023). Variation in seed properties and germination capabilities among populations of the invasive weed Parthenium hysterophorus L. (Asteraceae). Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1222366
  • Marschner, C. A., Colucci, I., Stup, R. S., Westbrook, A. S., Brunharo, C. A. C. G., DiTommaso, A., & Mesgaran, M. B. (2024). Modeling weed seedling emergence for time-specific weed management: a systematic review. Weed Science, 72(4), 313–329. https://doi.org/10.1017/wsc.2024.25
  • Mesgaran, M. B., Mashhadi, H. R., Alizadeh, H., Hunt, J., Young, K. R., & Cousens, R. D. (2013). Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 53(2), 89-101. Michel, B. E. (1983). Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant physiology, 72(1), 66-70.
  • Nautiyal, P. C., Sivasubramaniam, K., & Dadlani, M. (2023). Seed Dormancy and Regulation of Germination. In Seed Science and Technology: Biology, Production, Quality. https://doi.org/10.1007/978-981-19-5888-5_3
  • Obam, S. O. (2006). The accuracy of Scheffe’s third degree over second-degree, optimization regression polynomials. Nigerian Journal of Technology, 25(2), 5-15.
  • Önen, H., Farooq, S., Tad, S., Özaslan, C., Gunal, H., & Chauhan, B. S. (2018). The influence of environmental factors on germination of Burcucumber (Sicyos angulatus) seeds: Implications for range expansion and management. Weed Science, 66(4), 494–501. https://doi.org/10.1017/wsc.2018.20
  • Ozaslan, C., Farooq, S., Onen, H., Ozcan, S., Bukun, B., & Gunal, H. (2017). Germination biology of two invasive Physalis species and implications for their management in arid and semi-arid regions. Scientific Reports, 12(7), 1–12. https://doi.org/10.1038/s41598-017-17169-5
  • Ozturk, L., Sivri, N., & Sin, B. (2017). An update of weed flora of vineyards in Northwestern Turkey. International Journal of Environment, Agriculture and Biotechnology, 2(6), 3050-3055. http://dx.doi.org/10.22161/ijeab/2.6.35
  • Qu, X. X., & Huang, Z. Y. (2005). The adaptive strategies of halophyte seed germination. In Acta Ecologica Sinica (Vol. 25, Issue 9).
  • Qasem, J.R. (2020). Weed Seed Dormancy: The Ecophysiology and Survival Strategies. In Seed Dormancy and Germination. https://doi.org/10.5772/intechopen.88015
  • Schwartz-Lazaro, L. M., & Copes, J. T. (2019). A review of the soil seedbank from a weed scientists perspective. Agronomy, 9(7), 369. https://doi.org/10.3390/agronomy9070369
  • Song, J., Feng, G., Tian, C., & Zhang, F. (2005). Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed-germination stage. Annals of Botany, 96(3), 399-405. https://doi.org/10.1093/aob/mci196
  • Steinmaus, S. J., Prather, T. S., & Holt, J. S. (2000). Estimation of base temperatures for nine weed species. Journal of Experimental Botany, 51(343), 275-286. https://doi.org/10.1093/jexbot/51.343.275
  • Sun, J., Khattak, W. A., Abbas, A., Nawaz, M., Hameed, R., Javed, Q., Bo, Y., Khan, K. A., & Du, D. (2023). Ecological adaptability of invasive weeds under environmental pollutants: A review. Environmental and Experimental Botany, 215, 105492. https://doi.org/10.1016/j.envexpbot.2023.105492
  • Tao, Y. yuan, Shang, T. cui, Yan, J. jie, Hu, Y. xia, Zhao, Y., & Liu, Y. (2022). Effects of sand burial depth on Xanthium spinosum seed germination and seedling growth. BMC Plant Biology, 22(1), 43. https://doi.org/10.1186/s12870-022-03424-z
  • Tian, Y.-G., Pang, L.-H., Jiang, X.-Q., & Lu, B.-R. (2024). Impact of soil burial depths on survival of weedy rice seeds: Implications for weed management. Agronomy, 14(6), 1281. https://doi.org/10.3390/agronomy14061281
  • Travlos, I., Gazoulis, I., Kanatas, P., Tsekoura, A., Zannopoulos, S., & Papastylianou, P. (2020). Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Frontiers in Agronomy, 2, 1-9. https://doi.org/10.3389/fagro.2020.00001
  • Walter, G. M., Catara, S., Bridle, J. R., & Cristaudo, A. (2020). Population variation in early development can determine ecological resilience in response to environmental change. New Phytologist, 226(5), 1312-1324. https://doi.org/10.1111/nph.16453
  • Weaver, S. E., & Lechowicz, M. J. (1983). The Biology of Canadian Weeds.: 56. Xanthium strumarium L. Canadian Journal of Plant Science, 63(1), 211–225.
  • Xiao, Y., He, J., Aishan, T., Sui, X., Zhou, Y., & Yimingniyazi, A. (2024). Effects of different degrees of Xanthium spinosum invasion on the invasibility of plant communities in the Yili Grassland of Northwest China. Biology, 13(1), 14. https://doi.org/10.3390/biology13010014
  • Yuan, G., Gao, Y., Fang, J., Shen, G., & Tian, Z. (2025). Environmental influences on seed germination and seedling emergence in four Echinochloa Taxa. Agronomy, 15(2), 401. https://doi.org/10.3390/agronomy15020401
There are 54 citations in total.

Details

Primary Language English
Subjects Herbology
Journal Section Araştırma Makaleleri
Authors

Shahid Farooq 0000-0002-6349-1404

Early Pub Date June 11, 2025
Publication Date June 16, 2025
Submission Date April 29, 2025
Acceptance Date May 27, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Farooq, S. (2025). Seed germination characteristics of Xanthium spinosum populations from different climatic regions of Türkiye: Implications for weed management. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(2), 328-344. https://doi.org/10.29050/harranziraat.1686971

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.