Review
BibTex RIS Cite

CRISPR-Cas9 Teknolojisi: Biyoteknolojide Devrim Niteliğinde Bir İnovasyon

Year 2025, Volume: 66 Issue: 1, 91 - 98, 30.06.2025
https://doi.org/10.29185/hayuretim.1628222

Abstract

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9, biyoteknoloji araştırmalarını devrim niteliğinde değiştiren düzenli aralıklarla yerleşmiş kısa palindromik tekrarlar temelinde bir gen düzenleme teknolojisidir. Bu sistem, genomda istenilen değişiklikleri ve genleri hızlı, ucuz ve basit bir şekilde düzenleme potansiyeli sunmaktadır. Gen düzenlemenin birçok potansiyel uygulaması vardır; bunlar arasında genetik hastalıkların tedavisi ve tarımsal ürünlerin verimliliği ile kalitesinin artırılması yer alır. CRISPR-Cas9 sistemi, genetik hastalıkların tedavisinden tarımda ürün verimliliğini artırmaya, hastalıklara dirençli hayvanlar elde etmeye, mikrobiyolojide antibiyotik direncini incelemeye, azot fikseasyonu, biyoyakıtlar, biyosensörler, sera gazı emisyonları, pestisit azaltımı, su yönetimi vb. bir dizi farklı alanda uygulamalara sahiptir. Örneğin, bu sistem, kistik fibrozisin tedavisinde bağırsak organoidlerinde mutasyonları başarılı bir şekilde düzenlemek için kullanılmıştır. Bitkilerde ise pirinçte herbisit direnci, domateste unlu mantar hastalığı ve patateslerde yüksek amilopektin içeriğinin azaltılması gibi başarılı sonuçlar elde edilmiştir. Hayvanlarda ise ineklerde mastitise yol açan bakterilere karşı direnç sağlamak için çalışmalar devam etmektedir. Aynı zamanda, keçilerde beta-laktoglobulin geninin susturulmasıyla süt alerjenlerinin azaltılması amacıyla araştırmalar yapılmaktadır. Ancak, CRISPR teknolojisinin etik yönleri de önemli bir tartışma konusudur. Genetik mühendisliğin potansiyel riskleri ve toplumsal etkileri göz önüne alındığında, bu konuda etik tartışmaların devam etmesi gerektiği söylenebilir. Sonuç olarak, CRISPR-Cas9, genetik mühendislikte devrim niteliğinde bir araçtır ve birçok alanda yenilikçi uygulamalar için yeni fırsatlar sunmaktadır. Bu makale, CRISPR-Cas9 teknolojisi, tıptaki, tarımdaki, hayvancılıktaki kullanımı ve etik tartışmalarla ilgili yapılan çalışmaları incelemektedir.

References

  • Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Molecular Cell, 54(2), 234-244.
  • Brant EJ, Eid A, Kannan BC, Baloglu MC, Altpeter F. 2024. The extent of multiallelic, co‐editing of lıguleless1 in highly polyploid sugarcane tunes leaf inclination angle and enables selection of the ideotype for biomass yield. Plant Biotechnology Journal.1-6
  • Brokowski C, Adli M. 2019. CRISPR ethics: moral considerations for applications of a powerful tool. Journal Of Molecular Biology, 431(1), 88-101.
  • Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Hou W. 2018. CRISPR/Cas9‐Mediated targeted mutagenesis of GMFT2A delays flowering time in soya bean. Plant Biotechnology Journal, 16(1), 176-185.
  • Charpentier E, Doudna JA. 2020. The Nobel Prize in Chemistry 2020. Press Release. https://www.nobelprize.org/prizes/chemistry/2020/press-release/(12 December 2024)
  • Doudna JA, Gersbach CA. 2015. Genome editing: The end of the beginning. Genome Biology, 16, 1-3.
  • Duran T. 2018. Sk-Mel-30 Hücre hattında nras geni Q61K mutasyonuna CRISPR/Cas9 tekniğinin uygulanması. Master's Thesis, Sağlık Bilimleri Enstitüsü.
  • Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A. 2014. Targeted mutagenesis in atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the f0 generation. Plos One, 9(9), E108622.
  • Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, Corbacioglu S. 2021. CRISPR-Cas9 gene editing for sickle cell disease and Β-Thalassemia. New England Journal of Medicine, 384(3), 252-260.
  • Gupta V, Sengupta M, Prakash J, Tripathy BC, Gupta V, Sengupta M, Tripathy BC. 2017. An introduction to biotechnology. Basic and Applied Aspects of Biotechnology, 1-21.
  • Gök ZG, Tunalı BÇ. 2016. CRISPR-Cas immün sisteminin biyolojisi, mekanizması ve kullanım alanları. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 8(2), 11-21.
  • Ikeda M, Matsuyama S, Akagi S, Ohkoshi K, Nakamura S, Minabe S, Hosoe M. 2017. Correction of a disease mutation using CRISPR/Cas9-Assisted genome editing in Japanese Black cattle. Scientific Reports, 7(1), 17827.
  • İpek M, Cansev A, Altınşeker DZ, İpek A. 2024. CRISPR/Cas9-Sitidin Baz Düzenleme Tekniği Kullanılarak Herbisite Toleranslı Havuç Genotiplerinin Geliştirilmesi. https://avesis.uludag.edu.tr/proje/71369e65-714d-4ab1-9c58-984da76864f8/crispr-cas9-sitidin-baz-duzenleme-teknigi-kullanilarak-transgenik-olmayan-herbisite-toleransli-havuc-genotiplerinin-gelistirilmesi(12 December 2024)
  • Kaboli S, Babazada H. 2018. CRISPR mediated genome engineering and its application in industry. Current Issues in Molecular Biology, 26(1), 81-92.
  • Kose SBE, Sura Ü, Yirun A, Balcı A, Gümüşel BK, Erkekoglu P. 2020. CRISPR-Cas9 teknolojisi, güvenliliği ve etik açıdan değerlendirilmesi. Literatür Eczacılık Bilimleri Dergisi, 9(1), 50-64.
  • Lander ES. 2016. The heroes of CRISPR. Cell, 164(1), 18-28.
  • Leibrock NV, Santegoets J, Mooijman PJ, Yusuf F, Zuijdgeest XC, Zutt EA, Schaart JG. 2022. The biological feasibility and social context of gene-edited, caffeine-free coffee. Food Science And Biotechnology, 31(6), 635-655.
  • Mohanta TK, Bashir T, Hashem A, Abd_Allah EF, Bae H. 2017. Genome editing tools in plants. Genes, 8(12), 399.
  • Mulvihill JJ, Capps B, Joly Y, Lysaght T, Zwart HA, Chadwick R. 2017. International human genome organisation (hugo) committee of ethics, law, and society (Cels). Ethical issues of CRISPR technology and gene editing through the lens of solidarity. British Medical Bulletin, 122(1), 17-29.
  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156(5), 935-949.
  • Sandøe P, Borchersen S, Dean W, Hyttel P, Sørensen LP, Palmer C. 2021. Hornless cattle–is gene editing the best solution?. In Justice and Food Security in a Changing Climate (Pp. 324-330). Wageningen Academic.
  • Savić N, Schwank G. 2016. Advances in therapeutic CRISPR/Cas9 genome editing. Translational Research, 168, 15-21.
  • Songstad DD, Petolino JF, Voytas DF, Reichert NA. 2017. Genome editing of plants. Critical Reviews in Plant Sciences, 36(1), 1-23.
  • Tarım Ö. 2004. Moleküler biyoteknoloji devrimi. Güncel Pediatri, 2(2), 101-102.
  • Tian R, Li Y, Zhao H, Lyu W, Zhao J, Wang X, Zhang YQ. 2023. Modeling Shank3-associated autism spectrum disorder in beagle dogs via CRISPR/Cas9 gene editing. Molecular Psychiatry, 28(9), 3739-3750.
  • Tosun ÖK, Kesmen Z. 2022. CRISPR-Cas uygulamaları, potansiyel riskler ve yasal düzenlemeler. Helal Ve Etik Araştırmalar Dergisi, 4(2), 11-42.
  • Verma AS, Agrahari S, Rastogi S, Singh, A. 2011. Biotechnology in the realm of history. Journal Of Pharmacy And Bioallied Sciences, 3(3), 321-323.
  • Vidyasagar A. 2018. What is CRISPR. Live Science. https://www.ccsoh.us/cms/lib/OH01913306/Centricity/Domain/2695/Science%20Summer%20Assignment%20%202019%20Part%202.pdf (12 December 2024).

CRISPR-Cas9 Technology: in Biotechnology a Breakthrough Innovation

Year 2025, Volume: 66 Issue: 1, 91 - 98, 30.06.2025
https://doi.org/10.29185/hayuretim.1628222

Abstract

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 is a gene-editing technology based on regularly spaced short palindromic repeats that have revolutionized biotechnology research. This system offers the potential to edit desired changes and genes in the genome in a fast, inexpensive, simple way. Gene editing has many potential applications, including treating genetic diseases and the enhancement of yield and quality in agricultural products. The CRISPR-Cas9 system has a wide range of applications, from treating genetic diseases in medicine, improving crop yields in agriculture, obtaining disease-resistant animals, studying antibiotic resistance in microbiology, nitrogen fixation, biofuels, biosensors, greenhouse gas emissions, pesticide reduction, water management, etc. For example, this system has been used to successfully regulate mutations in intestinal organoids in the treatment of cystic fibrosis. In plants, successful results have been achieved in creating herbicide resistance in rice, powdery mildew in tomatoes, and reducing high amylopectin content in potatoes. In animals, studies are underway to provide resistance to bacteria that cause mastitis in cows. At the same time, research is underway to reduce milk allergens in goats by silencing the beta-lactoglobulin gene. However, the ethical aspects of CRISPR technology are also an important topic of debate. Given the potential risks and social implications of genetic engineering, ethical debates on this issue should continue. In conclusion, CRISPR-Cas9 is a revolutionary tool in genetic engineering and offers new opportunities for innovative applications in many fields. This article reviews studies on CRISPR-Cas9 technology, its use in medicine, agriculture, animal husbandry, and ethical debates.

References

  • Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Molecular Cell, 54(2), 234-244.
  • Brant EJ, Eid A, Kannan BC, Baloglu MC, Altpeter F. 2024. The extent of multiallelic, co‐editing of lıguleless1 in highly polyploid sugarcane tunes leaf inclination angle and enables selection of the ideotype for biomass yield. Plant Biotechnology Journal.1-6
  • Brokowski C, Adli M. 2019. CRISPR ethics: moral considerations for applications of a powerful tool. Journal Of Molecular Biology, 431(1), 88-101.
  • Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Hou W. 2018. CRISPR/Cas9‐Mediated targeted mutagenesis of GMFT2A delays flowering time in soya bean. Plant Biotechnology Journal, 16(1), 176-185.
  • Charpentier E, Doudna JA. 2020. The Nobel Prize in Chemistry 2020. Press Release. https://www.nobelprize.org/prizes/chemistry/2020/press-release/(12 December 2024)
  • Doudna JA, Gersbach CA. 2015. Genome editing: The end of the beginning. Genome Biology, 16, 1-3.
  • Duran T. 2018. Sk-Mel-30 Hücre hattında nras geni Q61K mutasyonuna CRISPR/Cas9 tekniğinin uygulanması. Master's Thesis, Sağlık Bilimleri Enstitüsü.
  • Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A. 2014. Targeted mutagenesis in atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the f0 generation. Plos One, 9(9), E108622.
  • Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, Corbacioglu S. 2021. CRISPR-Cas9 gene editing for sickle cell disease and Β-Thalassemia. New England Journal of Medicine, 384(3), 252-260.
  • Gupta V, Sengupta M, Prakash J, Tripathy BC, Gupta V, Sengupta M, Tripathy BC. 2017. An introduction to biotechnology. Basic and Applied Aspects of Biotechnology, 1-21.
  • Gök ZG, Tunalı BÇ. 2016. CRISPR-Cas immün sisteminin biyolojisi, mekanizması ve kullanım alanları. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 8(2), 11-21.
  • Ikeda M, Matsuyama S, Akagi S, Ohkoshi K, Nakamura S, Minabe S, Hosoe M. 2017. Correction of a disease mutation using CRISPR/Cas9-Assisted genome editing in Japanese Black cattle. Scientific Reports, 7(1), 17827.
  • İpek M, Cansev A, Altınşeker DZ, İpek A. 2024. CRISPR/Cas9-Sitidin Baz Düzenleme Tekniği Kullanılarak Herbisite Toleranslı Havuç Genotiplerinin Geliştirilmesi. https://avesis.uludag.edu.tr/proje/71369e65-714d-4ab1-9c58-984da76864f8/crispr-cas9-sitidin-baz-duzenleme-teknigi-kullanilarak-transgenik-olmayan-herbisite-toleransli-havuc-genotiplerinin-gelistirilmesi(12 December 2024)
  • Kaboli S, Babazada H. 2018. CRISPR mediated genome engineering and its application in industry. Current Issues in Molecular Biology, 26(1), 81-92.
  • Kose SBE, Sura Ü, Yirun A, Balcı A, Gümüşel BK, Erkekoglu P. 2020. CRISPR-Cas9 teknolojisi, güvenliliği ve etik açıdan değerlendirilmesi. Literatür Eczacılık Bilimleri Dergisi, 9(1), 50-64.
  • Lander ES. 2016. The heroes of CRISPR. Cell, 164(1), 18-28.
  • Leibrock NV, Santegoets J, Mooijman PJ, Yusuf F, Zuijdgeest XC, Zutt EA, Schaart JG. 2022. The biological feasibility and social context of gene-edited, caffeine-free coffee. Food Science And Biotechnology, 31(6), 635-655.
  • Mohanta TK, Bashir T, Hashem A, Abd_Allah EF, Bae H. 2017. Genome editing tools in plants. Genes, 8(12), 399.
  • Mulvihill JJ, Capps B, Joly Y, Lysaght T, Zwart HA, Chadwick R. 2017. International human genome organisation (hugo) committee of ethics, law, and society (Cels). Ethical issues of CRISPR technology and gene editing through the lens of solidarity. British Medical Bulletin, 122(1), 17-29.
  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156(5), 935-949.
  • Sandøe P, Borchersen S, Dean W, Hyttel P, Sørensen LP, Palmer C. 2021. Hornless cattle–is gene editing the best solution?. In Justice and Food Security in a Changing Climate (Pp. 324-330). Wageningen Academic.
  • Savić N, Schwank G. 2016. Advances in therapeutic CRISPR/Cas9 genome editing. Translational Research, 168, 15-21.
  • Songstad DD, Petolino JF, Voytas DF, Reichert NA. 2017. Genome editing of plants. Critical Reviews in Plant Sciences, 36(1), 1-23.
  • Tarım Ö. 2004. Moleküler biyoteknoloji devrimi. Güncel Pediatri, 2(2), 101-102.
  • Tian R, Li Y, Zhao H, Lyu W, Zhao J, Wang X, Zhang YQ. 2023. Modeling Shank3-associated autism spectrum disorder in beagle dogs via CRISPR/Cas9 gene editing. Molecular Psychiatry, 28(9), 3739-3750.
  • Tosun ÖK, Kesmen Z. 2022. CRISPR-Cas uygulamaları, potansiyel riskler ve yasal düzenlemeler. Helal Ve Etik Araştırmalar Dergisi, 4(2), 11-42.
  • Verma AS, Agrahari S, Rastogi S, Singh, A. 2011. Biotechnology in the realm of history. Journal Of Pharmacy And Bioallied Sciences, 3(3), 321-323.
  • Vidyasagar A. 2018. What is CRISPR. Live Science. https://www.ccsoh.us/cms/lib/OH01913306/Centricity/Domain/2695/Science%20Summer%20Assignment%20%202019%20Part%202.pdf (12 December 2024).
There are 28 citations in total.

Details

Primary Language English
Subjects Animal Science, Genetics and Biostatistics
Journal Section Reviews
Authors

Lara Özanatça 0009-0003-3298-9028

Raziye Işık 0000-0003-2982-6562

Publication Date June 30, 2025
Submission Date January 28, 2025
Acceptance Date May 5, 2025
Published in Issue Year 2025 Volume: 66 Issue: 1

Cite

APA Özanatça, L., & Işık, R. (2025). CRISPR-Cas9 Technology: in Biotechnology a Breakthrough Innovation. Journal of Animal Production, 66(1), 91-98. https://doi.org/10.29185/hayuretim.1628222


26405

Creative Commons License Journal of Animal Production is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

264072640626408  26409 26410  2639926411 26412 26413 26414 26415