Research Article
BibTex RIS Cite
Year 2025, , 368 - 377, 28.04.2025
https://doi.org/10.15672/hujms.1386151

Abstract

References

  • [1] Z. Abdulhadi, Typically real log-harmonic mappings, Int. J. Math. Math. Sci. 31, 1–9, 2002.
  • [2] Z. Abdulhadi, Close-to-starlike log-harmonic mappings, Int. J. Math. Math. Sci. 19, 563–574, 1996.
  • [3] Z. Abdulhadi and D. Bshouty, Univalent functions in $H\overline{H}(\mathbb{D})$, Tran. Amer. Math. Soc. 305, 841–849, 1988.
  • [4] Z. Abdulhadi and Y. Abu Muhanna, Starlike log-harmonic mappings of order alpha, J. Inequal. Pure Appl. Math. 7, Article 123, 2006.
  • [5] Z. Abdulhadi and W. Hengartner, Spirallike log-harmonic mappings, Complex Variables: Theory Appl. 9, 121–130, 1987.
  • [6] Z. Abdulhadi and W. Hengartner, One pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203 , 333–351, 1996.
  • [7] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45, 213–232, 2019.
  • [8] P. L. Duren, Univalent functions, Springer, New York, 1983.
  • [9] W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28, 297–326, 1973.
  • [10] Z. Liu and S. Ponnusamy, Some properties of univalent log-harmonic mappings, Filomat, 32, 5275–5288, 2018.
  • [11] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.

Log-Harmonic mappings associated with the sine function

Year 2025, , 368 - 377, 28.04.2025
https://doi.org/10.15672/hujms.1386151

Abstract

In this paper, we define new subclasses $\mathcal{ST}_{lh}(s)$ and $\mathcal{CST}_{lh}(s)$ of sine starlike log-harmonic mappings and sine close-to-starlike log-harmonic mappings, respectively, defined in the open unit disc ${\mathbb D}$. We investigate representation theorem and integral representation theorem for functions in the class $\mathcal{ST}_{lh}(s)$. Further, we determine radius of starlikeness for functions in the classes $\mathcal{ST}_{lh}(s)$ and $\mathcal{CST}_{lh}(s)$.

References

  • [1] Z. Abdulhadi, Typically real log-harmonic mappings, Int. J. Math. Math. Sci. 31, 1–9, 2002.
  • [2] Z. Abdulhadi, Close-to-starlike log-harmonic mappings, Int. J. Math. Math. Sci. 19, 563–574, 1996.
  • [3] Z. Abdulhadi and D. Bshouty, Univalent functions in $H\overline{H}(\mathbb{D})$, Tran. Amer. Math. Soc. 305, 841–849, 1988.
  • [4] Z. Abdulhadi and Y. Abu Muhanna, Starlike log-harmonic mappings of order alpha, J. Inequal. Pure Appl. Math. 7, Article 123, 2006.
  • [5] Z. Abdulhadi and W. Hengartner, Spirallike log-harmonic mappings, Complex Variables: Theory Appl. 9, 121–130, 1987.
  • [6] Z. Abdulhadi and W. Hengartner, One pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203 , 333–351, 1996.
  • [7] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45, 213–232, 2019.
  • [8] P. L. Duren, Univalent functions, Springer, New York, 1983.
  • [9] W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28, 297–326, 1973.
  • [10] Z. Liu and S. Ponnusamy, Some properties of univalent log-harmonic mappings, Filomat, 32, 5275–5288, 2018.
  • [11] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.
There are 11 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Mathematics
Authors

Sushil Kumar Kumar 0000-0003-4665-8011

Asena Çetinkaya 0000-0002-8815-5642

Hatice Esra Özkan Uçar 0000-0003-3787-5989

Early Pub Date April 14, 2024
Publication Date April 28, 2025
Submission Date November 4, 2023
Acceptance Date March 12, 2024
Published in Issue Year 2025

Cite

APA Kumar, S. K., Çetinkaya, A., & Özkan Uçar, H. E. (2025). Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics, 54(2), 368-377. https://doi.org/10.15672/hujms.1386151
AMA Kumar SK, Çetinkaya A, Özkan Uçar HE. Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics. April 2025;54(2):368-377. doi:10.15672/hujms.1386151
Chicago Kumar, Sushil Kumar, Asena Çetinkaya, and Hatice Esra Özkan Uçar. “Log-Harmonic Mappings Associated With the Sine Function”. Hacettepe Journal of Mathematics and Statistics 54, no. 2 (April 2025): 368-77. https://doi.org/10.15672/hujms.1386151.
EndNote Kumar SK, Çetinkaya A, Özkan Uçar HE (April 1, 2025) Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics 54 2 368–377.
IEEE S. K. Kumar, A. Çetinkaya, and H. E. Özkan Uçar, “Log-Harmonic mappings associated with the sine function”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, pp. 368–377, 2025, doi: 10.15672/hujms.1386151.
ISNAD Kumar, Sushil Kumar et al. “Log-Harmonic Mappings Associated With the Sine Function”. Hacettepe Journal of Mathematics and Statistics 54/2 (April 2025), 368-377. https://doi.org/10.15672/hujms.1386151.
JAMA Kumar SK, Çetinkaya A, Özkan Uçar HE. Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics. 2025;54:368–377.
MLA Kumar, Sushil Kumar et al. “Log-Harmonic Mappings Associated With the Sine Function”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, 2025, pp. 368-77, doi:10.15672/hujms.1386151.
Vancouver Kumar SK, Çetinkaya A, Özkan Uçar HE. Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):368-77.