Research Article
BibTex RIS Cite

On the rank of two-dimensional simplicial distributions

Year 2025, , 414 - 435, 28.04.2025
https://doi.org/10.15672/hujms.1414442

Abstract

Simplicial distributions provide a framework for studying quantum contextuality, a generalization of Bell's non-locality. Understanding extremal simplicial distributions is of fundamental importance with applications to quantum computing. We introduce a rank formula for twisted simplicial distributions defined for $2$-dimensional measurement spaces and provide a systematic approach for describing extremal distributions.

Supporting Institution

US Air Force Office of Scientific Research

Project Number

FA9550-21-1-0002

References

  • [1] S. Abramsky and A. Brandenburger, The sheaf-theoretic structure of non-locality and contextuality, New J. Phys. 13 (11), 113036, 2011.
  • [2] R. S. Barbosa, A. Kharoof, and C. Okay, A bundle perspective on contextuality: Empirical models and simplicial distributions on bundle scenarios, arXiv preprint arXiv:2308.06336, 2023.
  • [3] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, Nonlocal correlations as an information-theoretic resource, Phys. Rev. A, 71, 022101, 2005.
  • [4] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys. Fiz. 1, 195–200, 1964.
  • [5] V. Chvátal, Linear programming. A Series of Books in the Mathematical Sciences, W. H. Freeman and Company, New York, 1983.
  • [6] G. Friedman, An elementary illustrated introduction to simplicial sets, arXiv preprint arXiv:0809.4221, 2008.
  • [7] P. G. Goerss and J. F. Jardine, Simplicial homotopy theory. Springer Science & Business Media, 2009.
  • [8] C. Horne, M. Horne, A. Shimony, and H. Richard, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 880, 1969.
  • [9] S. Ipek and C. Okay, The degenerate vertices of the 2-qubit $\Lambda$-polytope and their update rules, arXiv preprint arXiv:2312.10734, 2023.
  • [10] N. S. Jones and L. Masanes, Interconversion of nonlocal correlations, Phys. Rev. A, 72 (5), 052312, 2005.
  • [11] A. Kharoof, S. Ipek, and C. Okay, Topological methods for studying contextuality: N-cycle scenarios and beyond, Entropy, 25 (8), 2023.
  • [12] A. Kharoof and C. Okay, Simplicial distributions, convex categories and contextuality, preprint arXiv:2211.00571, 2022.
  • [13] S. Kochen and E. P. Specker, The problem of hidden variables in quantum mechanics, J. Math. Mech. 17, 59–87, 1967.
  • [14] J. P. May, Simplicial objects in algebraic topology. Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.
  • [15] N. D. Mermin, Hidden variables and the two theorems of John Bell, Rev. Modern Phys. 65 (3), 803, 1993.
  • [16] C. Okay, H. Y. Chung, and S. Ipek, Mermin polytopes in quantum computation and foundations, Quantum Inf. Comput. 23 (9), 733–782, 2023.
  • [17] C. Okay, A. Kharoof, and S. Ipek, Simplicial quantum contextuality, Quantum, 7, 2023.
  • [18] C. Okay, S. Roberts, S. D. Bartlett, and R. Raussendorf, Topological proofs of contextuality in quantum mechanics, Quantum Inf. Comput. 17 (13-14), 1135–1166, 2017.
  • [19] C. Okay and W.H. Stern, Twisted simplicial distributions, arXiv preprint arXiv:2403.19808, 2024.
  • [20] I. Pitowsky, Quantum Probability Quantum Logic, Springer, 1989.
  • [21] S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Found. Phys. 24 (3), 379–385, 1994.
  • [22] C. A. Weibel, An introduction to homological algebra. 38, Cambridge university press, 1995.
  • [23] T. Zaslavsky, Matrices in the theory of signed simple graphs, Advances in discrete mathematics and applications: Mysore, 2008, vol. 13 of Ramanujan Math. Soc. Lect. Notes Ser. 207–229, Ramanujan Math. Soc., Mysore, 2010.
  • [24] M. Zurel, C. Okay, and R. Raussendorf, Hidden variable model for universal quantum computation with magic states on qubits, Phys. Rev. Lett. 125 (26), 260404, 2020.
Year 2025, , 414 - 435, 28.04.2025
https://doi.org/10.15672/hujms.1414442

Abstract

Project Number

FA9550-21-1-0002

References

  • [1] S. Abramsky and A. Brandenburger, The sheaf-theoretic structure of non-locality and contextuality, New J. Phys. 13 (11), 113036, 2011.
  • [2] R. S. Barbosa, A. Kharoof, and C. Okay, A bundle perspective on contextuality: Empirical models and simplicial distributions on bundle scenarios, arXiv preprint arXiv:2308.06336, 2023.
  • [3] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, Nonlocal correlations as an information-theoretic resource, Phys. Rev. A, 71, 022101, 2005.
  • [4] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys. Fiz. 1, 195–200, 1964.
  • [5] V. Chvátal, Linear programming. A Series of Books in the Mathematical Sciences, W. H. Freeman and Company, New York, 1983.
  • [6] G. Friedman, An elementary illustrated introduction to simplicial sets, arXiv preprint arXiv:0809.4221, 2008.
  • [7] P. G. Goerss and J. F. Jardine, Simplicial homotopy theory. Springer Science & Business Media, 2009.
  • [8] C. Horne, M. Horne, A. Shimony, and H. Richard, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 880, 1969.
  • [9] S. Ipek and C. Okay, The degenerate vertices of the 2-qubit $\Lambda$-polytope and their update rules, arXiv preprint arXiv:2312.10734, 2023.
  • [10] N. S. Jones and L. Masanes, Interconversion of nonlocal correlations, Phys. Rev. A, 72 (5), 052312, 2005.
  • [11] A. Kharoof, S. Ipek, and C. Okay, Topological methods for studying contextuality: N-cycle scenarios and beyond, Entropy, 25 (8), 2023.
  • [12] A. Kharoof and C. Okay, Simplicial distributions, convex categories and contextuality, preprint arXiv:2211.00571, 2022.
  • [13] S. Kochen and E. P. Specker, The problem of hidden variables in quantum mechanics, J. Math. Mech. 17, 59–87, 1967.
  • [14] J. P. May, Simplicial objects in algebraic topology. Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.
  • [15] N. D. Mermin, Hidden variables and the two theorems of John Bell, Rev. Modern Phys. 65 (3), 803, 1993.
  • [16] C. Okay, H. Y. Chung, and S. Ipek, Mermin polytopes in quantum computation and foundations, Quantum Inf. Comput. 23 (9), 733–782, 2023.
  • [17] C. Okay, A. Kharoof, and S. Ipek, Simplicial quantum contextuality, Quantum, 7, 2023.
  • [18] C. Okay, S. Roberts, S. D. Bartlett, and R. Raussendorf, Topological proofs of contextuality in quantum mechanics, Quantum Inf. Comput. 17 (13-14), 1135–1166, 2017.
  • [19] C. Okay and W.H. Stern, Twisted simplicial distributions, arXiv preprint arXiv:2403.19808, 2024.
  • [20] I. Pitowsky, Quantum Probability Quantum Logic, Springer, 1989.
  • [21] S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Found. Phys. 24 (3), 379–385, 1994.
  • [22] C. A. Weibel, An introduction to homological algebra. 38, Cambridge university press, 1995.
  • [23] T. Zaslavsky, Matrices in the theory of signed simple graphs, Advances in discrete mathematics and applications: Mysore, 2008, vol. 13 of Ramanujan Math. Soc. Lect. Notes Ser. 207–229, Ramanujan Math. Soc., Mysore, 2010.
  • [24] M. Zurel, C. Okay, and R. Raussendorf, Hidden variable model for universal quantum computation with magic states on qubits, Phys. Rev. Lett. 125 (26), 260404, 2020.
There are 24 citations in total.

Details

Primary Language English
Subjects Category Theory, K Theory, Homological Algebra, Topology
Journal Section Mathematics
Authors

Cihan Okay 0000-0001-8097-5227

Project Number FA9550-21-1-0002
Early Pub Date August 27, 2024
Publication Date April 28, 2025
Submission Date January 3, 2024
Acceptance Date April 29, 2024
Published in Issue Year 2025

Cite

APA Okay, C. (2025). On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics, 54(2), 414-435. https://doi.org/10.15672/hujms.1414442
AMA Okay C. On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics. April 2025;54(2):414-435. doi:10.15672/hujms.1414442
Chicago Okay, Cihan. “On the Rank of Two-Dimensional Simplicial Distributions”. Hacettepe Journal of Mathematics and Statistics 54, no. 2 (April 2025): 414-35. https://doi.org/10.15672/hujms.1414442.
EndNote Okay C (April 1, 2025) On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics 54 2 414–435.
IEEE C. Okay, “On the rank of two-dimensional simplicial distributions”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, pp. 414–435, 2025, doi: 10.15672/hujms.1414442.
ISNAD Okay, Cihan. “On the Rank of Two-Dimensional Simplicial Distributions”. Hacettepe Journal of Mathematics and Statistics 54/2 (April 2025), 414-435. https://doi.org/10.15672/hujms.1414442.
JAMA Okay C. On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics. 2025;54:414–435.
MLA Okay, Cihan. “On the Rank of Two-Dimensional Simplicial Distributions”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, 2025, pp. 414-35, doi:10.15672/hujms.1414442.
Vancouver Okay C. On the rank of two-dimensional simplicial distributions. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):414-35.